INVARIAENTE SUBSPACES OF $C(G)$

CHARLES A. AKEMANN
IN Variant subspaces of \(C(G) \)

Charles A. Akemann

The purpose of this paper is to show the ease with which certain methods from the theory of locally compact abelian groups carry over to general compact groups. The principal tool is a generalized Fourier transform which is a faithful representation of the group algebra \(L^1(G) \) (G compact) into a direct sum of finite dimensional matrix algebras.

Only the space \(C(G) \) of continuous complex-valued functions of \(G \) will be considered here, although the methods are also applicable to \(L^p(G) \).

The mapping \(R_x[L_x]: C(G) \to C(G) \) by \(R_x(f)(y) = f(yx)[L_x(f)(y) = f(xy)] \) for each \(x \in G \) gives an action of \(G \) on \(C(G) \). A closed subspace of \(C(G) \) is called right [left] invariant if it is invariant under all \(R_x[L_x] \) for \(x \in G \). Proposition 1 states that a closed subspace of \(C(G) \) is right (left) invariant if it is a right (left) ideal of the convolution algebra \(C(G) \). This fact is used in Theorem 2 to give another description of a closed right (left) invariant subspace in terms of the Fourier transform. This description is the analog of the Spectral Synthesis Theorem. Finally the notion of a Sidon set is used to describe certain two-sided (both right and left) invariant subspaces of \(C(G) \).

The notation and definitions of [1] are used throughout the paper.

Proposition 1. A closed subspace \(A \) of \(C(G) \) is right (left) invariant if and only if it is a right (left) ideal of the convolution algebra \(C(G) \).

Remark. Proposition 1 seems to be known. A proof may be constructed along the lines of Theorem 7.12 of [6], or by using the Fourier transform.

For the next theorem we recall from [1] the definition of the Fourier transform and the algebra \(M = \bigoplus_{\tau \in \Lambda} B(H_\tau) \). Theorem 2 is an exact analog of the Spectral Synthesis Theorem for locally compact abelian groups. The “right” theorem is proved, but the “left” theorem is also true by a similar proof.

Theorem 2. If \(A \) is a closed right invariant subspace of \(C(G) \), then there exists a unique self-adjoint projection \(p \in M \) such that \(A = \{ f \in C(G) : p\hat{f} = \hat{f} \} \).

Proof. For each \(r, M(A) \), is a right ideal of \(B(H_r) \), thus (since \(H_r \) is finite-dimensional) has the form \(p_r B(H_r) \), for some self-adjoint
projection p_r in $B(H_r)$. Set $p = \{p_r\}_{r \in \Delta}$. Let $\{u_a\}_{a \in I}$ be a bounded, central approximate identity as constructed in the proof of Theorem 3.4 of [3]. Since each u_a is a trigonometric polynomial, $(\hat{u}_a)_r = 0$ for all but a finite set of $r \in \Delta$. Thus $\Lambda^{-1}(p\hat{u}_a) \in A$ for each $\alpha \in I$. Clearly $\{f: p\hat{f} = \hat{f}\}$ is a closed right ideal which contains A, so we need only prove the reverse inclusion. Suppose $p\hat{f} = \hat{f}$. Then $\Lambda^{-1}(p\hat{u}_a)*f \in A$, and $\Lambda^{-1}(p\hat{u}_a)*f = p\hat{u}_a\hat{f} = \hat{f}\hat{u}_a = (f^*u_a)^\sim$. Thus by uniqueness of Fourier transform, $\Lambda^{-1}(p\hat{u}_a)*f = f^*u_a \in A$. Taking limits over $a \in I$, we get $f \in A$, using the fact that $\{u_a\}$ is a norm approximate identity for $C(G)$.

Remark. If the subspace A of Theorem 2 is two-sided invariant, then $\Lambda(A)_r$ is a two-sided ideal of $B(H_r)$ for each $r \in \Delta$. Thus either $\Lambda(A)_r = B(H_r)$ or $\Lambda(A)_r = \{0\}$. Thus the projection p given by the theorem would be a central projection in M.

It is to be emphasized that this paper is more an illustration of technique than anything else. There are many technical problems relating to noncommutativity, some of which are formidable. We are indebted to the referee for pointing out one of them which necessitated a correction in an earlier version of this paper.

We now turn to the case of two-sided invariance. The aim is to give a version of Theorem 2.7 of [5].

Definition. If A is a closed two-sided invariant subspace of $C(G)$ and $A_0 \subset A$ is a closed right invariant subspace, a projection $T: A \rightarrow A_0$ of A onto A_0 is called locally self-adjoint if the linear functional $\Phi(f) = T(f)(e)$ is self-adjoint on A, where $e \in G$ is the group identity.

Proposition 3. Suppose A is a closed two-sided invariant subspaces of $C(G)$, and A_0 is a closed right invariant subspace with $A_0 \subset A$. If $T: A \rightarrow A_0$ is a bounded locally self-adjoint projection of A onto A_0 which commutes with right translations, then there exists $m \in M(G)$ self-adjoint such that $T(f) = m*f$ for all $f \in A$.

Proof. Let $e \in G$ be the group identity. Then $f \rightarrow T(f)(e)$ defines a bounded self-adjoint linear functional on A, which thus extends by the Hahn-Banach theorem to a self-adjoint bounded linear functional $m \in M(G) = C(G)^\ast$. Here the duality is given by

$$m(f) = \int e f(x^{-1}) dm(x).$$

Now take $f \in A$ and $x \in G$ and we get

$$(Tf)(x) = (R_x T f)(e) = (T(R_x f))(e) = \int e (R_x f)(y^{-1}) dm(y)$$

$$= \int e f(y^{-1} x) dm(y) = m*f(x).$$
DEFINITION. Let A be a closed 2-sided invariant subspace of $C(G)$, and let $z \in M$ be the central projection given by Theorem 2 such that $A = \{f \in C(G): zf = \hat{f}\}$. Define the spectrum of $A = \text{sp}(A)$ to be (using notation of [1]) $\{r \in \mathcal{A}: z_r \neq 0\}$.

Proposition 3 and Theorem 4 are patterned after Theorem 2.7 of [5].

Theorem 4. Let A be a closed two-sided invariant subspace of $C(G)$. Then the following are equivalent.

1. If A_0 is a closed right invariant subspace of $C(G)$ and $A \subseteq A_0$, then there exists a bounded right-invariant locally self-adjoint projection of A onto A_0.
2. The spectrum of A is a Sidon set (as defined in [1]).
3. $\sum_{r \in \mathcal{D}} d_r \text{tr}(f_r g_r) < \infty$ for all $f \in A, g \in L'(G)$.

Proof. The fact that (2) \implies (1) and (2) \implies (3) are immediate consequences of [1], Theorem 2.

Assume (3) is true. Fix $f \in A$. Then $\{r: \hat{f}_r \neq 0\}$ is countable. Enumerate the set as $\{r_k\}$. For each positive integer n, define $T_n: L'(G) \to F$ (the pre-dual of M as defined in [1]) by

$$T_n(g) = \sum_{k=1}^{n} d_{r_k} \hat{f}_{r_k} \hat{g}_{r_k}.$$

By assumption (3), T_n is a pointwise convergent sequence of bounded operators and hence is uniformly bounded and by the uniform boundedness theorem. Thus there exists a constant K with $\|T_n\| \leq K$ for all $n = 1, 2, \ldots$.

In $\{u_n\}$ is the approximate identity introduced in the proof of Theorem 2, we have for any $n = 1, 2, \ldots$,

$$\sum_{k=1}^{n} d_{r_k} \text{tr} |\hat{f}_{r_k}(\hat{u}_n)_{r_k}| \leq K.$$

Thus letting $n \to \infty$ we have

$$\sum_{k=1}^{n} d_{r_k} \text{tr} |\hat{f}_{r_k}| \longrightarrow \sum_{r \in \mathcal{D}} d_r \text{tr} |\hat{f}_r| < \infty .$$

By Theorem 2 of [1], $\text{sp}(A)$ is a Sidon set.

Now assume (1) holds. Let z be the central projection in M such that $A = \{f \in C(G): zf = \hat{f}\}$. According to Theorem 2 of [1], we need to show that for each unitary operator $u \in M$ there exists $m \in M(G)$ such that $\|z(m - u)\| < 1$. Choose $u \in M$ unitary, and by the spectral theorem choose self-adjoint projections $p_1, \ldots, p_n \in M$ and scalars $\alpha_1, \ldots, \alpha_n$ such that $\|u - \sum_{k=1}^{n} \alpha_k p_k\| < 1$. For each k, define
\[A_k = \{ f \in A : p_k \hat{f} = \hat{f} \} . \]

Then \(A_k \) is a closed right invariant subspace of \(A \), so there is a bounded right-invariant locally self-adjoint projection \(T_k : A \to A_k \). By Proposition 3, there exists \(m \in M(G) \) such that \(m_k^* f = T(f) \) for all \(f \in A \), and \(m_k \) is self-adjoint. Now \(\Lambda(A) \) is dense in the weak* topology of \(zM \) (since it contains all finite dimensional operators). Thus since \(m_k^* m_k^* f = m_k^* f \) for all \(f \in A \), \(\hat{m}_k \hat{m}_k \hat{f} = \hat{m}_k \hat{f} \), and hence \(\hat{m}_k \hat{m}_k z = \hat{m}_k z \). Since \(m_k \) is self-adjoint, so is \(\hat{m}_k \), so \(\hat{m}_k z \) is a self-adjoint projection.

Since \(\Lambda(A)_k \) is weak* dense in \(z p_k M \), and since \(m_k^* f = f \) for \(f \in A_k \), we get \(z \hat{m}_k \geq z p_k \). If \(z \hat{m}_k \) is strictly greater than \(z p_k \), then there is some \(g \in A \) such that \(\hat{g} = (z \hat{m}_k - z p_k) \hat{g} \). Thus \(m_k^* g \notin A_k \), a contradiction. Thus \(z \hat{m}_k = z p_k \). Set \(m = \sum_{k=1}^n \alpha_k m_k \). Then
\[
\| z(u - \hat{m}) \| = \| z(u) - z\left(\sum_{k=1}^n \alpha_k p_k \right) \| = \| z\left(u - \sum_{k=1}^n \alpha_k p_k \right) \| < 1 .
\]

Thus (1) implies (2).

We remark that the proof of Theorem 1 of [7] can be used to eliminate the need for right invariance in the projection of condition (1) of the last theorem.

BIBLIOGRAPHY

Received June 27, 1967.
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. Royden	J. Dugundji
Stanford University	Department of Mathematics
Stanford, California	University of Southern California
R. R. Phelps	Richard Arens
University of Washington	University of California
Seattle, Washington 98105	Los Angeles, California 90024

ASSOCIATE EDITORS

| E. F. Beckenbach | B. H. Neumann | F. Wolf | K. Yosida |

SUPPORTING INSTITUTIONS

- University of British Columbia
- California Institute of Technology
- University of California
- Montana State University
- University of Nevada
- New Mexico State University
- Oregon State University
- University of Oregon
- Osaka University
- University of Southern California

- Stanford University
- University of Tokyo
- University of Utah
- Washington State University
- University of Washington
- American Mathematical Society
- Chevron Research Corporation
- TRW Systems
- Naval Weapons Center

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsu-sha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
Charles A. Akemann, *Invariant subspaces of C(G)* 421
Dan Amir and Zvi Ziegler, *Generalized convexity cones and their duals* 425
Raymond Balbes, *On (J, M, m)-extensions of order sums of distributive lattices* ... 441
Jan-Erik Björk, *Extensions of the maximal ideal space of a function algebra* ... 453
Frank Castagna, *Sums of automorphisms of a primary abelian group* 463
Theodore Seio Chihara, *On determinate Hamburger moment problems* 475
Zeev Ditzian, *Convolution transforms whose inversion function has complex roots in a wide angle* .. 485
Myron Goldstein, *On a paper of Rao* .. 497
Velmer B. Headley and Charles Andrew Swanson, *Oscillation criteria for elliptic equations* .. 501
John Willard Heidel, *Qualitative behavior of solutions of a third order nonlinear differential equation* .. 507
Alan Carleton Hindmarsh, *Pick’s conditions and analyticity* 527
Bruce Ansgar Jensen and Donald Wright Miller, *Commutative semigroups which are almost finite* .. 533
Lynn Clifford Kurtz and Don Harrell Tucker, *An extended form of the mean-ergodic theorem* .. 539
S. P. Lloyd, *Feller boundary induced by a transition operator* 547
Henry B. Mann, Josephine Mitchell and Lowell Schoenfeld, *A new proof of the maximum principle for doubly-harmonic functions* 567
Robert Einsohn Mosher, *The product formula for the third obstruction* 573
Sam Bernard Nadler, Jr., *Sequences of contractions and fixed points* 579
Eric Albert Nordgren, *Invariant subspaces of a direct sum of weighted shifts* ... 587
Fred Richman, *Thin abelian p-groups* .. 599
Jordan Tobias Rosenbaum, *Simultaneous interpolation in H₂. II* 607
Charles Thomas Scarborough, *Minimal Urysohn spaces* 611
Malcolm Jay Sherman, *Disjoint invariant subspaces* 619
Joel John Westman, *Harmonic analysis on groupoids* 621
William Jennings Wickless, *Quasi-isomorphism and TFM rings* 633
Minoru Hasegawa, *Correction to “On the convergence of resolvents of operators*” ... 641