SIMULTANEOUS INTERPOLATION IN H_2. II

JORDAN TOBIAS ROSENBAUM
SIMULTANEOUS INTERPOLATION IN H_2, II

J. T. ROSENBAUM

Let $\{z_n\}$ denote a fixed sequence of complex numbers in the unit disc satisfying $(1 - |z_n+1|^2)/(1 - |z_n|^2) \leq \delta < 1$ for some δ. Let M be a nonnegative integer, and let m be generic for integers between 0 and M inclusive. We define the linear functionals $L_n^{[m]}$ on H_2 by $L_n^{[m]}f = f^{(m)}(z_n)$. Given $M+1$ sequences $w^{[0]}, \ldots, w^{[M]}$ in l_2, can there be found a function f in H_2 which solves the simultaneous weighted interpolation problem

$$f^{(m)}(z_n) = (w^{[m]})_n \| L_n^{[m]} \| \ ?$$

Shapiro and Shields considered this problem for $M = 0$. Their results were generalized by the author to the case $M = 1$. The purpose of this paper is to extend this generalization to arbitrary M.

The technique which we used for $M = 1$ would suggest that to proceed to arbitrary M, we should let $w^{[0]}, \ldots, w^{[M]}$ be prescribed in l_2 and then try to find f_0, \ldots, f_M in H_2 satisfying

$$\begin{align*}
[f_m^{(i)}(z_n)] &= (w^{[m]})_n \| L_n^{[m]} \| \\
[f_m^{(i)}(z_n)] &= 0 \quad (0 \leq i \leq M, i \neq m)
\end{align*}$$

(A)

Then, $f_0 + \cdots + f_M$ could serve as the desired interpolating function. However, the computational difficulties which would be involved in such a program can be glimpsed even in the case $M = 1$. We found the following modification to be effective.

The work of Shapiro and Shields assures us that we can interpolate when $M = 0$. Fixing M and assuming the result for lesser values, let $w^{[0]}, \ldots, w^{[M]}$ be chosen from l_2. The induction hypothesis furnishes us with a function f_{M-1} corresponding to $w^{[0]}, \ldots, w^{[M-1]}$. We would like to alter f_{M-1} by finding a function g_{M-1} in H_2 for which the sum $f_M = f_{M-1} + g_{M-1}$, together with its first M derivatives, assumes appropriate values on $\{z_n\}$. This is equivalent to demanding that

$$\begin{align*}
g_{M-1}^{(m)}(z_n) &= [(w^{[M]})_n - \| L_n^{[M]} \|^{-1} f_{M-1}^{(m)}(z_n)] \| L_n^{[M]} \| \\
g_{M-1}^{(m)}(z_n) &= 0 \quad (m < M) .
\end{align*}$$

By proving that the quantity in brackets is in l_2, we reduce the problem to that of finding a function g, once m and $w^{[m]}$ have been prescribed, which satisfies

$$\begin{align*}
g^{(m)}(z_n) &= (w^{[m]})_n \| L_n^{[m]} \| \\
g^{(i)}(z_n) &= 0 \quad (i < m) .
\end{align*}$$

(B)

607
(B) is simpler to solve than (A) because the restriction \(i \neq m \) has been changed to \(i < m \). This accounts for why, although we now deal with arbitrary \(M \), our work is even less computational than when we only treated the case \(M = 1 \).

\section{Preliminary results}

2.1 In [1], Bari proved the following: Let \(\{x_n\} \) be a sequence of elements in a separable Hilbert space \(H \). Then \(\{(x, x_n)\} \) belongs to \(l_2 \) for all \(x \) in \(H \) if and only if the infinite matrix with elements \((x_i, x_j) \) determines a bounded operator on \(l_2 \).

2.2 In [3], Schur showed that for any infinite matrix \((a_{ij}) \), if \(\Sigma_i |a_{ij}| \leq N_i \) for all \(j \), and \(\Sigma_j |a_{ij}| \leq N_j \) for all \(j \), then

\[|\Sigma_i a_{ij}x_i \bar{a}_j| \leq (N_i N_j)^{1/2} \Sigma_i |x_i|^2 .\]

2.3 Let \(\delta_n \) denote \((1 - |z_n|^2)^{-1/2} \). We say that \(\{z_n\} \) approaches the boundary exponentially, provided that

\[\delta_n/\delta_{n+1} \leq \delta < 1 \quad (n = 1, 2, \cdots) \]

for some \(\delta \).

We say that \(\{z_n\} \) is a \textit{Carleson sequence} if

\[\prod_{k \neq n} \left| \frac{z_k - z_n}{1 - z_n \bar{z}_k} \right| > \sigma > 0 \quad (n = 1, 2, \cdots) \]

for some \(\sigma \).

If a sequence approaches the boundary exponentially then it is a Carleson sequence (see [4]).

2.4 The functionals \(L_n^{[m]} \) are continuous with Riesz representatives

\[K_n^{[m]}(z) = \frac{m! z^m}{(1 - \bar{z} z)^{m+1}} .\]

Their norms satisfy \(\delta_n^{2m+1} \leq || L_n^{[m]} || = O(\delta_n^{2m+1}) \) (for \(M \) fixed).

This is suggested by applying \(\partial^m / \partial z_n^m \) to both sides of

\[f(z_n) = \frac{1}{2\pi i} \lim_{r \downarrow 1} \int f(z) \frac{dz}{z} \frac{1}{z_n - z} \quad (|z| = r) \]

and then formally bringing the operator past the limit and the integral sign. The result is more readily established by hindsight by finding the Taylor expansion of \(m!(1 - \bar{z} z)^{-m-1} \) and then raising the exponents by \(m \) to get the expansion of \(K_n^{[m]} \). The identity
SIMULTANEOUS INTERPOLATION IN H_2, II

\[(\Sigma a_n z^n, \Sigma b_n z^n) = \Sigma a_n b_n\]

(for functions in H_2) then yields

\[(f, K_n^{[m]}) = f^{(m)}(z_n) .\]

The norm can be computed easily by noting that

\[||K^{[m]}||^2 = (K^{[m]}_n, K^{[m]}_p) = \left[\frac{d^m}{dz^m} K^{[m]}(z)\right]_{z=z_n} .\]

3. Simultaneous interpolation. We will prove that if \(\{z_n\}\) approaches the boundary exponentially, then simultaneous weighted interpolation can be done with an H_2 function and its first M derivatives for M arbitrary.

Theorem 1. If \(\{z_n\}\) approaches the boundary exponentially and if f is in H_2 then

\[f^{(m)}(z_n)/||K^{[m]}||\]

is in l_2 for arbitrary m.

Proof. By a method similar to that used for the computation of $||K^{[m]}||$, we find that $|(K^{[m]}_n, K^{[m]}_p)| = 0(|1 - \bar{z}_n z_p|^{-2m-1})$. Let $k^{[m]}_n$ denote the normalization of $K^{[m]}_n$. Since $1/|1 - \bar{z}_n z_p|$ is less than both $2\delta_n^2$ and $2\delta_p^2$, thus $|(k^{[m]}_n, k^{[m]}_p)|$ is dominated by both $(\delta_n/\delta_p)^{2m+1}$ and $(\delta_p/\delta_n)^{2m+1}$ and thus by $(\delta_n^{2m+1})^{n-p}$. This, together with Schur's result, allows us to conclude that the matrix whose elements are $(k^{[m]}_n, k^{[m]}_p)$ determines a bounded operator in l_2. Bari's theorem then applies to complete the proof.

Theorem 2. If \(\{z_n\}\) approaches the boundary exponentially and if M is any nonnegative integer then, corresponding to any choice of $M + 1$ sequences $w^{[0]}, \ldots, w^{[M]}$ in l_2, there can be found an f in H_2 for which

\[f^{(m)}(z_n) = (w^{[m]})_n ||L^{[m]}_n|| \quad (0 \leq m \leq M; n = 1, 2, \ldots) .\]

Proof. The proof is by induction on M. As we've noted, the case $M = 0$ has been treated by Shapiro and Shields. Let $M > 0$ and assume the result for lesser values. If $w^{[0]}, \ldots, w^{[M]}$ are in l_2, let f_{M-1} be a function in H_2 corresponding to $w^{[0]}, \ldots, w^{[M-1]}$. We let $B(z)$ denote the Blaschke product for \(\{z_n\}\) and let $B_n(z)$ denote $B(z)$ with the factor $z_n(z - z_n)/(1 - \bar{z}_n z)$ deleted. By Theorem 1,

\[(w')_n = (w^{[M]})_n - ||L^{[M]}_n||^{-1} f^{(M)}_{M-1}(z_n) .\]
determines a sequence in ℓ_2. Then, since $\{z_n\}$ is a Carleson sequence,

$$(w''_n) \equiv \frac{(w')_n \| L_n^M \| |z_n|^M}{B_n^v(z_n)\delta_n^{2M+1}M!}$$

also determines a sequence in ℓ_2. Again using the results of Shapiro and Shields, we can find a function φ in H_2 for which $\varphi(z_n) = (w'')_n\delta_n$. We define f_M to be $f_{M-1} + B^n\varphi$. Clearly, f_M is in H_2 and a simple computation shows that it solves our interpolation problem.

REFERENCES

Received July 24, 1967.
Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California 90024.

Each author of each article receives 50 reprints free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsuisha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners of publishers and have no responsibility for its content or policies.
Charles A. Akemann, *Invariant subspaces of C(G)* 421
Dan Amir and Zvi Ziegler, *Generalized convexity cones and their duals* 425
Raymond Balbes, *On \((J, M, m)\)-extensions of order sums of distributive lattices* .. 441
Jan-Erik Björk, *Extensions of the maximal ideal space of a function algebra* .. 453
Frank Castagna, *Sums of automorphisms of a primary abelian group* 463
Theodore Seio Chihara, *On determinate Hamburger moment problems* 475
Zeev Ditzian, *Convolution transforms whose inversion function has complex roots in a wide angle* .. 485
Myron Goldstein, *On a paper of Rao* .. 497
Velmer B. Headley and Charles Andrew Swanson, *Oscillation criteria for elliptic equations* .. 501
John Willard Heidel, *Qualitative behavior of solutions of a third order nonlinear differential equation* ... 507
Alan Carleton Hindmarsh, *Pick's conditions and analyticity* 527
Bruce Ansgar Jensen and Donald Wright Miller, *Commutative semigroups which are almost finite* .. 533
Lynn Clifford Kurtz and Don Harrell Tucker, *An extended form of the mean-ergodic theorem* ... 539
S. P. Lloyd, *Feller boundary induced by a transition operator* 547
Robert Einsohn Mosher, *The product formula for the third obstruction* 573
Sam Bernard Nadler, Jr., *Sequences of contractions and fixed points* 579
Eric Albert Nordgren, *Invariant subspaces of a direct sum of weighted shifts* .. 587
Fred Richman, *Thin abelian \(p\)-groups* ... 599
Jordan Tobias Rosenbaum, *Simultaneous interpolation in \(H_2\). II* 607
Charles Thomas Scarborough, *Minimal Urysohn spaces* 611
Malcolm Jay Sherman, *Disjoint invariant subspaces* 619
Joel John Westman, *Harmonic analysis on groupoids* 621
William Jennings Wickless, *Quasi-isomorphism and TFM rings* 633
Minoru Hasegawa, *Correction to “On the convergence of resolvents of operators”* ... 641