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This paper investigates the behavior of nonoscillatory solu-
tions and the existence of oscillatory solutions of the differ-
ential equation

Yy + p®)y + ¢ty =

where p(t) and ¢(t) are continuous and real valued on a half
axis [a, ) and r is the quotient of odd positive integers.
The two cases p(t), ¢(t) = 0 and p(t), q(t) = 0 are discussed.

One theorem improves an oscillation criterion of Waltman
[16]. Other results supplement those obtained by Lazar [10],

1. In this paper, real valued solutions of
(1.1) Yy + p@®)y +q9t)y" =0

are investigated where p(t) and ¢(¢) are continuous real valued func-
tions defined on some interval [a, oo) with ¢ > 0. Furthermore ¢(¢)
is not eventually (i.e., for sufficiently large t) identically zero. » is
assumed to be the quotient of odd integers. This insures that solu-
tions with real initial conditions are real and also that the negative
of a solution of (1.1) is also a solution of (1.1).

Motivation for the study of this equation comes from two direc-
tions. The equation

¥ + py + qt)y =0

has been studied extensively. Some recent papers are those of Gregus
[3], Hanan [5], Lazer [10], and Svec [15]. On the other hand, the
equation

y" +qt)y =0, n=2

has been investigated by Licko and Svec [11] for r = 1, by Kiguradze
[9] for » < 1, and by Mikusinski [12] for » = 1. Equation (1.1) has
been studied recently by Waltman [16].

A solution of (1.1) is said to be continuable if it exists on [a,, o)
for some a, = a. A nontrivial solution of (1.1) is called oscillatory if
it is continuable and has zeros for arbitrarily large ¢. A nontrivial
solution of (1.1) is called nonoscillatory if it is continuable and not
oscillatory.

Two cases, p(t) < 0,q(t) =0 and p(t) = 0, g(t) = 0 are discussed
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in this paper. Most of the theorems deal with the behavior of non-
oscillatory solutions. However, in each of the two cases considered,
these results lead to criteria for the existence of oscillatory solutions.
For the case p(t) = 0 and ¢(t) = 0, an oscillation criterion of Waltman
[16] is generalized.

Unless otherwise stated all results are new for the linear as well
as the nonlinear case. The existence of nonoscillatory solutions is not
discussed in this paper. For the linear case Lazer [10] has shown
that they exist under general conditions. It can be easily verified
that most theorems in this paper are precise in some sense. Examples
are given only where they seem to be particularly illustrative.

Since this paper discusses the behavior of continuable solutions,
the following two theorems are of interest. The first one shows that
all solutions of (1.1) are continuable if » < 1. The second shows that
under certain conditions the noncontinuable solutions of (1.1) have an
infinite number of zeros on a finite interval.

THEOREM 1.1. Ifr =<1 and|t, b] is an arbitrary compact interval
such that a < t,, then any solution of (1.1) which exists at t, can be
continued on [t,, b].

Proof. Let |p(t)| +1 < M and |q(t)| < M on [t, b]. Write (1.1)
in vector form

(1.4) ¥ =19 7= "uv ¥

where fi(t, ) = ¥, [o(t, ¥) = s, and fi(t, ¥) = —q(t)yi — p(t)y,. Then
to a solution y of (1.1) corresponds a solution ¥ = (¥, ¥,, ¥,) where
Y=Y,¥ = Y, and y" = y,.

Define U(t,w) = M(u + 1). Then || ft, )| < U, ||7l). The
theorem now follows from a theorem of Wintner (Hartman [6, p. 29]).

THEOREM 1.2. Suppose that p(t) = 0, q(t) = 0, and p'() £ 0 and
continuous. Then any solution of (1.1) which is not continuable has
an infinite number of zeros on a finite interval.

Proof. Suppose that the solution y(t) exists and has only a finite
number of zeros on [t,, b) where b < co. Then there is a ¢, > ¢, such
that y(t) +#0 on [t,b). Suppose that y(t) >0 on [t,bd). Then
y"'(t) + p(t)y'(t) £ 0 on [t, b). By integrating twice the last inequality
from ¢, to ¢, ¢, < ¢, it is seen that y(¢) is bounded on [¢, b). Now, by
integrating (1.1) twice between ¢, and t¢,¢, < t, it is seen that both
y'(t) and ¥"(t) are bounded on ¢, b). Thus

lim [(y(2)* + (' (®)* + @"()] < oo
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and y(t) may be extended beyond b (see [2, p. 61]). This proves the
theorem.

2. The case p(t) <0 and q(t) < 0 is considered in this section.
The first lemma is a generalization of a result of Lazer [10, p. 448].

LEMMA 2.1. Let p(t) <0 on [a, o). Suppose that on the same
interval ¢t) < 0 if 0 < r<landqt)<0if »r=1. If y(t) is a non-
oscillatory solution of (1.1), then there is a number ¢ = a such that
either y(t)y'(t) > 0 for t = c or y@)y'(t) =0 for t = c.

Proof. If » =1 then solutions of (1.1) are unique. Therefore
the argument given by Lazer [10, p. 448] for the linear case proves
the lemma.

If 0 < » < 1 proceed as follows. Suppose that y(t) > 0 for ¢t = ¢,
where a < t,. It is asserted that the zeros of ¥'(f) are isolated in
[ts, o©). To show this let ¢t = ¢, be an accumulation point for zeros of
y'(t). Then 9'(t) = 0 by continuity of %'(t). By Rolle’s Theorem, ¢,
is an accumulation point for the zeros of %"(¢). Hence ¥”(t,) = 0 by
continuity of ¥(t). Similarly y"'(¢) = 0. But since ¢(¢,) = 0 and
y(¢,) > 0 this contradicts the fact that y(¢) is a solution of (1.1).

If ¢'(t) has at most one zero in (f, oo) the lemma is clear. If
y'(t) has two or more zeros in (f, o) proceed as follows. Consider
two consecutive zeros, say ¢, and t,, of ¥'(t) satisfying t, < t, < t,.
Multiplying (1.1) by %'(¢) and integrating by parts between ¢, and ¢,
yields

~[Cweyas + | "peowends + (" werveds = o,

Since the first two terms are nonpositive, ¢(t) < 0, and y(¢t) > 0, it
follows that y'(¢) < 0 for ¢ in (¢,, t;). Since the zeros of y'(t) are iso-
lated, this argument can be repeated to show that ¥'(t) < 0 for ¢ = ¢,.
This proves the lemma.

REMARK. On the basis of the preceding lemma it will be assumed
throughout the rest of this section that

p(t) £0 t in |a, co)
(H) () <0,0<r<1 t in [a, )
) =0, r=1 t in [a, o) .

LEMMA 2.2. Let f(t) be a real valued function defined in [t,, o)
for some real number t, = 0. Suppose that f(t) > 0 and that f'(t),
fU(t) exist for t = t,. Suppose also that if f'(t) = 0 eventually, then
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lim,_., f(t) = A < co. Then
lim inf | t*f7(t) — at*='f"(t)| = 0
t—co

for any a < 2.

Proof. First suppose that f’(t) has both positive and negative
values for arbitrarily large ¢. Then the function G(¢) defined by
G(t) = t*f""(t) — at*'f’(t) has both positive and negative values for
arbitrarily large t. Therefore, by the intermediate value theorem,
G(t) = 0 for arbitrarily large ¢. Thus the lemma is proved in this
case.

Now suppose that f’(t) is eventually either nonpositive or non-
negative. It is asserted that

lim inf | t-1f"(t) | = 0 .
t—co

To show this, the mean value theorem is used to write

L (£ (20) — flo)) = tf()

c

where t, < c and 1 < ¢ < t, < 2¢. Therefore
& f' ) | = 2] f(2) — flo)| .

The right side tends to zero as ¢ becomes infinite since lim,_., f(¢) exists
and is finite.

It follows that either lim, . t*~'f'(¢) = 0 or lim,.. t*~f’(t) does not
exist. In the first case it is claimed that liminf, . |¢*f"(t)| = 0. To
show this the mean value theorem is again used to write

%—(f’@ol) — FUd)) = t5F(t,) .

where t, < d and 1 < d < t, < 2d. Therefore
[taf"(ta) | = [ 2(2d)'f"(2d) — 2%d°7'f"(d) | .

Again, the right side tends to 0 as d— oo since lim, . t*'f'(t) =0
by assumption. It follows that lim inf, .| ¢*f"(t) — at=f'(t)| = 0.
Now suppose that lim,_., t*"'f’(¢) does not exist. Since

lim inf | t='f'(¢)| = 0,
t—eo
there is a sequence (¢,),lim,_.t, = oo, such that lim,_. ¢t:2f'(¢,) =0

and |57 f"(t,) + (@ — DE°f'(E,) = @fF'@)' |, = 0 for m = 1,2,3, - --.
Since lim,_ ., — (2a — D)tx~'f'(t,) = 0 it follows that
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lim, .. [t.f"(t,) — ats™ ' f'(t,)] = 0.

Therefore the case where lim,_., t*~'f’(t) does not exist is disposed of
and the lemma is proved.

THEOREM 2.3. Suppose that (H) is satisfied, —oo < —M < p(t)t
i [a, o) and S s'q(s)ds = —oo for some a < 2. If y(t) is a non-
oscillatory solution of (1.1) such that y(t)y'(t) < 0, then lim,. y(t) = 0.

Proof. Suppose %(t) > 0 and hence ¥'(t) <0 for ¢ = t,. Suppose
lim,...y(t) = A > 0. Multiply (1.1) by ¢* and integrate between ¢, and
t,t > t, to obtain

sdyl’(s) _ Sauly’(s)

t + afa — I)St s* %y’ (s)ds
to to

— M y@is + | e ds 2 0.

t
to

(2.1)

Note that the terms a(a — 1) ts“”y’(s)ds and —Mgty’(s)ds are both

bounded as ¢-— oo since y(t) hztfs finite limit and a°§ 2. Therefore
(2.1) can be written

(2.2) ty(t) — aty'() 2 K - | sq@we)ds

where K is a finite constant. Since lim,.. %(¢) = A > 0, the right hand
side of (2.2) tends to oo as t— co. However, by Lemma 2.2

liminf | t*y"(t) — at*'yY'(t)| = 0 .
t—oo
This contradiction proves the theorem.

THEOREM 2.4. Suppose that (H) holds and that Swsp(s)ds> — 00,
If y(t) is a nonoscillatory solution of (1.1), then y'(t)y(t) > 0 eventually.

Proof. Let y(t) be a nonoscillatory solution of (1.1) and assume
that y(¢) > 0 for ¢t = t,. The assertion is then that y'(¢) > 0 eventually.
Suppose not., Then by Lemma 2.1, there is a ¢, = ¢, such that y'(f) < 0
for t = ¢,.

Pick ¢, = ¢, such that wsp(s)ds > —1. Multiply (1.1) by ¢ and
integrate by parts between tt; and t, ¢, < t, to obtain

sy”"(s)| — y'(s)

v sp(s)ds

= | v wptwduds =~ soewis)ds

¢
ta

(2.3)
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Since —y'(t) = y'(t)gt sp(s)ds = 0, (2.3) becomes
123

W) - 200 + v'(t) ~ | (o) upwiduds
(2.4) . f2
= t/'(t) — | sae)ue)ds .

Note that #%"(¢) < 0 eventually is impossible with #'(¢) < 0 and
y(t) > 0. Suppose that ' (t) = 0 for t = ¢, (change ¢, if necessary).
Then

= v wpwduds = | v')ds = &) - vt
Therefore (2.4) becomes
(2.5) W) ~ O = () - | sas)we)ds .

By lemma 2.2 liminf,_. ty"(t) — ¥'(t) = 0. But this contradicts the
fact that the right hand side of (2.5) is positive and increasing.
Thus the theorem is proved for the case y"(t) = 0.

Suppose now that y”(¢) has positive and negative values for arbi-
trarily large ¢. Then there is a sequence of points (¢,), n = 3, ¢, < i,
lim, .. t, = oo, with the following properties:

(1) t;<ti,t1=3,45,---,

(li) y'(t) = Oy?’ =3,4,5, .-,

(iil) lim;_.. y'(t;) = 0.

The existence of such a sequence (¢,) is clear since #'(t) <0 and
lim sup, ... ¥’(t) = 0.
Now, let L = Sjup(u)ds. L > —1 by the choice of ¢, > t,. Thus
3

t 3 t oo
—S ?/"(S)S up(u)duds = S y"(s)(S up(u)duw — L)ds
t3 tg ty s
t o t
= S y"(s)g up(uw)duds — LS y"(s)ds
t3 8 t3
= S y"(s)gmup(u)duds — Y'(ty) .
ty s
Substituting this into (2.4) (replacing ¢, by t,) gives
ty"'(t) — 2y'(t) + S: y”(s)rup(u)duds

(2.6) t
= - | sa@we)ds .

Let Q(s) = S”up(mds. Then
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[, v @Qds = v (o) Qs — | (o) Qududs
= )], Qs + | plew )| Quoduds
+ [ ey | ududs
< v'®] Qs + | a@wo) | Quoduds

< y"(t)E;Q(s)ds - | o = s
where the last inequality depends on the fact that |Q(w)| < 1. Sub-
stituting this into (2.6) yields
W) — 2/ + 10|, Qs)ds
~|, s = t)ae) ey ds = ~ | sats)peds .

Combining the last two terms gives
en ' - 2w + v o] Qs z 4| dewe)ds .
3 3

Replacing ¢ by ¢, in (2.7) where (¢;) is the sequence defined above
yields

(2.8) ~2y/(t) = —t| e we)ds .

The right hand side of (2.8) is positive and increasing in ¢; while the
left hand side of (2.8) converges to zero as ¢ — co. This contradiction
proves the theorem.

THEREM 2.5. Suppose (H) holds and that —2/t* < p(t) £0. If
y(t) 18 a nonoscillatory solution of (1.1), then y(t)y'(t) > 0 eventually.

Proof. Suppose y(t) > 0 for t = t,. It is to be shown that y'(¢t) >0
eventually. Suppose to the contrary (by Lemma 2.1) that %'(f) < 0
eventually, say for t = ¢, Because of the assumption on p(t), (1.1)
can be written

(2.9) y"'(t) — 2/t)y'(t) + q(t)(y(t) = 0

for ¢t = ¢,. Since y"(t) < 0 eventually is impossible (¥'(¢) <0 and
y(t) > 0), pick ¢, > t, such that y”(¢) = 0. Now multiply (2.9) by #
and integrate by parts between ¢, and ¢, ¢ > £,, to obtain
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2.10)  £y"(0) — 20 = By"(2) — 2t/ (E) — | Sae)u)ds .

The right hand side of (2.10) is positive and increasing for large ¢.
However by Lemma 2.2, with a = 2, it follows that the lim inf of
the left side of (2.10) is zero. This contradiction proves the theorem.

It is noteworthy that in the last two theorems no restriction was
placed on the magnitude of ¢(t). The following example shows the
sharpness of the last result.

ExamMpLE. The equation y"" — (K/ty' + q(t)y” = 0,t > 1 where

K- 2 6 6
+
t(log t)*" ti(log t)*—" T t*(log t)*—

q(t) = —

has the solution %(t) = (log¢)~*. If K > 2 then ¢(f) < 0 eventually.

THEOREM 2.6. Suppose that (H) holds and that rszq(s)ds - —co

and that y(t) is a nonoscillatory solution of (1.1) such that ¥ (®)y(t) >0
eventually. Then |y(t)|— o as t— oo.

Proof. It may be assumed that y(t) > 0 and %'(t) > 0 for ¢t = ¢,.
Multiply (1.1) by ¢* and integrate from ¢, to ¢t obtaining

@1 ey - 2t + 20 = - | seue)ds + K

where K is a constant. Since y"'(t) = 0 for ¢t = ¢, it follows that
y"(t) is eventually of one sign. If ¢"(f) > 0 eventually, the proof is
complete. If y”(f) < 0 eventually, then, since the right side of (2.11)
tends to oo as t— oo and all nonconstant terms on the left side of
(2.11) except 2y(f) are negative, y(t) — oo as £ — co. This proves the
theorem.

THEOREM 2.7. Let p(t),q(t) = 0,r > 1 and Swszq(s)ds = —oco., If
y(t) is a nonoscillatory solution of (1.1) such that ay’(t)y(t) > 0 eventu-
ally, then y'()y'(t) = 0 eventually and lim,_ .| y"(t)| = lim,_.. |y ()| =
lim, ... [ Y(£) | = oo.

Proof. It may be supposed that y(¢) >0 for ¢t =t¢,. Thus %'(t) >0
eventually, say for ¢t = ¢,. This implies that y""'(¢) = 0 for ¢ = ¢, which
shows that ¢”(¢) is eventually of one sign. It is asserted that y”’(t) =0
eventually. Suppose to the contrary that y”(¢f) < 0 eventually, say
for t = ¢,.

Multiply (1.1) by #*/(y(¢))" and integrate between ¢, and ¢ obtaining
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012 Ceyeds _ [ SpEVEs [ s
@12) S W) S W(s) Szos a(e)ds

Expand the first integral by parts, obtaining

[ s _ o) [ Sy oW eds _ 20)
« @E) @Oy e @erT ey
- o] s 20— 1)

W @O )

where K is a constant. All of the nonconstant terms on the left side
of (2.12) are negative while the right side tends to «. This contra-
diction shows that y”(t) = 0 eventually.

Clearly lim,_., %'(t) = lim,_., y(t) = oco. To show that lim,_., ¥"(¢)? =
oo proceed as follows. Since %'(t) = 0 eventually, there is a ¢ = ¢,
and an A > 0 such that ¢"’(¢) = 24 for t = t,. Thus y(f) = A(t — t).
Now integrate (1.1) between ¢, and ¢, replacing y(s) by A(s — t)* to
obtain

@13) () - () = — | e (s)ds — | Aq)s — t)ds .

Since

—Afgtq<s)<s — t)ds = ‘A’S Y g(s)(s — tyrds

13
t
t
- ATS q(s)(s — t,)’ds
ty+1
for t = ¢, + 1, and the divergence of - q(s)(s — t,)ds is equivalent

) ty+1

to the divergence of S q(s)s’ds, the right hand side, and therefore
ty+1

the left hand side, of 1(2.13) tends to co. This proves the theorem.

THEOREM 2.8. Let p(t) £ 0, q(t) £ 0, and suppose that
rq(s)u(s)ds = oo, t,> max {1, a)
to
where u(t) is one of the functions

t*2, ¢ (log £)~', t* (log t)~* (log (log t))~"—=

for some 0 < @ < 1,
If y(t) is a nonoscillatory solution of (1.1) with r = 1 such that
¥’ ()y(t) > 0 eventually, then y" )y (t) = 0 eventually and

lim | y"(6)| = lim |'(®)] = lim | y(t) | = eo .
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REMARK., This sequence of functions was used by Hille [7] in
different circumstances.

Proof. As before it may be supposed that y(t) > 0, ¥'(¢) > 0, and
y'"(t) = 0 for t = t,. Therefore y”(t) is eventually of one sign. As-
sume that y”(t) < 0 eventually, say for ¢t > ¢,. Therefore lim,_.. ¥'(¢) =
B exists and 0 < B < o. Suppose that B> 0. Then %'(t) = B >0
for ¢ = t,, which implies that y(¢) = B(t — t,) for ¢ = ¢,. Now multiply
(1.1) by wu(t)/t to obtain

Yy @Ou®) _ _ p@y'Qu) _ Be®)( — t)u(d)
t ¢ t
2.14
(#10 _ _ Bayu)
= 2

for t = 2t,. Integrating (2.14) between 2f, and ¢ gives
(2.15) S ySus)ds - —58‘ a(s)u(s)ds .

2t s 2 Jetg
Evaluating the left hand side of (2.15) gives

St Yy (syus)ds _ v @u) Sf y'(syu(s)ds ' (H)u'(t)
2ty s t 2t st t

| M | f yends g

2t S 2ty S

where K is a constant. Since y'(t) = 0 and y"'(t) < 0, coy'(s)s“u’'(s)ols
is finite, Therefore the left hand side of (2.15) consist@s of bounded
or negative terms while the right hand side of (2.15) tends to oo.
This contradiction shows that lim, . %'(f) = 0.

It follows by L’hospital’s rule that lim,_.. (y(t)/t) = 0. Thus there
is a ¢, = t, such that y(f) <t for t = t,.

Now, multiply (1.1) by «(t)/y(¢) and integrate from ¢, to ¢, obtaining

(2.16) gj li—’%)%-;%—)ﬁli = — g: q(s)u(s)ds .

The right hand side of (2.16) tends to oo, Evaluating the left hand
side gives

S‘ Yy Eus)ds _ g yOu) S‘ W))W (s)ds _ y'@w'(t)
uo Y(s) y(1) u o (y(s)* y(t)

| WS og yayuris) — | Gog wu(e)ds
)

where K is a constant.

(2.17)
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Since y(t) £ t for t = ¢, the last two terms in (2.17) are bounded.
Since the other terms on the right hand side of (2.17) are constant or
are negative, a contradiction to (2.16) is obtained. This shows that
y"(t) = 0 eventually.

It follows immediately that lim,_.y’(t) = lim,_ . ¥(t) = co. Since
w"'(t) < 0, lim,_..u"(t) = D exists and 0 < D < oo, Consider the func-
tion f(t) = kt* where k& = (D + 1)/2. Then (u(?)/f(t)) < 1 eventually
by L’hospital’s rule so that f(t) > u(t) eventually. Therefore

g“s2q(s)ds — —oo since | fis)g(s)ds = —oo. Since y(t) = 0, y"(t) = 24
for t = t, for some A > 0 and some ¢, = t,. Thus y(t) = A(t — t,)* for
t = t,. Now integrate (1.1) between ¢, and ¢ to get

y'(®) = v'(t) = — Al ge)(s — t)ids .

since —Ar(s — t,)%q(s)ds = oo, y'(t) — co. This proves the theorem.
tg

COROLLARY 2.9. Suppose that the hypotheses of Theorem 2.8 and
the hypotheses of either Theorem 2.4 or Theorem 2.5 hold. Suppose

also that Sws‘(p’(s) — 2q(s))ds = co. Then (1.1), with r = 1, has oscil-

latory solutions.

Proof. This corollary follows immediately from Theorem’s 2.4,
2.5, 2.8 and a theorem of Lazer [10, p. 449].

For the sake of completeness a theorem is stated which considers
the case 0 < » < 1. This theorem can be proved in a similar manner
as a theorem of Licko and Svec [11]. However an easier proof can
be given by proceeding as in Theorem 2.7 and using Lemma 3.1. The
details are omitted here. See also Kiguradze [9, p. 101].

TreoREM 2.10. Let p(t) <0, q(t) <0, and Sws”q(s)ds = — oo,

Suppose y(t) is a nonoscillatory solution of (1.1) with 0 < r <1 and
such that y(&)y'(t) > 0. Then y'(t)y’(t) > 0 eventually and

lim [y™(@)| = lim |y'(t) | = lim [y(8) | = oo .

3. In this section the case p(¢f) = 0 and ¢(¢t) = 0 is considered.
The first lemma is an easy adaptation of a result of Kiguradze [8,
649 (Soviet Math.)] and will not be proved here.

LEMMmA 3.1. Let f(t) be a continuous nonnegative function defined
on [t,, o0) for some t, = 0. If f ") <0,n =2, and f*2t) =0,k =

1,---,% — 1, on [t, o) then there are constants A, >0, k=1, ...,
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n — 1 such that

Fone =

for sufficiently large .

THEOREM 3.2. Let p(t) = 0 and q(t) = 0. Suppose also that
(i) S s7q(s)ds = o0 1f 0 < r<1;

(i) gwu(s)q(s)ds = oo tf r =1 where u(t) s one of the functions
t*, t* (log t)~"=¢, t* (log t)~' log (log t)~*~*, ... for some a > 0;
(iii) S strg(s)ds = oo 1f 1 < 7.

If y(t) 1s aanonoscillatory solution of (1.1), then |y(t)| is not eventu-
ally nondecreasing.

Proof. Suppose to the contrary that |%(f)] is eventually non-
decreasing. It may be supposed that y(t) > 0 and thus that ¥'(¢) = 0
for large ¢, i.e., t = ¢, Therefore, by (1.1), y"(t) <0 for ¢t = ¢,
This implies that y”(¢) > 0 eventually, in fact, for ¢ = ¢,. The three
cases are now considered separately.

Case (i). First of all, choose ¢, =t and A >0 such that
y(&)/y'"'(t) = At* for t=1t, (use Lemma 3.1). Now divide (1.1) by
(¥”(t))" and integrate between ¢, and ¢, ¢ > ¢, to obtain

@3.1) W™ = WV > 4l sq(spas .
1—r h

Since » < 1 and y"(¢) is positive and decreasing, the right hand side
of (3.1) is bounded, contradicting the integral condition (i).

Case (ii). As before, choose ¢ =¢ and A >0 such that
y(@)y"'(t) = At for ¢ = ¢,. Now multiply (1.1) by «(¢)/y(t) and integrate
between ¢, and ¢,¢ = ¢, to obtain

3.2) St Y (S)u(s)ds < —-St q(s)u(s)ds .
t Y(s) i
But
St yews)ds _ y'(Hutt) v (t)ult)
ty y(s) y(t) y(tx)
" S‘ Y (Sus)y'(s)ds _ S‘ Y (s)u'(s)ds
i (y(s))* 4 y(s)

Since y"(t)/y(t) < A7t for ¢ = ¢, Swﬂlﬂkg%d_s is finite. Therefore
ty Yy
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all terms on the left hand side of (3.2) are bounded, constant, or
positive while the right hand side of (3.2) tends to —oco. This proves
the theorem for case (ii).

Case (iii). By Lemma 3.1 there is a ¢, = ¢, such that y(¢)/y'(t) = Bt
for some B > 0 and for ¢t = ¢,. Multiply (1.1) by ¢/(¥'(t))” and integrate
from ¢, to t to obtain

t
st rq(s)ds .
t

2

¢ §‘_’]!'”(S)d8 B ¢ , — .
@3 [ < )i - B]

Integrating by parts the left hand member of (3.3) yields
S‘ sy'(s)ds _ ty"(t)  ty'(t,)

a (Y'(s) @@ W)

N OO 17 ) e 72
ARGCEE) ds + (L — O

By the integral condition (iii) the right side of (3.3) tend to —co as
t — oo while all terms on the left side are either positive or constant.
This contradiction proves the theorem for this case.

REMARK. It is easy to construct examples showing the sharpness

of this theorem in all three cases.
The next lemma is an easy generalization of a lemma proved by

Lazer [10, p. 454] for the linear case.

LeMmA 3.3. Suppose that p(t) = 0,q(t) =0, and p(t) <0 in
{a, o). It y(t) is a mnonoscillatory, eventually positive solution of
(1.1) such that F(y(c)) = 0 for some ccla, o) where

Fy@) = (@) — 2y(@)y" () — )y ®)*,

then there is a d = c¢ such that y(t) > 0,y'(t) > 0,y"() >0 and ¥y () <0
Jor t = d.

REMARK. In the linear case of Lemma 3.3 the condition p'(f) < 0
‘may be replaced by the weaker condition 2¢(¢) — p'(¢) = 0.

COROLLARY 3.4. Suppose that the hypotheses of Theorem 3.2
and Lemma 3.3 are fulfilled. Let y(t) be a continuable solution of
(1.1) defined at some t, = a. Then y(t) is nonoscillatory 1f and only
1f F(y@t)) < 0 for all telt,, o).

Proof. If F(y(t)) < 0 fort = t, it is clear that y(¢) can’t have any
zeros for ¢ = t,. Hence y(t) is nonoscillatory.
Now suppose that F(y(t)) = 0 for some ¢, = t,. By Theorem 3.2
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and Lemma 3.3 y(¢) is not nonoscillatory and eventually positive. Sup-
pose that y(t) is nonoscillatory and eventually negative. Then —u(t)
is nonoscillatory and eventually positive. But F(—y(t)) = F(y(t)) = 0.
Thus a contradiction to Theorem 3.2 Lemma 3.3 and is again obtained.
Therefore y(t) is oscillatory.

REMARK. Corollary 3.4 is an oscillation criterion for (1.3). It
improves a theorem of Waltman [16] since ¥(t,) = 0 implies that
F(y(t,) = 0.

The remainder of this section investigates further the behavior of

nonoscillatory solutions of (1.3). The following lemma is due to Nehari
[14, p. 431].

LemmA 3.5. If " + p(t)u = 0 has no oscillatory solutions in
la, o) and v(t) is any function of class C' on [b, c] such that v(b) =0
and v(t) = 0 on (b, c), then

[ @yas > {"pe)eerds

where a < b < c.

THEOREM 3.6. Let p(t) =0, q(t) > 0, and suppose that u” + p(t)u =
0 is monoscillatory. If y(t) is a monoscillatory solution of (1.1) then
there is a d > a such that either y(t)y'(t) = 0 fort = d or y(t)y'(t) < 0
for t = d.

REMARK. Two known sufficient conditions that «” + p(t)u =0

be nonoscillatory are that Swsp(s)ds < oo or that lim sup,_.. t*p(t) §—1—
({2, p. 103] and [6, p.362]).

Proof. Suppose that y(t) > 0 for ¢ = ¢,. Suppose that ¢, and ¢,
t, < t, < t,, are consecutive zeros of (). The proof of the isolation
of zeros of #'(t) given in the first part of Lemma 2.1 did not depend

on the sign of p(f) and ¢(t) and hence applies here. Now multiply
(1.1) by ¥'(t) and integrate by parts between ¢, and £, to obtain

| 2@ @rds + | a6 we) @ ©)ds = | @ s)ds
since ¥'(t,) = ¥'(t,) = 0. By Nehari’s Lemma
| 20 @rds < | w@yds.

to
Therefore S q(8)(¥(s))y'(s)ds > 0 and since ¢, and ¢, are consecutive
ty
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zeros of y'(t), this implies that y'(¢) > 0 on (¢, ¢,). Therefore y'(¢) > 0
between any two successive zeros greater than ¢,. Since the zeros of
y'(t) are isolated, this shows that y(¢) is monotone for t = ¢,.

ExaMPLE. It will be shown that the condition "’ + »p(t)u = 0 is
nonoscillatory is not sharp. In fact, all nonoscillatory solutions of a

(3.4) v+ 2y gty = 0

are monotone, To see this, let y(¢) > 0 be a nonoscillatory solution of
(3.4) and suppose that y'(¢) has positive and negative values for arbi-
trarily large t. Pick ¢, = ¢, such that %'(f,) = 0 and y”({,) < 0. Now

multiply (3.4) by t* and integrate by parts between ¢, and ¢, ¢t > ¢, to
obtain

(3.5) eyt ~ 20’ = - | PaOWE)ds .

The right side of (3.5) is negative and decreasing while the left side
of (3.5) equals zero for arbitrarily large values of ¢ (see Lemma 2.2).
This contradiction shows that y'(t) is eventually either nonpositive or
nonnegative and hence that y(¢) is monotone. On the other hand, by
Kneser’s criterion (Hartman [6, p. 362]), 4" + (2/t*) = 0 has only oscil-
latory solutions.

ExamprLE. The equation

" , (1/t* + 6/t ) .
+ ( : =
Y A s+ o7

has the nonoscillatory, nonmonotone solution y(t) =1 + sint + 1/t. A
precise condition on p(¢) needed to prove Theorem 3.6 remains to be
determined.

THEOREM 3.7. Let p(t) = 0, q(t) = 0, \ s'q(s)ds = oo, and t*p(t) <

M < oo, If y(t) is a nonoscillatory solvztions of (1.1) such that
y(t)y'(t) < 0 eventually, then lim, .. y(t) = 0.

Proof. Suppose that u(t) >0 and hence that y'(f) <0 for
t = t, > a,. Multiply (1.1) by ¢* and integrate by parts from ¢, to ¢
to obtain

3.6)  tY'(t) — 2ty (@) + @ + M)yt) + K + S sq(s)(y(s))ds < 0

where all constants have been combined to give K. If lim,_.. y(t) > 0,
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then it follows from (3.6) that %" (t) < 0 eventually. But since y'(t) < ¢
eventually, this contradicts y(¢t) > 0. Thus lim,_.y(t) = 0.

THEOREM 3.8. Let p(t) = 0, q(t) = 0, p'(t) < 0, and S”q(s)ds — .
If y(t) is a monoscillatory solution of (1.1), then lim inft_a°° ly(t)| = 0.

Proof. Suppose that y(t) >0 for ¢ =t, = a. Multiply (1.1) by
y(t) and integrate form ¢, to ¢ obtaining

w1 — WOF L pOW®) _ St P'(5)(y(s))ds

3.7
( ) 2 2 ty 2

| a@wE)rds + K =0

where K is a constant. Suppose that liminf, .y() = A > 0. By
Theorem (3.2) ¥(t) can’t be eventually monotone nondecreasing. There-
fore either ¥'(¢) has arbitrarily large zeros or y'(t) < 0 eventually.

Suppose first that there is a sequence {¢,} — oo, t; < t;1;, 1 =1, 2,
3, .-+ such that ¥'(¢;,) = 0,2=1,2,3, -.-. Replacing ¢ by ¢, in (3.7)
shows that " (t,) is eventually negative. This contradiction shows that
the first case is impossible.

Now suppose that y'(t) < 0 for ¢t = ¢, = t,. Suppose that

lim,_..y(t) = A > 0.

Since lim sup,_.. ¥'(t) = 0, pick a sequence {u,} — oo, u; < u;1, 1t =1, 2,
3, - -+ such that ¥’(u,) — 0 as n— oo and y'(u;) < ¥ (U;r1), 2 =1,2,8, ---.
Let u} = sup {t efu,;, u;.]: ¥'(t) = ¥'(u;)} for each y=1,2,38,.... It
follows that u; < u} < u;,, for j =1,2,3, -+ and that y'(u}) = y'(u,).
By the mean value theorem there is a v; in the interval (u}, u;.,))
such that

’ L _ ’ >|:
v, = Y (s y*(uj) 0.
Ujrr — Uj

By construction y'(v;) > ¥'(w}) = y'(u;). This is done in each [u;, u; ]
to obtain a sequence {v;} — oo with the property that

lim sup;_.. (2y" (v;,)y(v;) — (¥'(v;))) = 0.

However, since p'(t) < 0, qu(s)ds = oo and liminf, ., y(t) > 0, it fol-
lows from (3.7) that

veue - L o

as t — oo, This contradiction eliminates the second case and proves
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the theorem.

REmMARK. It is clear from the proof that in the linear case (r = 1),
the conditions »'(t) < 0 and S q(s)ds = oo can be replaced by the con-
dition | (2¢(s) — p'(s))ds = oo,

The following two lemmas can be proved in exactly the same
manner as they were proved by Lazer [10, p. 462, 463] for special cases.

LEMMA 3.9. Suppose that the hypotheses of Theorem 3.2 are ful-
filled and that p'(t) < 0. If y(t) is a nonoscillatory solution of (1.1),
then (y'(t))* < Ky(t) eventually for some constant K. If r =1, then
the condition p'(t) =< 0 can be replaced by q(t) — p'(t) = 0.

LemMA 3.10. Suppose the function f(t) is nonnegative, continu-
ous, and differentiable in [a, o). Suppose also that S (f(s))ds < oo

for some real a >0 and that limsup,..f(t) =M >a 0. Suppose
0 <d< M2, Then the set {y'(t):tela, ) and d < y(t) < 2d} is un-
bounded on (b, o0) for any b > 0,

THEOREM 3.11. Let the hypotheses of Theorem 3.2 be satisfied if

r <1 and suppose that Swszq(s)ds = oo if > 1. In addition suppose
that

(i) M/t= < q(t) for some a =0, M > 0, and

(i) p'(t) =0 and (p(E)t*) + ()" = 0.
If y(t)y is a monoscillatory solution of (1.1), then

lim,_. %"(t) = lim,_. ¥'(t) = lim,_.. y(t) = 0.

Proof. Suppose that y(t) > 0 for ¢ = ¢t,. Multiplying (1.1) by ¢*
and using (i) of the hypothesis gives

ty'"(t) + tp()y'(t) + M(y(t)" = 0.
Now integrate this inequality from ¢, to ¢ to obtain
t t
H®) - Hu) — | 169" + () y()ds + || Maye) = 0
0 to
where

H(y(t)) = t*y"(t) — at*'y'(t) + a(a — L)t*"y(t) + t*p)y(?) .

Therefore

(3.8) | M) = Hoe) — Hoe)
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and H(y(¢)) is nonincreasing in ¢,

It will be shown first that lim,_.y(t) = 0. Two cases are con-
sidered. Suppose first that 0 < a < 1. Then (¢t*)” = 0 which by (ii)
means that (p(t)t®)’ £ 0. This is equivalent to p'(t) < —ap@®)/t < 0.
Therefore Theorem 3.8 can be applied, which gives lim inf, . y(¢) = 0.
Suppose that lim sup,_.. y(¢) > 0. Then there is a sequence {{,} — oo
such that %"”(¢,) = 0,%'(¢t,) = 0, and %(¢,) — 0 as n— oo. Therefore
lim, ... H(y(t,)) = 0 which implies that H(y(t)) = 0 for ¢t = t, since H(y(t))
is nonincreasing. By (3.8) it follows that

= e - HEE) _
St()(y(s)) ds = HU) oo

But this eontradicts Lemma 3.10, since (¥'(t))? < Ky(t) eventually,

Now suppose that 1 < a. Recall that by hypothesis it is not pos-
sible that y'(t) = 0 eventually. Suppose that ¥'(¢) < 0 eventually.
Then y"(t) < 0 eventually is impossible since y(t) > 0 eventually. Thus,
let {t,} — oo be such that y"(¢,) = 0. Then H(y(t,)) > 0 and the theo-
rem follows as in the preceding paragraph. Now suppose that ¥'(f)
has arbitrarily large zeros. Then there is a sequence {s,} such that
y¥7(s,) =20 and y'(s,) = 0. Thus H(y(s,)) >0 and the rest of the
proof is as above. This proves that lim, . y(t) = 0.

It follows that lim,_. %'(t) = 0 since (¥'(t))? < Ky(¢). To see that
lim,_.. 4"'(t) = 0, proceed as follows. Since

y"(s) + p(s)y(s)

t t t
= - [ dwwerds + | P,
to to to
it follows that ¥"(t) + p(t)y(t) is nonincreasing. Therefore
limy”(#) + p(t)y(®) = L .

Since lim, ... p(t)y(t) = 0 and lim sup,_.. | ¥”(t)| = 0, it follows that L = 0
and therefore lim,_., ¥"(¢) = 0.

REMARK. For a > 2 condition (ii) in the preceding theorem may
be replaced by the weaker condition

(ii) %" + p(t)w = 0 has no oscillatory solutions in [a, o), p(t)t*
is bounded, and p'(t) < 0.
The sufficiency of condition (i)’ is shown as follows. Application of
Theorems 3.6 and 3.7 shows that lim,..y() =0. Lim,_.¥y"() =
lim,_.. ¥'(t) = 0 is established in the same way as before. It will now
be shown that (ii) is stronger than (i) if a > 2. Suppose that (ii)
holds. Then (p(t)t*) < 0 which implies that p'(t) < —(«/t)p(t). There-
fore by a comparison theorem (Birkhoff and Rota, [1, p. 22]) it follows
that p(t) < —At* for some A > 0. Therefore, by Kneser’s criterion
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(Hartman [6, p. 862]), w” + p(t)u = 0 has no oscillatory solutions and
clearly p(t)t* is bounded for large t. Therefore (ii) implies (ii)’ if a > 2.

The following corollary is merely the refinement which the proof
of Theorem 3.11 yields in the linear case. If a = 0 below, the condi-
tion is q(t) — p'(t) = ¢ > 0. Thus Corollary 3.12 is a supplement to a
theorem of Lazer [10, p. 462] which allows ¢(¢) — »'(t) = 0 but requires
gty = e > 0.

COROLLARY 3.12. Suppose that the conditions of Theorem 3.2 for
r =1 are satisfied and in addition that

t'q(t) — (t"p(t)) =z ¢ >0

for some 0 < a < 3 and € > 0. If y(t) is a nonoscillatory solution
of (1.1) with r = 1, then lim,_.y" () = lim,_.. ¥'(¢) = lim,_, y(¢) = 0.

The next theorem gives some information about the nonoscillatory
solutions of (1.1) under different hypotheses than in Theorem 3.11.

THEOREM 3.12. Let p(t)>0, ¢(t) =0, p'(t) <0, and qu(s)ds: oo.
If y(t) s a nonoscillatory solution of (1.1), then y(t) = 0((p(t))~).

Proof. Suppose that y(¢) > 0 eventually. If lim,..y(t) = 0, there
is nothing to prove. Therefore, suppose that lim sup,.. y(t) > 0.

Note that lim,_.. F(y(f)) £ 0 by Corollary 3.4 and the fact that
F(y(t)) is nondecreasing in ¢. It is asserted that lim, . F(y(t)) = 0.
Since lim inf, .. y(¢) = 0 (by Theorem 3.8), there is a sequence {t,} — oo
such that y”(¢,) = 0, ¥'(t,) = 0 and y(¢,) — 0 as n — co. Since y”(t) is
bounded above (see the proof of Lemma 3.9), F(y(t,)) — 0 as n — oo,
Thus lim,_.. F(y(t)) = 0.

It is now asserted that ¥”(t) + p(¢t)y(¢) has the limit 0 £ A <
as t— oo, Since ¥'(t) + p(t)y(¢) is nonincreasing in ¢, the limit 4 < oo
exists, and since y”(¢f) has arbitrarily large zeros, 4 = 0. Now let
{s,} be such that #'(s,) =0 and %(s,) =B >0 for all n =1,2, ...
Sinee lim,_., Fi(y(t)) = 0, it follows that

—[2y"(s,) + p(5,)¥(8.)}y(s,) — 0

as n— oo, Since y(s,) = B > 0, it follows that 2y”(s,) + p(s.)y(s,) — 0
as nm— oo, Since y'(s,) + p(s,)y(s,) — A, it follows that y''(s,) — —A.
Therefore, p(s,)y(s,) —24 as m-— co. Since {s,} is an arbitrary
sequence of relative maxima of y(t), p(¢t)y(t) is bounded. This proves
the theorem.

The author wishes to thank Professor P. E. Waltman for his advice
and encouragement.
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