PICK'S CONDITIONS AND ANALYTICITY

A. C. HINDMARSH

Let \(w(z) \) be a function in the open upper half plane (UHP) with values in UHP, and let \(P_n = (d_{ij}) \) be the \(n \times n \) matrix of difference quotients

\[d_{ij} = \frac{w(z_i) - w(z_j)}{z_i - z_j} \]

formed from any \(n \) points \(z_1, z_2, \ldots, z_n \in \text{UHP} \). It was shown by G. Pick that if \(w(z) \) is also analytic in UHP, then the \(P_n \) are all nonnegative definite Hermitian matrices (denoted \(P_n \geq 0 \)).

In what follows, two converse results are derived.

(1) If \(D \) is a domain in UHP, \(w(z) \) is continuous in \(D \) and has values in UHP, and \(P_3 \geq 0 \) for all choices of the \(z_1, z_2, z_3 \in D \), then \(w(z) \) is analytic in \(D \). It is well known that the condition \(P_2 \geq 0 \) does not imply anything of this sort, but corresponds only to a distance-shrinking property of \(w(z) \) in the noneuclidean geometry of UHP.

(2) If \(w \) is as before, but \(P_n \geq 0 \) for all \(n \) and all \(z_1, \ldots, z_n \in D \), i.e., \(\{w(z) - w(\zeta)\}/(z - \zeta) \) is a nonnegative definite kernel in \(D \), then \(w(z) \) is analytic in \(D \) and has an analytic extension to UHP whose values are in UHP.

The central idea of result (1) is to consider the kernel \(K(z, \zeta) = \{w(z) - w(\zeta)\}/(z - \zeta) \) for \(z, \zeta \) in a neighborhood of a point \(z_0 \in D \) and to interpret the 3\(^{rd} \) Pick condition \(P_3 \geq 0 \) locally at \(z_0 \), thereby deriving coefficient inequalities for \(K \) at \((z_0, z_0) \). This idea is made explicit in the following lemma on general kernels:

Lemma. Let \(D \) be an open set in \(\mathbb{R}^n \), and let

\[K(u, v) = K(u_1, \ldots, u_n; v_1, \ldots, v_n) \]

be a \(C^2 \) kernel defined for \(u, v \in D \), with \(K(u, v) = K(v, u) \). If \(K \geq 0 \) of order \(n + 1 \) in \(D \), i.e., \((k_{ij}) \geq 0 \) for the \((n + 1) \times (n + 1)\) matrix with elements \(k_{ij} = K(u^i, v^j) \) formed from any \(n + 1 \) points \(w^i, w^i', \ldots, w^s \in D \), then for each \(u \in D \) we have

\[M(u) = \begin{pmatrix} K & K_{u} \\ K_{u} & K_{u}^{(s)} \end{pmatrix}_{(u, u)} \geq 0 \]

Here \(K_{u} \) refers to the row vector \((K_{u_i} K_{u_2} \cdots K_{u_n}) \), \(K_{u_i} \) to a similar column vector, and \(K_{u_i v_j} \) to an \(n \times n \) matrix. Subscripts on \(K \) denote partial differentiation.
Proof. Fix \(u \in D \). For small positive \(h \), let \(u^* = (u^*_1, \ldots, u^*_n) \), where
\[
u^*_i = \begin{cases} h & \text{if } k = i \in \{1, \ldots, n\} \\ 0 & \text{otherwise} \end{cases}
\]
Then let \(K(h) \) be the \((n + 1) \times (n + 1)\) matrix
\[
(k_{ij}), \quad 0 \leq i, j \leq n, \quad k_{ij} = K(u + u^*_i, u + u^*_j).
\]
For all small \(h \), \(K(h) \geq 0 \).
Now form \(\tilde{K}(h) = (\tilde{k}_{ij}) \) where
\[
\tilde{k}_{00} = k_{00}, \quad \tilde{k}_{0j} = \frac{k_{0j} - k_{00}}{h}, \quad \tilde{k}_{ij} = \frac{k_{ij} - k_{00}}{h}, \quad \tilde{k}_{ij} = \frac{k_{ij} + k_{00} - k_{0j} - k_{0i}}{h^2}
\]
\((i, j \geq 1)\).

If \(K, K_{u^*_i} \), etc., denote the value and various derivatives of \(K \) at \((u, u)\), then we have
\[
k_{00} = K, \quad k_{0j} = K + hK_{x_j} \frac{h^2}{2} K_{x_j x_j} + o(h^3),
\]
\[
k_{0i} = K + hK_{u^*_i} \frac{h^2}{2} K_{u^*_i u^*_i} + o(h^3),
\]
\[
k_{ij} = K + h(K_{u^*_i} + K_{x_j}) \frac{h^2}{2} (K_{u^*_i u^*_i} + 2K_{u^*_i x_j} + K_{x_j x_j}) + o(h^3),
\]
and so, as \(h \to 0 \),
\[
\tilde{k}_{00} = K, \quad \tilde{k}_{0j} = K_{x_j} + o(1), \quad \tilde{k}_{0i} = K_{u^*_i} + o(1), \quad \tilde{k}_{ij} = K_{u^*_i x_j} + o(1)
\]
\((i, j \geq 1)\).

But \(K(h) \geq 0 \iff \tilde{K}(h) \geq 0 \), because the change \(K \to \tilde{K} \) in the associated quadratic form corresponds to the invertible linear change of coordinates in \(\mathbb{C}^{n+1} \) given by \(X_0 = \tilde{X}_0 - (\sum_i \tilde{X}_i)/h, \; X_i = \tilde{X}_i/h \) \((i \geq 1)\). Hence we conclude that \(\lim_{h \to 0} \tilde{K}(h) = M(u) \geq 0 \).

We wish to apply the lemma to the case of a kernel \(K(z, \zeta) \) defined for \(z, \zeta \in D \), \(D \) being an open set in the plane, with \(K \in C^2 \), and \(K(z, \zeta) = \overline{K(\zeta, z)} \). If we have \(K \geq 0 \) of order 3 in \(D \), i.e., \((K(z_i, z_j)) \geq 0 \) for the \(3 \times 3 \) matrix formed from \(z_1, z_2, z_3 \in D \), we deduce that
\[
N(z) = \begin{pmatrix} K & K_i & K_\eta \\ K_j & K_{x_j} & K_{x_\eta} \\ K_\eta & K_{x_\eta} & K_{x_\eta} \end{pmatrix}_{(z, z)} \succeq 0 \quad (z = x + iy, \zeta = \xi + i\eta)
\]
for \(z \in D \), by applying the lemma to \(J(u, v) = K(u_1 + iu_2, v_1 + iv_2) \) with \(n = 2 \). Further, by a change of coordinates given by the matrix
\[
A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & -i/2 \\ 0 & 1/2 & i/2 \end{pmatrix},
\]
PICKS’ CONDITIONS AND ANALYTICITY

we obtain

\[AN(z)A^* = M(z) = \begin{pmatrix} K & K_\zeta & K_\xi \\ K_\zeta & K_{\zeta\zeta} & K_{\zeta\xi} \\ K_\xi & K_{\xi\zeta} & K_{\xi\xi} \end{pmatrix} \geq 0. \]

To apply this last result to the present problem, let \(D \) be an open set in UHP, let \(w(z) \) be given in \(D \) with values in UHP and with \(P_3 \geq 0 \) in \(D \), and suppose first that \(w \in C^2 \). Then \(K(z, \zeta) = \{w(z) - w(\zeta)/(z - \zeta)\} \) is an admissible kernel, and we are led to the \(3 \times 3 \) coefficient matrix \(M(z) = (m_{ij}) \geq 0 \). Putting \(A = z - \zeta, B = w(z) - w(\zeta) \), the required derivatives of \(K = B/A \) at \((z, \zeta) \) are

\[
K_{\zeta} = \frac{AB_z - A_z B}{A^2}, \quad K_{\xi} = \frac{w_\xi(z)}{A}, \quad K_{\zeta\xi} = \frac{w_{\zeta\xi}(z)}{A^2},
\]

\[
K_{\zeta\xi} = 0, \quad \text{etc.}
\]

But \(M(z) \geq 0 \) implies in particular that

\[
0 \leq m_{zz}m_{33} - |m_{23}|^2 = K_{\zeta\zeta}K_{\zeta\xi} - |K_{\zeta\xi}|^2 \big|_{(x, x)} = -|K_{\zeta\xi}(x, z)|^2.
\]

Hence \(K_{\zeta\xi}(z, z) = 0 \), and so \(w(x) = 0 \). I.e., the Cauchy-Riemann Equations hold in \(D \), and \(w(z) \) is analytic in \(D \).

In order to remove the assumption \(w \in C^2 \), we use a standard mollification argument. In a neighborhood of \(z_0 \in D \), we approximate the continuous function \(w(z) \) by mollified functions \(w_\delta(z) \), such that \(w_\delta \in C^2 \) and \(w_\delta \to w \) uniformly in a neighborhood of \(z_0 \). Since the property \(P_3 \geq 0 \) is additive and positive-homogeneous in \(w \), we see also that \(P_3 \geq 0 \) for each \(w_\delta \) as well as for \(w \). We therefore know that \(w_\delta \) is analytic in a neighborhood of \(z_\delta \). By uniform convergence, so is \(w \). Since \(z_0 \) was arbitrary, \(w(z) \) is analytic throughout \(D \).

From the above proof, it is clear that the hypotheses in statement (1) are considerably stronger than they need be. First, the fact that only \(m_{zz}m_{33} - |m_{23}|^2 \geq 0 \) was used means that \(P_3 = (k_{ij}) \) need only be nonnegative definite on the subspace \(L_3 = \{ (X_i) \in C^3 : \sum X_i = 0 \} \) of complex dimension 2. For, in the notation of the proof of the lemma, the latter condition is equivalent to

\[
\begin{pmatrix} \tilde{k}_{11} & \tilde{k}_{12} \\ \tilde{k}_{21} & \tilde{k}_{22} \end{pmatrix} \geq 0.
\]

The analogous form of the lemma, in which \((K(u^i, u^j)) \geq 0 \) on \(L_{n+1} \) for \(u^0, u^1, \ldots, u^n \in D \Rightarrow (K_{n+p}(u, u)) \geq 0 \), is similarly proved. Secondly, there is now no need for the values of \(w(z) \) to lie in UHP. These two alterations mean that the analyticity result holds when \(w(z) \) is a continuous “infinitesimal transformation” of the class of maps of
D satisfying $P_3 \geq 0$, i.e., $w(z) = df_t(z)/dt |_{t=0}$, where $f_t, 0 \leq t \leq t_0$, is a family of functions in D satisfying $P_3 \geq 0$ in D for all t, and $f_t(z) = z$. The class of such $w(z)$ is in fact characterized by the condition $P_3 \geq 0$ on L_0 (and likewise for general n). The positivity hypothesis could also be weakened from a global condition to a local one, but since D is arbitrary and analyticity is a local property, this would be a trivial alteration. To summarize, we state:

Theorem 1. Let $w(z)$ be a continuous function in an open subset D of UHP. If, for all $z_1, z_2, z_3 \in D$, the 3×3 matrix of difference quotients $d_{ij} = \{w(z_i) - w(z_j)\}/(z_i - z_j)$ satisfies $(d_{ij}) \geq 0$ on the subspace $\{(X_i) \in C^3 : \sum X_i = 0\}$, then $w(z)$ is analytic in D.

It should be noted here that result (1), in the weaker form, can also be easily proven from Pick’s Theorem (below). However, the latter requires a proof that considerably more involved than that given here for Theorem 1.

The statement (2) gives a characterization of the class P of “positive” functions, analytic in UHP with values in UHP. It says that all of Pick’s conditions together imply that w is the restriction to D of a P function. The proof depends on the following:

Pick’s Theorem. If $z_1, \cdots, z_n, w_1, \cdots, w_n \in \text{UHP}$ and $P_n = (d_{ij}) \geq 0$ for the $n \times n$ matrix of difference quotients $d_{ij} = (w_i - w_j)/(z_i - \bar{z}_j)$, then there is a function $f \in P$ for which $f(z_i) = w_i$ for $1 \leq i \leq n$.

Now if $w(z)$ is continuous in D and $K(z, \zeta) = \{w(z) - \overline{w(\zeta)}\}/(z - \bar{\zeta})$ is nonnegative definite (of infinite order) in D, we can choose a dense sequence (z_i) from D and apply Pick’s Theorem for each n. Because P is a normal family, the P functions so gotten have a normally convergent subsequence, and the analytic limit agrees with w in D. We thus obtain

Theorem 2. Let $w(z)$ be a continuous function in a domain $D \subset \text{UHP}$ with values in UHP. If $\{w(z) - \overline{w(\zeta)}\}/(z - \bar{\zeta})$ is a non-negative definite kernel in D, then w is analytic in D and has an analytic extension to UHP whose values are in UHP.

I wish to take this opportunity to express my deep gratitude for Prof. Loewner’s guidance and my sorrow at his loss.

I wish to take this opportunity to express my sorrow at the loss of Professor Charles Loewner, who, as my thesis advisor, inspired the work represented in this paper.
REFERENCE

Received March 6, 1968. This work was supported by a N.S.F. Graduate Fellowship. The results herein are part of a doctoral thesis, for which the research was performed under the late Professor Charles Loewner.

STANFORD UNIVERSITY
STANFORD, CALIFORNIA
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

R. R. PHELPS
University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsuusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles A. Akemann</td>
<td>Invariant subspaces of $C(G)$</td>
<td>421</td>
</tr>
<tr>
<td>Dan Amir and Zvi Ziegler</td>
<td>Generalized convexity cones and their duals</td>
<td>425</td>
</tr>
<tr>
<td>Raymond Balbes</td>
<td>On (J, M, m)-extensions of order sums of distributive lattices</td>
<td>441</td>
</tr>
<tr>
<td>Jan-Erik Björk</td>
<td>Extensions of the maximal ideal space of a function algebra</td>
<td>453</td>
</tr>
<tr>
<td>Frank Castagna</td>
<td>Sums of automorphisms of a primary abelian group</td>
<td>463</td>
</tr>
<tr>
<td>Theodore Seio Chihara</td>
<td>On determinate Hamburger moment problems</td>
<td>475</td>
</tr>
<tr>
<td>Zeev Ditzian</td>
<td>Convolution transforms whose inversion function has complex roots in a wide angle</td>
<td>485</td>
</tr>
<tr>
<td>Myron Goldstein</td>
<td>On a paper of Rao</td>
<td>497</td>
</tr>
<tr>
<td>Velmer B. Headley and Charles Andrew Swanson</td>
<td>Oscillation criteria for elliptic equations</td>
<td>501</td>
</tr>
<tr>
<td>John Willard Heidel</td>
<td>Qualitative behavior of solutions of a third order nonlinear differential equation</td>
<td>507</td>
</tr>
<tr>
<td>Alan Carleton Hindmarsh</td>
<td>Pick’s conditions and analyticity</td>
<td>527</td>
</tr>
<tr>
<td>Bruce Ansgar Jensen and Donald Wright Miller</td>
<td>Commutative semigroups which are almost finite</td>
<td>533</td>
</tr>
<tr>
<td>Lynn Clifford Kurtz and Don Harrell Tucker</td>
<td>An extended form of the mean-ergodic theorem</td>
<td>539</td>
</tr>
<tr>
<td>S. P. Lloyd</td>
<td>Feller boundary induced by a transition operator</td>
<td>547</td>
</tr>
<tr>
<td>Henry B. Mann, Josephine Mitchell and Lowell Schoenfeld</td>
<td>A new proof of the maximum principle for doubly-harmonic functions</td>
<td>567</td>
</tr>
<tr>
<td>Robert Einsohn Mosher</td>
<td>The product formula for the third obstruction</td>
<td>573</td>
</tr>
<tr>
<td>Sam Bernard Nadler, Jr.</td>
<td>Sequences of contractions and fixed points</td>
<td>579</td>
</tr>
<tr>
<td>Eric Albert Nordgren</td>
<td>Invariant subspaces of a direct sum of weighted shifts</td>
<td>587</td>
</tr>
<tr>
<td>Fred Richman</td>
<td>Thin abelian p-groups</td>
<td>599</td>
</tr>
<tr>
<td>Jordan Tobias Rosenbaum</td>
<td>Simultaneous interpolation in H_2, II</td>
<td>607</td>
</tr>
<tr>
<td>Charles Thomas Scarborough</td>
<td>Minimal Urysohn spaces</td>
<td>611</td>
</tr>
<tr>
<td>Malcolm Jay Sherman</td>
<td>Disjoint invariant subspaces</td>
<td>619</td>
</tr>
<tr>
<td>Joel John Westman</td>
<td>Harmonic analysis on groupoids</td>
<td>621</td>
</tr>
<tr>
<td>William Jennings Wickless</td>
<td>Quasi-isomorphism and TFM-rings</td>
<td>633</td>
</tr>
<tr>
<td>Minoru Hasegawa</td>
<td>Correction to “On the convergence of resolvents of operators”</td>
<td>641</td>
</tr>
</tbody>
</table>