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Croisot gave a definition of (m, w)-regularity which he then
showed defined four logically distinct classes of semi-groups.
However, semigroups with nilpotent elements did not fall
within his classification. Our generalization of (m, n)°-regu-
larity remedies this exclusion; countably many distinct classes
of semi-groups are defined.

In particular we investigate the structure of semigroups
which are (2, 2)°-regular. We show that a semigroup S is in
this class precisely when for each xeS either x2 = 0 or x2e Hx.
Further, each regular £& -class together with 0 of such a semi-
group is itself a completely 0-simple semigroup. The (2, 2)°-
regularity condition is specialized to that of absorbency: for
each a,beS either ab = 0 or abe(Ra n Lb). We show that a
regular absorbent semigroup is just a mutually annihilating
collection of completely 0-simple semigroups.

A schematic summary of the two classifications is found in Fig. 1
and Fig. 2. We remark now that our classification provides a count-
able number of open problems; e.g., determining the structure of
(n, w)°-regular semigroups for n > 2. Moreover, it also remains to
treat such (m, w)°-regular semigroups with reciprocity, antireciprocity,
and uniqueness conditions (cf. [1], p. 124 or [2], p. 373 ff.).

We finally show that for an absorbent semigroup without 0 Green's
relations £f and & are congruences. It is then shown that a regular
simple semigroup S is completely simple if and only if <& and & are
congruence relations on S.
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l Preliminaries* We make use of the notation and terminology
of Clifford and Preston [l]. Thus, «£f, ^ , <%*% &, and ^ will denote
Green's relations and La, Rb, etc., the respective equivalence classes
of α, 6 e S, a given semigroup.

DEFINITION 1.1. Let m and n be nonnegative integers with
m + n > 1. A semigroup S will be in the class of (m, ^-semigroups,
written Se(m,n) if and only if for each x in S there is a u in S
such that & = xmuxn (where, if necessary x° is suppressed in the
equation); S is then said to be (m, n)-regular.

These conditions were shown to fall into four logically distinct classes
([2], p. 370) which are summarized in Fig. 1; the equivalent classes,
represented by lattice points, are connected. One readily sees that a
semigroup Se(m,n) can contain no nilpotent elements (other than
zero) whenever either m or n ^ 2. The following definition, it will
be seen, permits the investigation of semigroups with nilpotent
elements which were not previously considered.

Since we can always adjoin a zero to a semigroup, S, (cf. [1],
p. 4) we will consider 5 to have a zero, 0, in what follows.

DEFINITION 1.2. Let m and n be nonnegative integers with
m + n > 1. A semigroup S will be in the class of (m, w)°-semigroups,
written S e (m, n)°, if and only if for each x e S one of the following
holds

(1) ra > 0 and xm = 0,
( 2 ) n > 0 and xn = 0,
(3) x = xmuxn for some u e S where x° is suppressed in the

equation when necessary.
We will say that S is (m, ny-regular whenever Se(m, n)Ό and

that S is n°-regular when S e (n, n)\

REMARK 1.3. We readily conclude from (1.2.3) that (m, n) £ (m, n)°.
Indeed, if S is a semigroup with no nilpotent elements (other than
perhaps 0) we have Se(m,ri) if and only if Se(m,n)°.

PROPOSITION 1.4. (1) (0, q)° c (0, n)° for n > q ^ 2.

( 2 ) (1, q)° c (1, n)° for n > q ^ 2.
( 3 ) (2), g)° £ (m, w)° for m ^ p ^ 2, w ^ <? ̂  2; the containment

is proper if the inequality is strict for the larger of m and n.

Proof. The cyclic semigroup S = {0, α, α2, , an'1} with α% = 0
suffices to demonstrate the proper containment for all three statements
since S is in the larger class but not the smaller.
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We now prove (1), the proof of (2) and (3) is similar. Let
Se(0, q)° and let x e S. If xq = 0 then xn = 0(n > q) and we are done.
If x9 Φ 0 then there is a w e S such that a? — uxq. Now suppose w =
m(q — 1) + p where 0 ^ p < g —. 1. Then $ = (tcα;)^""1 = iφ&c*)^"-1 —
{v?xxq-ι)xq-1 — u2xx2{q~1] — = ^W+Ixa;(m+I)(g~1) = vxn upon reassociating
after m substitutions. Thus for each α -eS either xn = 0 or α = we*
for some v e £. Whence S e (0, n)° and the proof is complete.

The latter part of the above proof is essentially that of [2]
Propriete 3. The technique illustrated in the above proof, treating
the three conditions of (1.2) by cases and carefully checking nilpotency,
is used in proving many of the following theorems. Whenever this
is the case we will omit the proof and refer the reader to the appro-
priate reference in Croisot [2].

THEOREM 1.5. (1, n)° = (n, 1)° for n ^ 2.

Proof. Cf. [2], Theorem 2.

COROLLARY 1.6. (n, n)° = (1, n)° = (n, 1)° for n ^ 2.

PROPOSITION 1.7.

(m, n)° = (p, n)° and (n, p)° = (n, m)° for 2 <. p <^ m ^ n .

Proof. By (1.4.3) we already have (p9n)°S(m9n)0. Conversely,
suppose we have Se(m, n)° and let x e S. If either xp = 0 (then
xm — 0) or xn = 0 we are done; if not then xn Φ 0 implies ccm 9̂  0
(m ^ w) and since Se(m,n)° we can find a u in S such that a? =
xmuxn = #p(£m~p%)#w whence we can conclude that S € (#>, w)°. It now
follows that (p, ̂ )° = (m, ̂ )°. The other equality is a direct dualization.

COROLLARY 1.8.

(1, n)° = (m, tt)° = (n, m)° = (n, 1)° for n ^ m ^ 2 .

PROPOSITION 1.9. (n, n)° = (0, n)° n (w, 0)° for w ^ 2.

Proo/. Cf. [2], Theorem 1.

PROPOSITION 1.10. If S is ^-regular (n :> 2) then for each x in
S with xn Φ 0 there is an idempotent β of the form e = xn~ιv = m " - 1

(w and v in S) which is ^g^-equivalent to x. Moreover, ux2n~5v is then
the group inverse of x with respect to e.

Proof. If xnΦθ then since S e ( 0 , w ) 0 n ( ^ 0 ) ° by (1.9) we can
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find a u and v in S such that x = uxn = xnv. Then wo;*1-"1 = (uxn~2)x =
(ttaj*-2)a;*t; = (uajn)(«w""2)v = #(a^-2/v) = a;*"1!; and one can verify directly
that e — uxn-χ = xn~H is an idempotent. Clearly ex — x = xe and it
follows that e^έfx. Again, direct calculation shows that x(ux2n~Bv) —
(ux2n~*v)x = e. Since ux2n~*v = uxn^xn~2v — xn~ιvxn~2v and ux*%~~*v =

uxn-2xn~ιv — uxn^2uxn~-1 we can conclude ux2n~*v£ίfeέ%fx and the result

follows.

We conclude this section with several propositions which are
readily demonstrated.

PROPOSITION 1.11. (n, n)° = (1, n)° n (w, 0)° for n ^ 2.

PROPOSITION 1.12. If S is regular then Se(l,n)° if and only if
Se(0,w)°.

PROPOSITION 1.13. If Se (0, w)° and xn
 Φ 0 then a; is not nilpotent.

Proof. Briefly, if S e (0, w)° and a; € S with xn Φ 0 there is a w G S
such that x — uxn. Then x = uxx71-1 = ^(^α;71)^71"1 = u2ίcx2w~2 = . . . =
ukxxkn~k. Since kn — k = k(n — 1) ̂ > fc(w ̂  2) and a? Φ 0 it is now
clear that x can not be nilpotent.

PROPOSITION 1.14. (m, 0)° n (0, n)° s (m, n)° for m,n^2.

Proof. Let S e (m, 0)° Π (0, n)° and let xeS. Suppose n^m. If
xm Φ 0 then a; is not nilpotent (1.13). Thus there are u,veS such
that x = a?wv — uα;71. Then uα;'1"1 = uxn~2xmv = t6xwxw-2/y — xm-1'y. Hence
a; = αjmv = xxm~ιv = xux1"1"1 = (xmv)uxn~~2uxn. Now if xm = 0 there is

nothing else to show. Whence in either case S e (m, n)°.

OBSERVATION 1.15. The reverse inclusion of (1.14) is false. For
if n > m then S = {0, α, , an~1} with α71 = 0 is (m, ̂ )°-regular but

REMARK 1.16. As Croisot has pointed out the Baer-Levi semi-
group which consists of all one-to-one mappings of a denumerable set
into itself which "miss" a denumerable subset and the usual composition
(/3a: first a then β) furnishes an example of a semigroup which is
(0, w)°-regular but neither (w,0)°-regular nor (1, 0)°-regular. An anti-
isomorphic semigroup shows that (n, 0)° ξg (0, n)°.

Fig. 2 schematically connects equivalent classes of (m, w)°-regular
semigroups which are represented (as in Fig. 1) by lattice points. In-
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elusions are as shown.

O P E N QUESTION 1.17. We raise t h e following problem for consider-

ation: If S is ^ - r e g u l a r (n > 2) and xeS wi th xn Φ 0 then xSϊfe for
some e2 — eeS (1.10). Then ex — xe — x. However, for arb i t rary
yeSwe may have g2 — g and gy = yg — y and also f2 — f and fy —
yf = y. Find necessary and sufficient conditions to imply / = g.

From the above equations when y = x and (1.10) we can deduce
fe — ef — e so that "each nonzero idempotent of S is primitive" and
"S has no nilpotent elements" are sufficient conditions for the unique-
ness of a left-right idempotent identity for each x e S e {n, n)°.

2. 0-semiprime conditions and 2°-regularity* In [2] Croisot
was able to show [Theorem 1] that a semigroup S is the union of
groups if and only if Se (0, 2) n (2, 0) and that (2, 2) = (0, 2) n (2, 0).
This section will be devoted to developing results analogous to these
and those of §4.1 and §4.2 in [1].

Since in the sequel we will be especially concerned with three
types of regularity we single them out here

DEFINITION 2.1. (1) A semigroup S is said to be left 0-regular
if Se (0, 2)°. Dually

(2) A semigroup S is said to be right 0-regular if S e (2, 0)°.
(3) A semigroup S is said to be intra-0-regular if for each x

in S either x2 = 0 or x — ux2v for some u and v in S.

We now give a generalized definition for semiprimeness:

DEFINITION 2.2. (1) An ideal / (any type) of a semigroup (with 0)
is said to be 0-semiprime if x e I whenever x2 e /\{0}.

(2) A semigroup S is said to be [left, right] 0-semiprime when-
ever every [left, right] two-sided ideal of S is 0-semiprime.

PROPOSITION 2.3. Let S be a semigroup with 0. Then the follow-
ing are equivalent.

(1) S is [left, right] intra-0-regular.
( 2) S is [left, right] 0-semiprime.
( 3 ) If x e S and x2 Φ 0 then [x^fx2, x^x2\x^x2.
(4) If x e S and x2 Φ 0 then [x e Sx2, x e x2S]x e Sx2S.

Proof. The equivalences follow immediately from their respective
definitions in much the same fashion as their restrictive counterparts
(e.g., left regular) of [1], §4.1 (or cf. [2], Proprietes 5,6 p. 365).
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PROPOSITION 2.4. All left, right and two-sided ideals of a semi-
group S are 0-semiprime if and only if S is 2°-regular.

Proof. This follows directly from (1.9) with n = 2 and (2.3).

THEOREM 2.5. If S is a semigroup with 0 then S is 2°-regular
if and only ifx2 — 0 or x2 e Hx for each x e S.

Proof. Assume S is 2°-regular. Let xeS. If x2 Φ 0 then there
is a u in S such that x = x2ux2. It follows that x£ίfx2 and x2eHx.

Conversely, suppose x2 = 0 or x2 e if*. In the former case (1.2.1)
it satisfied; in the latter case Hx is a group ([1], Theorem 2.16) and
the equation x — x2ux2 is the solvable for u in Hx. Thus in either
case S is 2°-regular.

COROLLARY 2.6. If S is 2°-regular then all the irregular elements
of S lie in ^-classes, D, which square to zero, i.e., D2 = {0}.

Proof. Let D be an irregular ^-class ([1], §2.3) of S. Let a
and b be elements of D and let x e Rb Π La. By (2.5) since S is 2°-
regular, x2 = 0 or else Jϊz would be a group ([1], Theorem 2.16) and D
then would not be irregular. Now by [1], Theorem 2.4, LaRbQD' a
^-class. Since x2 = 0eLaRb,D' must be the zero ^-class {0} and
α& = 0. It thus follows that D2 = {0}.

THEOREM 2.7. Leέ S be a ^-regular semigroup and suppose D
is a nonzero regular &-class union {0}. Then D is itself a completely
Osimple semigroup.

Proof. We first show that D is a semigroup. Indeed, proceed-
ing as in (2.6) we will show that if a, beD\{0} either ab — 0 or
abeRaf]Lb. Thus let α, beD\{0}. Then LaRbQD', where £>' is a
i^-class ([1], Theorem 2.4). Let cGjB6Πl/α which is nonempty (cf.
[1], p. 48) so that we have c2eLaRb^D'. If c2 = 0 then D' = {0}
since D' is a ^-class and thus α& = 0 e D. But if c2 Φ 0 then c2 e iJc

by (2.5) since S is 2°-regular. By [1], Theorem 2.16 Hc = Rb Π £ α is
a group. Hence by [1], Theorem 2.17 we have abeRaf)LbQD. If
either α or 5 is 0 then surely abeD. In any case abe(Ra f] Lb)QD
or ab = OeD.

Since D\{0} is regular it contains nonzero idempotents by [1],
Lemma 1.13 and hence D2 Φ 0. We will now show that each nonzero
idempotent in D is primitive (cf. [1], p. 76). We must show that if
0 Φ e ̂  /, then e — f. In fact we prove more. We shall show for
any two idempotents e,f in D, even ef = feφθ implies e = f. As
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above, if efφO then we must have efeRef]Lf. Likewise fe Φ 0
implies feeRfΠ Le. Hence ef = feeReΓ\ LeΠ Rf Π Lf = HeΠ Hf.
Since ef = fe is an idempotent and a group can contain at most one
idempotent it follows by [1], Theorem 2.16 that e = ef = fe = /.

It remains to show that D, as a semigroup is 0-simple. Indeed
we will show that if Sιa = S'b for a and 6 in D\{0} then Dιa = Dιb.
Suppose aSfb in S. Then either a — b and the result follows im-
mediately or there is an x in S such that xa = 6. Since α and 6 are
regular we can find, [1], Lemma 1.13, ^-equivalent idempotents e and
/ for a and b respectively. Similarly let g be an .^-equivalent idem-
potent for a and b. From xa = b and [1], Lemma 2.14 we deduce
that fxea — b. By [1], Theorem 2.18 we can find an inverse α' for a
in Le Π Rg. Hence 0 Φ fxe = (fxe)e = (fxea)af = &α' and so δα' ̂  0.
Thus by the first part of the proof /a?e = δα' e Rb Π Lβ, £ D\{0}. So
the equation za — b is solvable in D. Likewise yb — a is also solvable
in D. This clearly is sufficient to show Dιa = Dιb. Dually cS1 = dS1

implies cD1 = dD1 for c and d in D\{0}. It follows that D is 0-bi-
simple and hence 0-simple. Whence we have shown that D is com-
pletely 0-simple, and the proof is complete.

The following is a generalization of Theorem 4.6 in [1]. We note
that Theorems 4.2, 4.3 and 4.4 of [1] are also capable of generalization
in an obvious manner (cf. (2.3)) by inserting "0" in the appropriate
spots and permitting null subsemigroups along with the groups.

THEOREM 2.8. Let S be a regular semigroup with 0. Then the
following are equivalent:

(1) S is 2°-regular.
( 2) S is the Q-disjoίnt union of subsemigroups which are them-

selves completely 0-simple semigroups.
(3) S is left 0-regular and right 0-regular.
(4) All left and right ideals of S are 0-semiprime.

Proof. (1) <=> (2). If S is 2°-regular then by (2.7) each nonzero
regular ^-class union 0 is a completely 0-simple semigroup. Since S is
regular by our overall assumption and £^ is an equivalence relation we
have a 0-disjoint union of the ^-classes of S of the type desired in (2).

Conversely, if we assume (2) holds then for any xe S,x and x2

both belong to a subsemigroup which is completely 0-simple. In such
subsemigroups x*eHx\J{0} by [1], Theorem 2.52. (Note: Hx here
denotes an Jg^-class with respect to Green's relation defined on the
subsemigroup.) If x2 Φ 0 then Hx is a group [1], Theorem 2.16 and in
this case Hx is easily seen to be contained in an ^g^-class of S, hence
x2e H*-where HI is the ^-class of x in S. If x2 = 0 then x2e HIU{0}.
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In either case we can conclude by (2.5) that S is 2°-regular.
(1) « (3). This is just (1.9) with n = 2.
(1)«(4). This is just (2.4).

3* Absorbent semigroups* Even though the gross structure of
a 2°-regular semigroup was determined in (2.9) and (2.7) we are still
unable to predict the location of the product of any two elements
which do not lie within a single ^-class. However [1], Theorem 2.5 2.2
does suggest one fruitful subclass of the 2°-regular semigroups for
investigation. Formally:

DEFINITION 3.1. (1) A semigroup S with zero, 0, will be called
absorbent if for any two elements a and b we have either ab 6 (Ra Π Lb)
or ab = 0.

(2) A collection of subsemigroups {Sa}aej^ of a semigroup S with
0 will be called mutually annihilating if 0 e Sa for each a e szf and if
SaSβ = {0} = SβSa for aΦβ.

OBSERVATION 3.2. If we let a = 6 in (3.1.1) we readily see (using
(2.5)) that an absorbent semigroup is 2°-regular since Ra f] La — Ha.

PROPOSITION 3.3. A regular nonzero i^-class union {0} of an
absorbent semigroup is itself a completely 0-simple semigroup.

Proof. This follows immediately from (2.7) by (3.2).

LEMMA 3.4. Let S be an absorbent semigroup. Then the collection
of ^-classes union {0} of S is mutually annihilating.

Proof. It readily follows from (3.2), (2.6) and (2.7) that each &r-
class union {0} is a semigroup. If a$b then Ra Π Lb = 0 by a remark
on [1], p. 48. It then follows from the definition of absorbency that
ab = 0 and thus (Da U {0})(Db U {0}) = {0}.

THEOREM 3.5. A semigroup S with 0 is absorbent if and only if
it is2 °-regulaχ and the collection of its ^-classes union {0} is mutually
annihilating.

Proof. One implication follows directly from (3.2) and (3.4).
Conversely, suppose S is 2°-regular and that the product of any

two distinct, ^-classes is {0}. Let a and 6 be given. If a$b then
ab = 0. On the other hand, if a&b and Da is irregular then we have
ab = 0 by (2.6); but if Da is regular then Da (J {0} is completely 0-
simple (2.7) and we have ab e (Ra Π Lb) or ab = 0 by [1], Theorem 2.5 2.2
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and S is absorbent. This completes the proof.

COROLLARY 3.6. A regular semigroup with 0 is absorbent if and
only if it is mutually annihilating collection of completely Osimple
semigroups with a common zero.

COROLLARY 3.7. // S is an absorbent semigroup then
on S. Indeed each &-class union {0} is an ideal.

Proof. Since S is absorbent the last statement is immediate since
the ^-classes are mutually annihilating by (3.4). Suppose now that
b Φ 0 and aj?b. Then we can find u, v e S1 such that a = ubv. Now
we have seen above that Db U {0} is an ideal and from a^b, b Φ 0
it follows that a Φ 0. Thus from a — ubv we can conclude aeDb.
Whence a&b and the proof is complete since Jo = Do = {0}.

In order to investigate the irregular ^-classes of an absorbent
semigroup we need the following definition:

DEFINITION 3.8. An ideal I of a semigroup £ is called [0 — ] prime
if and only if ab e I[ab e I\{0}] implies a or b belongs to I.

REMARK 3.9. One readily observes that an ideal /of S is [0 — ]
prime if and only if S\I[(S\I) U {0}] is a subsemigroup.

DEFINITION 3.10. A semigroup S is said to be ideally irregular
if the subset, U of irregular elements and 0 is an ideal.

PROPOSITION 3.11. An absorbent semigroup S is ideally irregular.
Indeed U is a 0-prime ideal.

Proof. Clearly U is the union of the irregular ^-classes and {0}.
That U is an ideal follows from (3.7). By (3.3) each regular ^-class
union {0} is a semigroup. Since the ^-classes of S are mutually an-
nihilating (3.4) (S\U) U {0} is seen to be a subsemigroup. (3.9) com-
pletes the proof. (Indeed, in exactly the same manner we can show
that each i^-class union {0} of an absorbent semigroup is a 0-prime
ideal.)

PROPOSITION 3.12. If S is an absorbent semigroup and i an ir-
regular element of S then D{ = {i}.

Proof. Suppose that there is an i Φ 0 and if (i irregular) such
that i'Sfi and V Φ i. Then there is an x such that i = xi'. Either
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x e Dv = Di and then xi' = 0 by (3.5) and (2.6) or x £ Ώ\ and xi' = 0
by (3.5). In either case i — 0, a contradiction. Thus L̂  = {ί}.
Dually j ^ = {i}. It follows immediately that JD< = {ΐ}.

OPEN QUESTION 3.13. If S is a 2°-regular semigroup are there
necessary and sufficient conditions for Ua S to be an ideal [prime ideal]?

We conclude the paper with a brief investigation of the relation-
ship between absorbency and those semigroups for which £f and &
are congruence relations.

PROPOSITION 3.14. If S\{0} is a subsemigroup of S and if S is an
absorbent semigroup then jϊf and & are congruences.

Proof. The follows directly from the definition of absorbency.

The converse of (3.14) is false. In an infinite cyclic semigroup,
which is far from being absorbent, Green's relations are just equality
and thus trivially congruences. However, if S is regular we do have
the following decomposition:

PROPOSITION 3.15. Let S be a regular semigroup. If £? and &
are congruences on S then S is the union of groups.

Proof. We will show that each <^-class of S is a group. Let
Ha be given. Then since a is regular there are Jίf and & equivalent
idempotents e and / respectively [1], Lemma 1.13. Using [1], Theorem
2.14, and the hypothesis we have a = ae^a2 and a = fa&a2. But
this implies a£ίfa2. Whence by [1], Theorem 2.16, Ha is a group.

The following theorem provides a partial converse of both the
above proposition (since completely simple semigroups are unions of
groups [1], Theorem 4.6) and Theorem 2.51 of [1].

THEOREM 3.16. A regular [ — 0] simple semigroup S is completely
simple [with adjoined 0] if and only if £? and & are congruences
on S.

Proof. Suppose £f and & are congruences. Then by (3.15) S is
the union of groups. Application of [1], Theorem 4.5, then shows
that S is completely simple.

The converse is given by [1] Ex. 9, p. 83.

We conclude by remarking that regular absorbent semigroups will
be further investigated in [3].
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