Vol. 27, No. 3, 1968

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Thin abelian p-groups

Fred Richman

Vol. 27 (1968), No. 3, 599–606
Abstract

An abelian p-group G is thin if every map from a torsion complete group to G is small. The class of thin groups is shown to be closed under arbitrary direct sums and extensions and hence any direct sum of countable reduced p-groups is thin. An example shows that, unlike for groups with no elements of infinite height, a reduced group may contain no unbounded torsion complete subgroups and still fail to be thin. Finally, these groups are used to settle questions in a certain relative homological algebra.

Mathematical Subject Classification
Primary: 20.30
Milestones
Received: 21 September 1967
Published: 1 December 1968
Authors
Fred Richman