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Let A be a function algebra with its maximal ideal space
M,. Let B be a function algebra such that A < Bc C(M,).
What can be said about Mz? We prove that M, = My if
every point x €M, has a fundamental neighborhood system
{W} such that the topological boundary bW of each W is
contained in the Choquet boundary of A or if A is a normal
function algebra, The first condition is satisfied if M, is a
one dimensional topological space, Let H(A) be the function
algebra on M, generated by all functions which are locally
approximable in A. We prove that Mz, = M4 and then we
try to generalize this result. If feC(M,) is such that f is
locally approximable in A4 at every point where f is different
from zero then M, is the maximal ideal space of the function
algebra generated by A and f. We also look at closed subsets
F of M, such that My, = F where H(F) is the function
algebra generated by restricting to F' all functions that are
defined and locally approximable in A in some neighborhood
of F', These sets are called natural sets, We prove that there
exists a smallest natural set B(F') containing a closed set F' in
M, and that the Silov boundary of H(B(F)) is contained in F.
We also find conditions that guarantee that a closed set in
M, is a natural set.

If X is a set and f is a complex-valued function defined on X
then | f|, = sup{| f(z)||xe V} for every VC X and f, is the restric-
tion of f to V. If V is a subset of a topological space X then bV
is the topological boundary of V in X. If A is a function algebra
we denote by M, its maximal ideal space, and S, its Shilov boundary.
A point x € M, is a strong boundary point in A if {x} = N P(f), where
P(f) are peak sets of A in M,. We shall use the wellknown fact
that S, is the closure of the strong boundary points of A in M,. If
F is a closed set in M, then Hull (F) ={xe M,||f(x)| = |f|z for
every feA}. If xeHull (F) we say thet F is a support of 2. A
minimal support of « is a support F' of & such that no proper closed
subset of F' is a support of . Now we have the principle of minimal
supports. Let F be a minimal support of x. Suppose {f.} € A4 is such
that | f,|» < K for some constant K independent of # and lim | £, |ynr =
0, where W is an open subset of M, such that W F is not empty.
Then it follows that lim f,(x) = 0. If F is a closed set in M, then
A, is the function algebra on F' generated by functions f e C(F') such
that f = g on F for some gc A. Now M, can be identified with
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Hull (F). If F is a closed set in M, such that F' = Hull ,(F) we say
that F' is an A-convex set. A is a convex function algebra if every
closed set in M, is A-convex. If Bis a function algebra on M, such
that A c B then the maximal ideal space M, contains M, and S,c M,.
If e M, there exists a point y(x) € M, such that f(x) = f(y(x)) for
feA. If Visa subset of M, we put {V}; = {xe M;|y(x)e V}. The
set {V}; is called the fiber of V in M,. The correspondence between
points z in M, and the fibers {x}, is continuous in the following way:
Let W be an open neighborhood of {2}, in M, for some point xe M,.
Then there exists a neighborhood V of 2 in M, such that {V},cC W.
If W is an open set in M, then H(W) = {f e C(W}]| f is locally ap-
proximable in 4 at every point in W, i.e., if x ¢ W there exists a
neighborhood V< W of 2 and {g,} € A such that lim|g, — f|, = 0.}
We put H,(A) = H(M,) and H(A) is the function algebra generated by
Hy(A) on M,. If Fisa closed set in M, then H(F)={feCF)|f =9
on F for some ge H(V), where V is some neighborhood of F}. We
let H(F') be the function algebra on F generated by H,(F). We shall
now discuss the results of this paper. The general problem which
interests us here is the following: Let A be a function algebra with
its maximal ideal space M,. Let B be a function algebra such that
AcBcC(M,. What can be said about M;? In Lemma 1 we give
the well-known construction which shows that M, in general is strictly
larger than M,. A point xe M, is a stationary point if {x}, = {x} for
every B such that Ac Bc C(M,). A is a resistent function algebra
if M, consists of stationary points. In Theorem 2 we prove that A
is a resistent function algebra if every point x € M, has a fundamental
neighborhood system { W} such that {8 W} consist of stationary points.
We remark here that the Choquet boundary of A is contained in the
set of stationary points and that A is resistent if M, =[0,1]. A
function algebra A on a compact set X is regular if A separates
points from closed subsets of X. It is wellknown that if X = M,
then A is normal, i.e., A separates disjoint closed sets. In Theorem
4 we prove that if A is a regular function algebra on X then X
consists of stationary points when we consider X as a closed subset
of M,. We remark that if A is a normal function algebra on X then
X = M,. The rest of this paper is mostly devoted to a study of
relations between A and H(A). We have never introduced the general
concept of A-holomorphic functions as is done in [3]. We wish to
point out that our methods come almost entirely from [3] and [4].
Our proof of Theorem 5 uses an argument which is essentially the
same as in Lemma 3.1, p. 368, in [3]. We point out that Theorem 7
gives a proof of Rado’s Theorem: Let f e C(F) where F is a poly-
nomially convex compact set in the complex plane. Assume that f is
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analytic if f is different from zero. Then it follows that f is analytic
in the interior of F' and hence f e P(F), i.e., f can be uniformly
approximated by polynomials on F. In Theorem 8 we prove that if
H(A) is a resistent function algebra then A is a resistent function
algebra. We also discuss the general problem of determining ‘domains
of holomorphy’ in general function algebras. A closed set F' in M,
is a natural set if M, = F. The main result about natural sets is
contained in Theorem 10 which was essentially wellknown in [3].
Every closed subset- F7 of M, is contained in a smallest natural set
B(F'), the barrier of F. We have also introduced the set F =
{ye M, {y}yr N My is not empty}. We know that F c B(F) and
in general the inclusion is strict.! Theorem 12 is essentially wellknown
in [5] but we believe our proof is different.

1. DEeFINITION 1. A function algebra A is resistent if M, = M,
for every function algebra B such that Ac Bc C(M,).

LEMMA 1. A resistent function algebra is convezx.

Proof. Let A be a function algebra such that Hull ,(F) — F is
not empty for some closed set F' in M,. Let B ={geC(M,) ! gr€c Ay}.
Obviously Ac Bc C(M,) and now we prove that M, =+ M,. Let
xeHull (F)— F. If ge Bwecanfind{f,} € Asuchthatlim|g — f,|r=
0. Now we put Z(g) = lim f,(x). It is easily seen that Z is a well
defined complex-valued homomorphism on B. Hence there exists a
point y e M, such that Z(g) = g(y) for ge B. In particular f(x) =
2(f) = f(y) for feA. If M,= M, it follows that Z(g) = g(x) for
ge B. But now we choose g€ B such that g(x) =1 while ¢ =0 on
F' and obtain a contradiction. Hence M, = M, and the lemma follows.

LEMMA 2. Let A be a convex function algebra and let
AcBcCWM,) .

Then the fibers {x}, are connected in My for every point x € M,.

Proof. Suppose that some fiber (), is disconnected in M,;. Hence
there exists a closed component G of {x}, such that Gc M, — M,.
Now we can find a closed neighborhood W of G in M, such that
bW N {x}, is empty and Wc M, — M,. Let F={yeM,|[{y}sNdbW
is not empty}. Obviously F' is a closed subset of M, such that x¢ F.
Let y ¢ G, then the local maximum principle shows that |g(%)| = |9lww
for ge B. 1t follows that | f(x)| < | f|» for f € A, hence x e Hull ,(F),

1 T am indebted to the referee for giving an example where F # B(ﬁ’).
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a contradiction to the fact that A is a convex function algebra.

THEOREM 1. Let V be a closed A-convex subset of M, such that

A, s resistent. Let feC(M,) be such that f =0 in M, — V, then
MA(f) = MA.

Proof. Assume that D = M, — M, is not empty. Let zeD
and choose a minimal support F' of x such that Fc M,. Now FcCV
is impossible since A, is a resistent function algebra. Because f =0
in M, — V the principle of minimal supports shows that f(x) = 0. Choose
ye M, such that g(x) = g(y) for ge A. Since y and x are different
points of M, it follows that f(y) must be different from zero, hence
ye V. We have now proved that Dc {V},,. Now Lemma 1 shows
that A, is a convex function algebra and Lemma 2 can be applied to
show that {2}, are connected in M, for every zc V. In particular
{4}y has no isolated points in M,,. Since D is an open subset of
M, we can find x, € DN {y}.,, such that z, -+ 2. But now we get

f(x) = f(x) =0 and then x and x, are not different points in M,,,,
a contradiction.

DEFINITION 2. A point xe M, is stationary if {x}, = {x} for every
function algebra B such that A Bc C(M)).

THEOREM 2. Let A be a function algebra such that every point
xeM, has a fundamental meighborhood system {W} such that each

bW consists of stationary poinis, then A is a resistent function
algebra.

Proof. Suppose that B is a function algebra such that
AcBcCM,)

and assume that D = M, — M, is not empty. Let ze D and choose
y ¢ M, such that f(z) = f(y) for f e A. Choose an open neighborhood
V of y in M, such that bV consists of stationary points. Let W be
a closed B-convex neighborhood of z in M, such that W c D. Now
{V};n W is open and closed in W. We apply Shilov’s Idempotent
Theorem to the function algebra B,. Hence we find {f,}e B such
that lim | f, — 1[yqp, = 0 while lim | £, |;y_y), = 0. Choose a minimal
support F' of z such that FFcbW. It follows from the principle of
minimal supports that FC bW N {V},. Now we let V shrink to y in
M, and it follows that ze Hull ,(6W N {y},). This holds for every
z€ D N{y}; when W is a closed B-convex neighborhood of z such that
W c D. Now we choose a strong boundary point xe D N {y}; of the
function algebra By, to obtain a contradiction.
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DEFINITION 4. A point x e M, is locally regular if there exists a
neighborhood V' of « such that to every y € V — {x} there exists fe A
with f = 0 in a neighborhood of y and f(x) = 1.

THEOREM 3. A locally regular point is a stationary point.

Proof. Let xe M, be a locally regular point. Let B be a function
algebra such that Ac B C(M,)). Let D = M, — M, and assume that
{#}s N D is not empty. Let V be an open neighborhood of z in M,
such that to every yeV — {x} there exists feA with f =0 in a
neighborhood of ¥ and f(x) = 1. Let ze€{x}; N D and choose a closed
neighborhood W of z in M, such that Wc DN {V};. Let F be a
minimal support of z such that FcbW. It follows now that F'C {x};
holds. Hence z € Hull ;,(b W N {z};) and we obtain a contradiction if we
choose a suitable point ze D N {x};. Hence {x}; N D must be empty
and it follows that x is a stationary point.

THEOREM 4. Let A be a regular function algebra on a compact
set X. Then every point xe X N M, is a stationary point.

Proof. Let xe XN M, and put R(x) = {y €.M,| there exists gc A
with ¢ = 0 in a neighborhood of ¥ and g(x) = 1}. We shall now prove
that R(x) = M, — {x} and then it follows from Theorem 3 that z is a sta-
tionary point. Let y e M, — {x} and choose g € A such that g(y) = 1 and
g(2)=0. Let V={2eM,|lgk)]|>1/2}and let W = {ze X||g(z) <1/2}.
We choose feA suchthat f =0 on X — Wand f(x) =1. If ze V
we can choose a minimal support F' of z such that FF < X. Obviously
FN(X — W) is not empty and the principle of minimal supports im-
plies that f(z) = 0. Hence f =0 on V and f(x) =1, i.e., y e R(»).

THEOREM 5. Let F be a closed subset of M, and let f e CM, be
such that f is locally approximable in A at every point in M, — F.
Then MA(f) - MA < {Hu]l A(F)}A(f)‘

Proof. Let D= M,; — M,. Let K= Hull ,,(bD) and let C =
A(f)x. We have Dc K = M, and bD contains the Shilov boundary
of C. Let xebD be a strong boundary point of C. Assume that
zxeM, — F. Choose a closed neighborhood V of x in M, such that
there exists {¢,} € A with lim |¢g, — f|, = 0. Now we choose % € C such
that h(z) = |h|x =1 and {®#e K|/ h(zx)| = 1/2} C{V},. Let

D, = {ze D||h()| > 1/2} .

The topological boundary bD, of D, in K is obviously contained in
the set T = {x e bD||h(zx)| = 1/2} U {x e K||h(z)| = 1/2}. Choose a point
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z,€D,. Now the local maximum principle shows that we can find a
minimal support F of «, in C such that F < T. Since |h(z,)| > 1/2 it fol-
lows that F N bD contains an open subset of F. Since FFC T C{V}in
we have |g|, =< |g|, forge A. Now lim |g, — flrmp = lim|g, — f|, =
0 and the principle of minimal supports shows that lim g.(x) = f(x)
holds. Now we also have «,€{y}., for some point y,e¢ V. Hence
f(y) = lim g,.(y) = ¢g.(z) = f(x,) and then x, and y, cannot be different
points in M,,,,, a contradiction. We have now proved that every strong
boundary point of C must belong to F'. It follows that S,  F and hence

MA(f) - MA C Hull A(f)(F)' ThiS implies that MA(f) - MA C {HUH A(F)A(f)’

LEmMMA 3. Let A be a function algebra on a compact set X. Let
F' be a closed subset of X. Then there exists a point x € F such that
1f m s a representing measure of x in A with m(F) =1 then m = e,,
1.6., M 18 the unit point mass at x.

Proof. Choose a strong boundary point xe F of the function
algebra A,.

THEOREM 6. Let ACBCC(M,). Let fec B be such that fe Hy(A).
Then f ts constant on each fiber {x}; for xe M,.

Proof. If xe My we denote by y(x) the point in M, such that
v e {y(@)}s. Let d(x) =|f(x) — f(y(x))| and assume that d(z) is differ-
ent from zero. Let F = {x e M,|d(z) = ||d|| = supd(z)}. Obviously F
is a closed subset of M, and F'N M, is empty. Let x € F and choose
an open neighborhood V of y(x) in M, such that there exists {g,}€ A
with lim |g, — f ], = 0. Choose now a closed neighborhood W of =z
in My such that WcC{V}, N (M, — M,). Let T be a minimal support
of x such that TcbdbW. Now we can find a positive measure on

T such that g(z) = S gdm from g € B, It follows that | f(z) — g.(y(x))| =
| (@) —g. @) = S | f — g.|dm for every n. Hence we also get

f@) — F@)] = § £ — F)dm) .

It follows that | f(2) — f(y(?))| = ||d]|| for every ze T, hence T C F.
We have now proved that « € Hull ;(b W N F) for every € F and every
closed neighborhood W of x such that W< (M, — M,). Now we derive
a contradiction from Lemma 3.

THEOREM 7. Let feC(M,) and suppose that f 1is locally ap-
proximable in A at every point where f is different zero. Then
M, =M, and Hull (F) = Hull , (F) for every closed subset F
of M,.
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Proof. Let F be a closed subset of M, such that F' = Hull ,,,(F").
Let us put G = Hull ,(F) and assume that D = G — F' is not empty.
Let C = A(f)s. We see that the Shilov boundary S, of C meets D.
Hence we can find x € D such that 2 is a strong boundary point of
C. Let us assume that f(x)=+ 0. Choose a closed neighborhood
VaM, - F) of x in M, such that there exist {g,} ¢ A with lim
{g. — fl,=0. Now we choose ke C such that if P(h) = {x e G|h(z) =
|h|;} then xe P(h) and P(h)C V with P(h) N bV empty. Since heC
we can find {4,} € A with lim |h, — h|,n¢ = 0. Now the local maximum
principle shows that |g(x)| < |g|wne for g€ A. It follows that |h(z) =
lim | A,(®)| < lim |h,|yne = |hlyroe, contradiction to the fact that
P(h)y N bV is empty. Hence we have proved that if xe D is a strong
boundary point of C then f(x) = 0. If x< D we can choose a minimal
support T of x such that T S.. Since F = Hull ,(F) it follows
that TN D is not empty. Since f = 0 on S, N D it follows from the
principle of minimal supports that f(x) = 0. Hence we have proved
that f/ =0 on D. But then A(f), = A, and it follows easily that
D cannot contain any strong boundary point of C. Hence S, F
which shows that D must be empty. We have now proved that
Hull (F) = Hull ,,(F) for every closed subset F' of M,. In particular
we see that Z(f) = {xe M,| f(») = 0} is an A-convex set and using
Theorem 5 it follows easily that M, = M.

COROLLARY 1. M, = M, and Hull ,(F) = Hull ,,(F) for every
closed subset F of M,.

THEOREM 8. If H(A) ts a resistent function algebra then A is a
resistent function algebra.

Proof. If A is not a resistent function algebra we can find
g, - grc C(M,) such that g, --- g, have no common zero on M, while
giz) = +++ = g,(2) = 0 for some point z2¢€ M,,,..,,,. Because H(A) is
resistent we can find k, - -+ h,, where each &, is a polynomialing,.-- g,
with coefficients in H,(A), such that (A9, + --- + g — 1], < 1/2.
Let h; = 3 f..9°, where v runs over a finite set of multi-indices (v, - - - v;)
and ¢° = gi* .- gj». Each f, € H(A) and we define f;, on M, ...,,, by
letting f;, be constant on each fiber of M,,...,,, over points of M,.
Each ¢* is defined on M,,,..,, in the usual way. In this way we can
extend each h; to M,,,..,,. Call these extensions H,--- H,. It is
easily seen that H= H,g, + --- + H,g, is locally approximable in
A(g,+++g) on My,,..,,. Now H(z) =0 while |H —1{,, <1/2 and
since M, contains the Shilov boundary of A(g,---g.) we derive a
contradiction from Corollary 1.

THEOREM 9. Let f e C(M,) be such that f*"+a,f~"+ ++++a,=0
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on M, where a, -+ a,c A, then M, = M,;.

Proof. Let g=nf""+m—Da,f**+ -+« +a,,. It is well
known that f is locally approximable in A at every point z e M, where
g(x) is different from zero. (See [1], Th. 3.2.5, p. 71.) It follows that
¢ is locally approximable in A at every point where g is different
from zero. Now Theorem 7 shows that Z(g) is A-convex and then
Theorem 5 shows that M, — M, {Z(g)}.,,. Let us put B = A4,,,
then M, = Z(g) and the restriction of f to M, satisfies the equation
nf 4+ ®m— Db, f"*+ .-+ +b,_, = 0 where b, c B are the restrictions
of a; to Z(g). Since M, — M, {Z(9)}.,, we see that My, — M, is
not empty if M, — M, is not empty. Hence we can use induction
over n to prove that M, , = M,.

Let A be a function algebra. If F is a closed subset of M, we
have defined the function algebra H(F). We are now interested in
the maximal ideal space of H(F).

DEFINITION. If F is a closed subset of M, we put F =
{y € M| {¥} iy N My r is not empty}.

DEFINITION. A natural set in M, is a closed subset F of M,
SUCh tha«t F: MH(F)'

LEMMA 4. (NF.)" c NF, for every family {F,} of closed subsets
of M,.

Proof. Let yec M, be such that y e (N F,)”. Hence there exists a
complex-valued homomorphism C of H(NF,) such that C(g) = g(y) for
ge A, If feH(F, the restriction of f to NF, obviously gives an
element of H(NF,. Hence C can be restricted to H(F,) and we
obtain a complex-valued homomorphism of H(F,) such that C(g9) = g(y)
for g e A.

THEOREM 10. Let F be a closed subset of M, such that F = F,
th/en MII(F) = F.

Proof. Let f e H(F) and define d(z) = | f(z) — f(y(x))| on My
where y(x) is the point in F' such that g(z) = g(y(x)) for ge A. As-
sume that d is not identical zero. Let D = {xe M, |d(x) > 0}. Ob-
viously D N F is empty and hence D lies off the Shilov boundary of
H(F). Hence Dc K = Hull (D). Let us put C = H(F), and
choose x €bD such that = is a strong boundary point of C. Choose
a closed neighborhood V of y(x) in M, such that there exists {g,}c A
with lim|g, — flynr = 0. Now we choose heC such that h(x) =
[hlx =1 and {xe K||h(z)| = 1/2} c{V N F}4r. Now we obtain a con-
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tradiction using the same argument as in the final part of Theorem
5. Hence we have proved that if f e H(F) then f is constant on
each fiber {#},,, when ze F. Since H/(F) is a dense subalgebra of
H(F) it follows that F' = My y,.

COROLLARY 2. If {F,} ts a family of natural set of M, then
NF, 1s a natural set.

Proof. Lemma 4 shows that (NF,)"c N ﬁa = NF, and then Theo-
rem 10 implies that NF, is a natural set.

DErFINITION, If F is a closed subset of M, then B(F) is the in-
tersection of all natural sets containing F'. B(F') is called the barrier
of F,

Corollary 2 shows that B(F') is the smallest natural set contain-
ing a closed subset F' of M,.

LEMMA 5. Let F be a natural set. Let fe H(F) and let F, =
{xeF}|f(x)] £1}. Then F, is a natural set.

Proof. Let ze Myy,. If ge H(F) the restriction of g to F,
gives an element of H(F)). It follows that g¢(z) = g(y) for some
point y e M, when ge H(F). In particular f(z) = f(y) and since
| ()| < | f|F, it follows that y ¢ F,. Hence we have proved that F, = F,
and now Theorem 10 implies that F, is a natural set.

THEOREM 11. Let F be a closed subset of M,. Let S(F) be the
Shilov boundary of H(B(F)). Then S(F)cC F.

Proof. Assume that S(F) meets B(F) — F. Hence we can find
x€ B(F) — F such that x is a strong boundary point of H(B(F)).
Now we can choose f € H(B(F)) such that F, = {x e B(F)|| f(z)| < 1}
contains F' and omits the point x.

Lemma 5 shows that F, is a natural set, a contradiction to the
fact that B(F') is the smallest natural set containing F.

We finally give some examples of natural subsets of M,.

DEFINITION. An A-analytic polyhedron P is a closed set in M,
of the form P = {xe V|| f.(x)] £ 1 where V is an open neighborhood
of P and {f,} is a family in H(V)}.

TaEoREM 12. An A-analytic polyhedron is a natural set.
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Proof. Let U be an open neighborhood of P and W a closed set
containing U such that W< V. Now we can find finitely many {f.},
say f,-++ fr such that P,={xe W|/fi2)| <1, i=1---k} is con-
tained in U. Now we can prove that P, is a natural set using the
same argument as in the final part of Theorem 5. Finally we let U
shrink to P and obtain natural sets {P,} such that P= NP,. Now
Corollary 2 shows that P is a natural set.

DEFINITION., If F is a closed subset of M, we put R, (F) =
{heC(F)\ h = f/g where f,gec A and ¢ has no zero on F'}.
We let R(F') be the function algebra on F generated by R,(F).

DErFINITION. If F is a closed subset of M, we put Hull x(F) =
{ve M,|g(x)eg(F) for ge A}

THEOREM 13. Mg = Hull x(F) for every closed set F' in M, and
if Mpp = F then F ts a natural set.

Proof. If ye M,,, we choose e M, such that g(y) = g(x) for
ge A. It is easily seen that x e Hull 4(F') and that (f/g)(y) = f(x)/g(x)
when f/ge R(F). Since R(F) is dense in R(F') it follows that y is
uniquely determined by x. Conversely if we choose x ¢ Hull 4(F') then
the mapping X; f/g — f(®)/g(x) is well defined on R(F). We have
| f@)/g(@)| = | flglr for if f(z) = g(») while |f/g|r <1 we see that
(9 — f) is different from zero on F' and hence (¢ — f)(x)e (g — f)(EF)
is different from zero, a contradiction. Hence we can extend X to
R(F) and we obtain a complex-valued homomorphism on R(F') such
that ¢ is mapped into ¢(x) when ge A. This proves that My, =
Hull (F"). If Mg = F then Corollary 1 can be applied to prove that
F is a natural set.

Acknowledgement. 1 wish to express here my deep gratitude to
Professor C. E. Rickart whose original research on this subject has
been the source for this paper.
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