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We consider some questions which were brought up in a
previous paper: (1) If the product of two proposition observ-
ables is a proposition observable, do the corresponding proposi-
tions split? (2) What is the relationship, if any, between the
concepts of compatibility and simultaneity of proposition
observables? It is shown that the answer to (1) is yes and as
a corollary we find the partial answer to (2) that compatibility
implies simultaneity., It is also proved that the sum of two
proposition observables is a proposition observable if and only
if the corresponding propositions are orthogonal and also that
(g0 x5)* converges weakly to x,.; as n— oo,

We assume that all observables are defined on a quite full logic
satisfying conditions U and E. (See [1] for definitions and notation.)
Recall that an observable x is a proposition observable if o(x) C {0, 1}.
(These observables are also called gquestions, cf. [3].) If z({1}) =«
we denote x by x,. It is clear that proposition observables behave,
in some respects, like orthogonal (self-adjoint) projections on a Hilbert
space and for this reason it is natural to consider certain properties
of projections and ask whether these properties are retained by pro-
position observables. For example, it is easy to show that if A and
B are orthogonal projections then A + B is an orthogonal projection
if and only if AB=BA =0 and AB is an orthogonal projection if
and only if AB = BA ([4], Th. 13.4). Also if C is the orthogonal
projection on the range of A intersected with the range of B then C
is the strong operator limit of the sequence A, BA, ABA, BABA, ---
({4] Th. 13.7). We show that these results generalize to proposition
observables. Recall that the product z-y of two bounded observables
2,y is xoy = 3(x + y)* — 2* — 9*] and that & and y are compatible
if zo(zoy) = (xo2)oy = (®oy)oz for all bounded observables z.

2. The theorems.

LEMMA 1. The following statements are equivalent. (i) a < b.
(ii) m(a) =1, m(a A b) = 0 implies m((d) = 0 for any state m. (iii)
O.(ma + xb) c {07 1) 2}'

Proof. Sincea=(a—aAb) +(aAb)and b= (b—aAdb)+ (aAD),
a«—b if and only if (@ —a Ab) L (b —a Ab). But the latter holds
if and only if m(a — a A b) = 1 implies m(b — @ A b) = 0. This last
condition is equivalent to (ii) and hence (i) and (ii) are equivalent.
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Since o(x, + x;,) [0, 2] applying Lemma 6.2 [1] we have

m(a) + m@) = miz, + @) = | am{@, + @)@
= mlx, + z,){1})] + m(e A b) + m[(z, + x,){0, 1, 2})] .
If o(x, + x,) {0, 1, 2} and m(a) = 1, m(a A b) = 0 then
m(b) = mf(x, + x,){1N] —1=0,
and hence a —b. Conversely if a < b it easily follows that
m[(x, + 2,){1)] = mla A V) + m(b A @)

for every state. It then follows that (x, + x,)({0, 1, 2})) = 0 and hence
o(xz, + ;) {0, 1, 2}.

THEOREM 2. The following statements are equivalent. (i) %,
18 a proposition observable. (i) 2,02, = X, ;. (i) a — b.

Proof. It follows from Lemma 6.6 [1] that (iii) = (ii) = (i). To
show (i) = (iii) suppose x,ox, is a proposition observable. Define the
continuous function f(\) = #(A\* — ). Since a proposition observable is
its own square we have

{0, 1} D o(x, 0 m,) = o[3((x, + @) — (@a + 20))] = o[ f (@, + @)] .

Applying the spectral mapping theorem (Theorem 4.2 [2]) we have
f(o(x, + x,)) c{0,1}. We then conclude that o(x, + x,) {0, 1, 2} and
using Lemma 1 we have that a — b.

COROLLARY 3. If z, and z, are compatible, then x, — x,.

Proof. If z, and z, are compatible, then
(oo ,)* = (Bao ) 0 (B0 @y) = (Tu0@y) 0 &,) 0Ty = (Ty0 W) 0%y = Lo Ty

and hence z,0%, is a proposition observable. Applying Theorem 2,
@ — b and hence z, — z,.

COROLLARY 4. The following statements are equivalent. (i) x, + @,
18 a proposition observable. (i) a L b. (iii) o(z, + x,) [0, 1]. (iv)
Xeoxy, =0,

Proof. From Theorem 2 and Theorem 6.7 [1] we deduce that
(iv) = (ii) = (i) and it is trivial that (i) = (iii). Now (iii) is equivalent
to 0 < m(a) + m(b) £ 1 or m(a) =1 — m(d) for every state m. But
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this last statement is equivalent to (ii) and thus (iii) and (ii) are
equivalent.

COROLLARY 5. The following statements are equivalent. (i) 2, — x,
is a proposition observable. (i) a < b. (iii) o(z, — x,) [0, 1]. (iv)
LgoXp = Lye

Proof. Replace b by b’ in Corollary 4.
We say that a sequence of observables x, converges weakly to an
observable g if lim,_. m(x,) = m(x) for every state m.

THEOREM 6. The sequence of observables (x,0 x,)"* converges weakly
to the proposition observable x,,;.

Proof. Let z = x,ox, and again let f(1) = 4(\* — ). Then using
the spectral mapping theorem and the fact that o(z, + ;) [0, 2] we
have

d(z) = o(f (%, + x)) = flo(x, + »,)) < f(0,2])c[-1/8,1].

Since
m@) = | wmlz@o] + miz(L)]
we have
(@) — mlzhl < | japmiz@n)

Applying the dominated convergence theorem, the integral approaches
zero as n— co and hence lim,_.m(z") = m[z({1})]. Applying Lemma
6.2 [1] we have

2({1}) = S + 2){1}) = (@ + @)/ ~({1h]
= (@, + 2){—1,2}) = (@. + 2){2}) =a A b

and since m(x,,,) = m(a A b), the proof is complete.

COROLLARY 7. The sequence of observables I — [I — x,)o (I — x,)]"
converges weakly to the proposition observable x,.,.

REMARKS. Strictly speaking Theorem 6 is not exactly a gener-
alization of Von Neumann’s Theorem 18.7 [4], however it is probably
the most natural form that a corresponding result would take under
these more general circumstances. Notice that our definition of com-
patibility is stronger than that given in [1].
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