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A theorem is proved slightly stronger than the following.
Let G be a set of order-preserving linear operators on a par-
tially-ordered real linear space X, for which there exist sets
G = Gn 2 Gn-i 2 2 Go with Go commutative and such that
for k — 1, , n, x in X, g± and g2 in Gk there exist hi and h2

in Gk-i satisfying h1gig2(.x) — h2g2gi{x). If S is a G-invariant
subspace such that for all x in X there is an s in S satisfy-
ing s ^ x, and f0 is a G-invariant positive linear functional
on S, then f0 extends to a G-invariant positive linear func-
tional on X. This is used to construct a generalized form of
the Banach limit, an ergodic measure on compact Hausdorff
spaces, a stationary extension of a relatively stationary stoch-
astic process xt (0 ^ t ^ α) with values in an arbitrary space,
and a generalization to arbitrary linear spaces of Krein's ex-
tension theorem for positive-definite complex-valued functions.

This paper consists chiefly of one principal theorem (Theorem 2
in §1) on extending positive linear functionals from a subspace S of
a linear space X to all of X so as to preserve invariance under a set
G of order-preserving linear transformations, together with several
applications of that theorem. The set G is assumed to satisfy a con-
dition which we call left-solvability over X, and which is satisfied by
every solvable group G. The importance of an algebraic condition
like solvability for problems such as this was apparently first recogniz-
ed by John von Neumann, in a paper [12] in 1929 in which he studi-
ed the existence of finitely additive measures invariant under the
action of a group of transformations. Our Theorem 2 can readily be
seen to be a generalization of a famous extension theorem of Riesz,
to which it reduces when Xλ = X and G consists of the identity alone.
It also generalizes a lemma of Parthasarathy and Varadhan [10]. A
corollary (in §2) which analogously generalizes the Hahn-Banach the-
orem contains the principal result in a paper by R. P. Agnew and
A. P. Morse [1], some of the results in a paper by V. L. Klee [5]
and a lemma by M. M. Day [3].

The extension theorem is used in §5 to construct a type of ge-
neralized limit for sequences, with larger domain and stronger invari-
ance properties than the familiar Banach limit. In §6 it is used to
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construct an invariant ergodic measure on compact spaces.
In §7 we define a general form of stochastic process, whose ran-

dom variables take values in an arbitrary set, and prove that if such
a process on an interval of reals is relatively stationary, it can be
extended to the whole real line so as to be stationary. This genera-
lizes a theorem (for real-valued processes) proved by Parthasarathy
and Varadhan [10].

In §8 we digress to define a covariance function for a class of
processes somewhat less general than those of §7 (with values in a
real or complex linear space), and to prove a theorem characterizing
the functions that are covariances of some process. In particular, the
covariances of relatively stationary processes on an interval ( — A, A)
coincide with the functions that we call positive definite, by a straight-
forward extension of the meaning of the phrase for complex-valued
functions. We use this to generalize a well-known result of M. G.
Krein [6] on extending positive-definite complex-valued functions from
{-A, A) to (-00,00).

1. The extension theorems* In this section we state our prin-
cipal extension theorems.

Let X be a set, G and H two sets of transformations of X into
itself. We shall write gλg2 for the composition g^g2, and likewise for
other compositions.

DEFINITION 1.1. G acts on a subset Xt of X commutatively to
within left iϊ-factors if to each x in X1 and each gλ and g2 in G there
correspond h1 and h2 in H such that

DEFINITION 1.2. Let G be a set of transformations acting on a
set X, and let X1 be a subset of X. G is said to be left-solvable
over X1 if there exist sets of transformations G = Gu Ξ2 G»-i 3 3
Go such that for k = 0,1, , n — 1, Gk+1 acts on Xx commutatively
to within left Gk -factors, and Go is commutative.

The definitions of commutative action to within right iϊ-factors
and of right-solvability over Xx are obvious analogues of (1.1) and
(1.2).

In the above definitions and in all later theorems the adjunction
of the identity transformation 1 to all sets G, H, Gk, etc. leaves unal-
tered the properties in (1.1) and (1.2) together with all invariances.
So without loss of generality we may and shall assume that all sets
G, if, etc., mentioned contain the identity transformation 1.

If G is a semigroup it acts on itself, setting g(g') — gog\ We
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shall say that the semigroup G is left-solvable if G is left-solvable
over G itself. If G is a semigroup of transformations acting on a set
X, the condition that G be left-solvable (over itself) is stronger than the
condition that G be left-solvable over X. For then if gι and g2 are in
Gk+ι, there exist h19 h2 in Gk such that h&β^l) = &2020i(l). This implies
that the equation in (1.1) is satisfied for all x, and with an ht and
h2 independent of x. M. M. Day defined a concept of left-solvability
for semigroups that is slightly stronger than simultaneous left-solva-
bility and right-solvability. The one-sidedness of our condition is not
trivial; one of our examples will involve a left-solvable semigroup
over X which is not right-solvable over X.

If in (1.2) we add the requirement that all the Gk be groups,
then left solvability of G is equivalent to solvability of G as cus-
tomarily defined, and so is right solvability.

If {g0 — 1,^, •••,#„*} is a finite group of linear transformations
on a linear space X, and we define T:X—*X by setting

Tix) = (m + l)-l[g0(x) + + gm(x)](x e X),

we readily see that gtfix) = Tg^x) = T2(x) = T(x) for all x. Hence
the set G — {g0, - -, gmi T) is a semigroup of transformations. If we
take (?! = G, Go = {1, T], we see that G is both right-solvable and left-
solvable over X, the Go -factors always being T.

Any finite group {g0 = 1, , gm} is similarly contained in a right-
and left-solvable semigroup G = {g0, , gm, gm+i}, where the composi-
tion of gm+ί with the elements of G is defined by gm+1gt = fl^+i =
£m + 1 (i = 0, ,m + l).

If G is any set of transformations of a set X into itself (con-
taining as always the identity) G generates a semigroup G+ as follows.

(1.3) G+ consists of all operators of the form gxg2 gk for all

positive integers k and all k-tuples (gί9 •••,#*) of members of G.

We shall often extend sets G to semigroups G+ without explicit men-
tion of this definition.

For ease of comparison we state our first two theorems together.

THEOREM 1. Let X be a partially ordered real linear space and
S a subspace such that (1.4) for each x in X there exists an s in S
satisfying s >̂ x. Let G and H be sets of order-preserving linear
transformations of X into itself such that HQG and G acts on X
commutatively to within left H-factors. Let S be invariant under
G and let fo:S—+Rbea positive G-invarίant functional on S. Assume
that either

( i ) H is the identity alone (so that g^zix) — g2gι{%) for all x
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in X and all gu g2 in G), or else
(ii) /o can be extended to a positive H-invariant linear func-

tional fj_: X —> R.
Then /o can be extended to a positive G-invariant linear func-

tional f: X—+R.

THEOREM 2. Let X be a partially ordered linear space and G a
set of order-preserving linear transformations of X into itself. Let
Xn: 0 ^ n < n be a set of n G-invariant subspaces (n may be oo) such
that Xo S Xί S Xz S cmd U nXn = X Assume that for 1 < n < n,
either

( i ) G is left-solvable over Xn, and for each x in Xn there is
an s in Xn_i such that s ^ x; or else

(ii) for each x in Xn there is a g in G such that g(x)eXn-1;
and for each x in Xn and gu g2, g3 in G such that g^x) and g2g3(x)
are in Xn~u there are members hu h2 of G such that

Then every G-invariant positive linear functional f0 on XQ can
be extended to a G-invariant positive linear functional f on X.

2* Proof of theorem 1. The left-commutative action of G to
within left H-ΐactors enters the proof of Theorem 1 via the following
lemma.

LEMMA. Let X be a linear space. Let G and H (HQG) be sets
of transformations such that G acts on X commutatively to within
left H-factors. Let f be an H-invariant linear functional on X.
Then for every x in X and every finite sequence (gu , gn) of ele-
ments of G, the value of f(g1 gn{x)) is invariant under permuta-
tion of the gι.

We prove this by induction on n. If n = 1, the in variance of
/(#i 9n{%)) under permutation of the gt is evident. We assume it
true for n < m and show it then holds for n — m. It is enough to
show invariance under interchange of any two consecutive terms of
the sequence of g{. For all but the last two terms this is an imme-
diate consequence of the induction hypothesis. For the last two, by
hypothesis there are members h,h' of H such that hgm^gm(x) =
hfgmgm^{x). Then

f(9i 0»(α)) = f(hg1 f7

= f(9i 9m

= f(9m 9m~2hf[gmgm^(x)])
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= f(h'gx gm-2gmgm-ι(%j)

= f(Qi * gm-2gmgm-ι(%)),

which completes the proof.
In proving Theorem 1 we shall use the Hahn-Banaeh theorem.

To construct the appropriate subadditive p we define a subspace.
(2.1) If G is commutative, N = {0}; if hypothesis (ii) holds, N

is the set of all v in X such that for every finite sequence (gl9 gn)
of members of G, fι{gι gn{v)) = 0. (Thus, if (ii) holds, JV is the
largest G-invariant subspace on which fx vanishes.)

In either case the following is evident.
(2.2) JV is a G-invariant subspace of X. Also
(2.3) If 8 6 S and there is a v in N such that s >̂ v, then /0(β) ^ 0.
If N = {0} this is trivial. Otherwise,

Λ(β) = Λ(β) ^ /iM - 0 .

(2.4) If x e X, and (glf , gn) is any finite sequence of elements

of G, and (Γ, « , ^ ' ) is any permutation of (1, •••,%), then

0i#2 gn(%) - gv, gv gΛ®) $ N.

If G is commutative this is trivial. Otherwise it follows at once
from the lemma at the beginning of this section.

Now for each x in X we define a set S[> %] as follows.
(2.5i) S[> x] is the set of all s in S such that for some positive

integer n, some ordered w-tuple (gίf , gn) of members of G+ and
some v in N it is true that

s ^ n"1 Σ gi(x) + v .

Also,
(2.5ii) For each x in X, p(x) is defined to be the infimum of fo(s)

for all s in S[> x]m

Then
(2.6) If a; is in X and s' and s" in S, and s ' ^ ^ s", then

Let s be in S[> »]; suppose it satisfies the inequality in (2.5 i).
Then since the g{ are order-preserving and S is G-invariant,

so by (2.3)

By (2.5 ii), ί>(«) ^ /,(«'). Since s" e S[> a?], /,(«") ^
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From this and hypothesis (1.4) (applied to x and to — x) we see
that p(x) is finite-valued. Moreover,

(2.7) if seS,p(s)=fo(s).
We next prove
(2.8) p is positively homogeneous and subadditive on X; that is,

if a ^ 0 and x and y are in X,

p(ax) = ap(x) and p(x + y) ̂  p(#) + #0/) .

The first statement is trivial. For the second, let ε be positive,
and let su s2 be members of S[> x], S[> y] respectively such that

/o(*i) < P(x) + s/2,/o(s2) < p(y) + e/2 .

There exist integers m,n, elements g19 , gn, g[, , g'm of G+ and ele-
ments Pi, iλ, of JV such that

This implies

(2.9) m-1 Σ ί/Kβi) ^ (mti)-1 Σ Σ ί/5ft(«) + m"1 Σ ί/ί(̂ i) t
i=i i=i ΐ=i j=ι

(2.10) ίi-1 Σ ^̂ (82) ̂  (wίi)-1 Σ Σ 9iffM + n-1 Σ Λ(XΊ)
ΐ=i *=i y=i ί=i

By (2.4), for i e {1, •••,?&} and i 6 {1, , m} there is a v^ in N
such that

(2.11) 0 = g'tfM) - gig){y) - vi5.
We multiply each of equations (2.11) by (run)"1 and add the re-

sults and (2.9) and (2.10) member by member. The result is, because
of (2.1),

(2.12) m-1 Σ 0ί(*i) + n~ι Σ Λ(β8) ^ (w^)"1 Σ Σ ^*(» + V) + »*,
3=1 ί=i i=i »=i

where v3eN. Thus the left member is in S[>(# + y)], and so

p(x + y)^ Mm-1 Σ #(βi) + ̂ ~1 Σ

- /o(Si) + /oW

< p(α ) + p(i/) + ε .

Since ε is an arbitrary positive number, (2.8) is established.
By (2.7) and (2.8) we may apply the Hahn-Banach theorem to ob-

tain a linear functional f: X—+R coinciding with f0 on S and satisfying
(2.13) f(x)^p(x) (xeX).

It remains to show that / is the G-invariant positive extension we
seek. Clearly / is positive, since if x ^ 0 we have by (2.6) and (2.13)
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To show that / is G-invariant we shall need the following lemma,
which establishes a strong form of G-invariance for p.

n

LEMMA. For all x in X and gu , gnin G+, p{n~x Σ gά%)) = P(%)

Proof. Write y — w ^ Σ 9iiχ) If s is in S[> y], so that s ^

w"1 | l g'Av) + ^ with flr[, , g'm in G+ and j ; in N, then

so by definition of p,fo(s) ^ ί>(x) and p(̂ /) ^ p(x).
Conversely, let s be in S[> x]. Then there are elements g[,

m

gf

m in G+ and vL in N such that s ^ m"1 Σ ^ί(^) + v» whence
3=1

n-1 Σ 9i(s) ̂  (ww)-1 Σ Σ ft(ffί(«) + Wi)
i l l i l

! : Σ{flrjft(a;) + [-g'Mx) + ^ ( α ) +
j = ί < = l

The expressions in square brackets are in N by (2.2) and (2.4), so

n-1 Σ Λ(β) ^ m-1 Σ ffίt^-1 Σ ftί*)] + V = m-1 Σ 9'M + V,
i ii ii

where v' e N. Hence ^~x Σ Λ (β) is in S[> y], and fo(s) = f^n"1 Σ ^i(s))
^ ί?(2/) This implies ί>(α;) i> p(?/), proving the lemma.

To prove that / is G-invariant let g be in G and n a positive in-
teger. We apply the lemma to a;- g(x), with gx the identity and
gs = gi-ι(j = 2, , n); the result is

p(x - g(x)) = ^-^(α; - #(#) + fjr(aj) - g\x) + . . . + gn~\x) -

where in the last equation we have again applied the lemma. Since
n is arbitrary, this implies p(x — g(x)) ^ 0, so f(x — g(x)) ^ 0. Repeat-
ing the reasoning with g(x) — x in place of x — g(x) yields f(g(x) — x)
^ 0, so f(g(x)) = f(x), and / is G-invariant. The proof of Theorem 1
is complete.

3* Proof of Theorem 2. The proof is by induction. We as-
sume that for some m (1 ^ m < n) there exists a G-invariant positive
linear extension /w_j of f0 to Xm^ (which is surely true for m = 1) and
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we show that fm^ has a G-invariant positive linear extension fm to

Xm.
Suppose first that hypothesis ( i ) holds for n = m. Then there

exist sets G — GΛ 3 Gh_t 3 3 G 0 with GQ commutative and Gk acting
on Xm commutatively to within left Gk^ factors (k — 1, 2, , h). By
Theorem 1, (using its hypothesis (i)) / m _ : can be extended to a Go-
invariant positive linear functional on Xm. Again by Theorem 1 (using
its hypothesis (ii)) / m - 1 can be extended to a G^invariant positive
linear functional on Xm, and thus by successive applications of Theo-
rem 1 we obtain a G-invariant positive linear extension of / m - 1 to Xm.

Suppose next that hypothesis (ii) holds. In order to extend /m_x

to Xm we need the following lemma.

LEMMA. Let G be a set of operators on a partially ordered linear
space XlΛ Let Xo be a G-invariant subspace of Xu such that for
each x in Xlf there is a g in G such that g(x) e Xo. Assume that
for each x in Xu and for each gu g2, g3 in G such that g^x) and
g2g3(x) are in XQJ there exist hλ and h2 in G such that h^g^g^x) —
h2g2gzgι{x). Then every G-invariant linear functional fo:XQ—*R has
a unique G-invariant linear extension to Xt.

Proof. Let x be in X1 and let gu g2 be members of G such that
gx(x) and g2(x) are both in XQ. By hypothesis there are members hιy h2

of G such that h^^^x) = h^^^x). Then

Moan)) = foihg^Ax)) - MKg^x)) = fQ{g2{χ)).

Thus fQ(g(x)) has a common value for all g in G such that g(x) e Xo

We denote this common value by fλ{x). It evidently coincides with
fo(x) if x e Xo.

If x e X1 and g eG, there exist members gl9 g2 of G such that
gx{x) and g2g(x) are in Xo, and there exist hu h2 in G such that h
= h2g2ggx(x). Then

fi(g(χ)) = fo(h1g1g2g(χ))

so f1 is G-invariant.
Let xt and x2 be in Xlf and let gu g2 be members of G such that

g1x1 and #2#2 are in Xo. There are members hu h2 of G such that
^i#i#2^i = h2g2g1x1. Then, by the G-invariance of Xo and f0,
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ιΰz[Xι + X2])

Since obviously f^ax) = af^x) for all real α, / is linear. If /{ and
f" are two G-invariant extensions of f0 and x e Xu then with g e G
such that g(x) e XQ we have

fί(x) = f'M*)) - /o(flr(»)) = /ί'fo(a)) - f['{x) ,

so the extension is unique and the proof of the lemma is complete.
By this lemma, fm-ι:Xm-ι~+R has a unique G-invariant linear

extension fm to I m . If a e Xm and x >̂ 0, and # e G is such that
g(x) 6 X ^ , then 0(3) ^ 0, so /m(α?) = fm^(g(x)) ^ 0.

By use of these two processes we obtain successively G-invariant
positive linear functionals /0, flf f2, •••,/» being defined on Xn and
coinciding with fn_x on Jw_, for all of the sets Xn(n < n). We define
f(x) to be the common value of fn(x) for all n such that xe Xn. This
clearly is the extension sought.

REMARK. In hypothesis (i) of Theorem 2 the assumption that G
is left-solvable over Xn can be replaced by the weaker assumption:

(3.1) There is an infinite ascending sequence of sets GQQG^

• g G w £ such that Go is commutative, each Gk(k = 1, 2, 3, •)
acts on Xn commutatively to within left GA;_1-factors, and Û G* = G.

We can prove the extension theorem for such a G as follows.
Let X* be the space of all linear functionals X—+R equipped with
the topology of pointwise convergence (the weakest topology in which
the functionals induced on X* by X are all continuous). One can
easily show that the functionals in X* which are positive and which
extend f0 on S form a compact (convex) subset, F, of X*. For each
i, the set of functionals in F invariant under the action of G{ is a
closed subset Fif and by Theorem 1 the sets Fi are all nonempty.

Hence F^ = fϊ Ft is nonempty, and any functional / e F w is a positive
extension of f0 on S which is actually G-invariant. The fact that we
had a countable sequence of subsets is irrelevant to this argument—
any well-ordered ascending family would do.

4* Bounded invariant functionals* In the literature there are
theorems generalizing the Hahn-Banach theorem so as to obtain in-
variant extension, as Theorem 2 generalized the Riesz theorem. As
a first consequence of Theorem 2 we give such a result.

In the following theorem we assume that X is a real linear space
and G a semigroup of linear transformations of X into itself, contain-
ing the identity. We also assume
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(4.1) (i) p is a positively homogeneous subadditive functional on
X (i.e., if x, y e X and a ^ 0 then p(ax) = ap(x) and p(x + y) ^ p(x)

(ii) There is a real number b such that to each a; in I and
each ε > 0 there corresponds an element gε,x of G such that for all
g in G,

This condition is clearly satisfied if
(4.2) p(g(x))^bp(x)

for all g in G and all a? in X.

THEOREM 3. Let X be a real linear space and G a semigroup
of transformations acting on X commutatίvely to within left G-
factors. Let Xt and SQXί be G-invariant subspaces such that for
each x in X there is a g in G for which g(x) e X19 and such that G
is left-solvable over Xlt Let fQ: S—+R be a G-invariant linear func-
tional satisfying fo(s) ^ p(s) for all s in S, where p satisfies (4.1).
Then /o has a G-invariant linear extension f: X—+ R such that

f(x) <̂  bp(x) for all x in X .

Proof. Corresponding to each g in G we define a transformation
g': X x R — X x R by setting

0'(a, V) = (0(«), y)(xeX,yeR) .

The set G' of all such transformations acts on X x R commutatively
to within left G'-factors, and is left-solvable over Xx x R.

We partially order X x R by defining (x, y) Ξ> (0, 0) to mean that
there exists a 7 in G such that p(gy(x)) ^ y for all # in G. If (#, 7/)
^ (0, 0) and (x, y) ^ (0, 0), there exist 7 and 7 in G such that p(gy(x))
^ y and p(gϊ(x)) ^ y ίor g in G. There exist h, k in G such that
hyy(x) = kjy(x), whence for all g in G we find

p(ghyϊ[x + £]) = p(gkyy(x)) + p(ghyy(x)) <^ y + y ,

and so (# + », y + ^) ^ (0, 0). Likewise (ax, ay) ^ (0, 0) if a >̂ 0 and
(a;, 1/) ^ (0, 0), so the elements satisfying (x, y) ^ (0, 0) satisfy the
standard requirements for a positive cone in X x R.

If (a, 2/) ^ (0, 0) and ^ e G , by hypothesis there is a 7 in G such
that p(gy(x)) ^ 2/ for all g in G. There are elements h, k of G such
that hygx(x) — kgcf(x). Then for all # in G we have
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so g[(x, y) — (#i(#), y) ^ (0, 0), and g[ is order preserving on X x R.
Let St = S x R, and on St define /x by setting /x(s, y) = y — fo(s)

(se S,y eR). The set Si is obviously G'-invariant, and Λ is linear
and G'-invariant on Si. Also, if (s, T/) G SI and (s, ?/) ;> (0, 0), then for
some 7 in G we have p(gy(s)) ^ y for all # in G, in particular when
<7 is the identity. Then

/o(s) = /o(7(β)) ^ p(7(s)) ^ y ,

so /i(s, 2/) ^ 0, and fx is a positive linear functional on S.
Finally, if (x, y) e X x R there is an sλ in Si such that sλ ^ (a;, ?/).

For sx we choose (0,1 + y + 6p( — $)). This is in Si, and if we take
7 to be the element glt_x of (4.1ii) we see that

i-x + 01-v + [l + y + bp(-x)]) ^ (0, 0).

Now, by Theorem 2, fι has a G'-invariant positive linear extension
/ ' to X x R. Since / ' is linear on X x R it can be represented in
the form f'(x, y) = ay — /(&), where aeR and / is a linear functional
on X. Since (0,1) 6 Sίy

a = al - /(0) = /'(0,1) - Λ(0,1)

- 1 - /0(0) - 1.

If x e X and ^ e G, then since / ' is G'-invariant

f{g(χ)) = -

= -f'(χ,0)

and / is G-invariant.
If x e X and e > 0, by (4.1) we have for all g in G

ε ^ p(ggε>x(x)) ,

so (B, 6p(x) + ε) ;> 0. Since / ' is positive,

0 ^ /'(a?, &p(a?) + ε) - bp(x) + ε - f(x) .

Since ε is arbitrary, f(x) ^ bp{x).

REMARK 1. In the most important case, in which p{x) + p{ — x)
> 0 for some x, the freedom of b to be any real number is rather
illusory. For with the / of the conclusion, we have 0 = f(x) + f( — x)
<; b[p(x) + p{ — %)], so b >̂ 0. Furthermore, if b < 1 the only / satisfy-
ing the conditions of the conclusion is / = 0. For suppose 0 ^ b < 1;
let x be in X and ε > 0. By repeated use of (4.1) we can find a
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sequence g19 g2, g3, of members of G such tha t

3>(&(aO) ^ bp(x) + ε/4 ,

n-i g&)) ^ bp(gn^gn_2 gx{x)) + ε/2n+ί(n = 2, 3, . . ) . Then

= f(9n9n-i

^ bp(gn9n~i

ε(2-2

By choosing a large n we find f(x) <̂  ε, whence f(x) ^ 0. Likewise
f(-x) ^ 0, so f(x) = 0 for all x.

REMARK 2. This corollary generalizes the principal result in a
paper by Agnew and Morse [1], and also generalizes and sharpens
two of the corollaries in a paper by Klee [5]

5* An extension of the Banach limit* We now use Theorem
2 to show that an extension of the classical Banach limit can be de-
fined for a large class of sequences of numbers, including all those
that are bounded and many that are not. Let X* be the space of
all sequences of real numbers. On X* we define linear transforma-
tions T, H and Ir (r — 1, 2, 3, •) as follows. T is the translation
operation defined for x = (xu x2, •) by

(5.1) T(x) = (x2, x39 , xn+1, •).
H is the Holder-mean operator,

(5.2) H(x) = (xlf [x, + ajJ/2, ...,[Xι+ ... + xn]/n, . . . ) .
Ir is the r-fold iteration operation, each member of the sequence being
repeated r times; thus

(5.3) I2(x) = (xlf x l 9 x 2 , x 2 , x39 x 3 9 •).
It is clearly hopeless to try to define an extension of the ordinary

limit to all of X*. We shall consider several subspaces:

Xo is the space of all convergent sequences with limit 0,
Xc is the space of all convergent sequences,
Xh is the space of all bounded sequences.
For each positive integer k, Xk is the space of all x in X* such

that HkxeXb.
X0{n) i s t h e s e t of a l l x — (xί9 x 2 , •) i n X * s u c h t h a t \xn\ — o{n).

x - xoin) n [ u Xk].

Clearly Xo c Xc c Xh c I c X*. Also, T, H and the Ir all map Xo

into itself, so if we define two sequences to be equivalent if their
difference is in Xo, the operations T, H and Ir extend uniquely to
Γ* = X*/Xo. We also define Yb = X6/X0, etc. Clearly Yc and Yb are
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invariant under T7, H and the Irf and Yk is invariant under H.
We define y ;> 0 for y eY* to mean that there is a sequence x —

(xl9 x2, •) in the class y such that x{ ^ 0 for all i.
Let now x be such that \xn\ = o(n). Given any ε > 0, there is

an nΫ such that \xn\ <εn if W>Ή/, so
(5.4) I fo + + xn)/n I < (a?! + + αn,)/w + efa + l)/2 < εw

provided that n is large enough. Hence X0{n) is invariant under H. It
is clearly invariant under T.

With the same notation we readily compute that for r = 1, 2, 3,
(5.5) l-IrT(x) = T^TI^x).
Let us write

2' - TH(x)

If for each positive integer n we define h, k by n = hr — k (0 ^
k < r), the w-th terms of 2' and 2" are respectively

s'n = xj(n + 1) - (a?i + + xn+1)/n(n + 1) ,

< = (k/n)[xh - (x, + +

and these tend to 0 if | xn \ — o(ri). By repeated application of this
result, we see that for every k the sequences THk(x) — HkT{x) and
IrH

k(x) — HkIr(x) have limits 0. In particular, if Hk{x) belongs to
Xh, so do HkT(x) and HkIr(x); so iJ, T and the Ir all map Xk n I o ( . ,
into itself. Also, if we denote by G the semigroup generated by H, T
and the Ir and define Go to be {1, Γ, Γ2, •••}, we see that G acts on
Y0{n) commutatively to within left G0-factors, and Yo{n), Y, Yb and Yc

are all G-invariant.
For each s in Yc let /0(s) be the common value of limn£% for all

sequences x representing s. We apply Theorem 2 with X, Xo, Xly X2

replaced by Y, Yc, Yb, Y respectively, and obtain a positive linear
functional f^.Y-^R that is invariant under T,H and all the Ir.
This defines a functional on X, which we also call fu by setting fλ(x)
equal to f^y) where y is the member of Y that contains x.

It is possible to extend this still further. It can be shown that
each Xk is invariant under T as well as under H, and that if xe Xk

and N ^ k then

HNTx - THNxeXQ .

Hence for each k the semigroup generated by T and H is left solva-
ble over Yk, since if A and B are in the semigroup and xeXk,

HkABx - HkBAx e Xo .

By Theorem 2, the functional lim can be extended from Yc to be linear,
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positive and T- and H- invariant on U*ϊ*, hence (as above) on [}kXk.
The details of the proof are too lengthy to justify publication in this
Journal, but the authors undertake to furnish a duplicated copy of
the proof in full detail to any one who requests one within a reason-
able number of years.

We have thus attained the following theorem.

THEOREM 4. On the space U Xk of all sequences x — (xu x2, •)
fc=o

of real numbers such that for some nonnegative integer k the sequence
Hkx of k-fold iterated Holder means is bounded, there exists a posi-
tive linear functional f1 such that ft(x) is the limit of the sequence
Hkx whenever the latter exists. It also has the invariance properties

(5.6) for all x in U kXh, fι(hx) = fι(x) for all h in the semigroup
generated by H and T;

(5.7) for all x = (xu x2, •) in U kXk such that \ xn \ = o(n), fλ(gx)
= fi(χ) for utt 0 in the semigroup generated by H, T and the
Jr(r = 1,2, 3, . - . ) .

6* Invariant measures* In topological dynamics the existence
of an invariant measure or mean is often an important condition.
(Cf., for example, Chapter VI of the book of Nemytskii and Stepanov
[9]). Suppose that X is a set, G a semigroup of mappings of X into
itself, and μ a measure on a family ^ C of subsets of X (called mea-
surable sets) such that if A e ^ C and geG then g~ι(A)€^. A
measurable set A is invariant if μ(A (J g~\A) — Af] g~~\A)) — 0 for
all g in G; and the measure μ is ergodic if for every invariant mea-
surable subset A of X, either μ{X) = 0 or μ(X - A) = 0. In 1937
Kryloff and Bogoliuboίf [7] proved that if X is a compact metric
space and G a one-parameter group of homeomorphisms of X, there
is a Baire measure μ on X invariant under the action of G and er-
godic (cf. [7], or [9], pp. 486-519). The same result is known when
G is the semigroup (cyclic and commutative) generated by a single
continuous map (not necessarily a homeomorphism) of X into itself. A
recent paper of Schwartz [11] proves the corresponding result for the
case in which G is a topological group and either G or X is connect-
ed. We prove below a theorem containing all of these. First we prove
a theorem on the existence of invariant means in a more general
context. A mean on the space B(X) of bounded real-valued functions
on X is a positive linear functional M on B(X) such that ikΓ(l) = 1.
A mean M is invariant if M(f og) — M(f) for all / in B{X) and g in G.

THEOREM 5. Let X be a set; let G be a semigroup of trans for-
mations on X containing the identity and right-solvable over G itself.
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Then there exists an invariant mean on the space B(X) of bounded
real-valued functions on X.

For each g in G we define a transformation of B(X) into itself
(which we also call g) as follows: g(f) is the function such that
gf(x)=f(g(x))(xeX). Then (gig2)(f) = 0»(0i(/)), since [&(&(/))](&) =
(#i(/))(#2(a0) = f(9i[ffi{x)]) Since G acts right-solvably on itself there
is a sequence G = Gn^2 Gn^ 2 3G 0 with Go commutative and such
that if k is one of the numbers 1, •••,% and gx and g2 are in Gk,
there are members Λ̂  h2 of G ^ such that gtg2h27 — g2g^{ί for all y
in G, in particular for 7 the identity. Then [g^gjtt^x) = [g2gιh^\(x)
for all x in X, whence h2g2gx{f) = h^^^f) for all / in i?(X). This
implies that G is left-solvable over B(X). Now for Xo we choose the
set of constant functions, and for s — c we define M(s) — c. By
Theorem 2, M extends to a G-invariant positive linear functional over
B(X), proving the theorem.

Let us now specialize this by requiring X to be a compact Haus-
dorff space and G to be a semigroup of continuous transformations.
With the assumptions of Theorem 5 there is a G-invariant mean M
on B(X). We restrict M to the space C(X) of functions continuous
on X. By the Riesz representation theorem there is a Baire measure
j M o n l such that for all / in C(X) we have

M(f) = \ f(x)μ(dx) .

Thus we have proved part of the following theorem.

THEOREM 6. Let X be a compact Hausdorff space. Let G be a
semi-group of continuous transformations on X containing the iden-
tity, and such that G is right-solvable over G itself. Then there is
a Baire measure μ on X which is G-invariant and ergodic.

The invariance of μ is a rather immediate consequence of the in-
variance of M. To show that μ can be chosen to be ergodic, in the
dual space of C(X) with the weak* topology we consider the set /
of invariant means. This is convex, and in the weak* topology it is
compact, since it is a closed subset of the unit ball. By the Krein-
Milman theorem, / has at least one extreme point. Let M be such
an extreme point, with corresponding measure μ. If there is an in-
variant set A with

λx = μ(A) > 0 and λ2 = μ(X - A) > 0 ,

then for each Baire set B we define
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μι{B) = μ(B Π A)/λlf μ2(B) = μ{B Π [X - A]/λ2 .

These are invariant measures with μλ(X) = μ2(X) = 1, and μ = λ ^
+ X2μ2. This is impossible since μ is an extreme point of /, so μ is
ergodic.

7* Extension of stochastic processes* In this section we shall
give a nontraditional meaning to the expression "stochastic process",
by permitting ίinitely-additive set-functions to be used as probability
measures. Let Y and T be nonempty sets, and let Σ be an algebra
of subsets of Y. In the space X - Yτ of functions from T to Y we
define J ^ = J^(T, Σ) to be the algebra of subsets of X consisting of
all finite unions of finite intersections of sets of the form {x e X:
xfa) G AJ with tteT and A1 eΣ. The sets belonging to sf will be
called figures. Let P be a nonnegative additive set-function on <s*f
such that P(X) = 1. Then the triple (X, j ^ P) will be called a weak
stochastic process.

A function / on X is δαsed on a subset Γo of T if for every a?
and %' in X such that x(t) = a?'(ί) for all ί e Γ 0 it is also true that

A*) = A*)-
Now suppose that T is an interval [a, b] on the real line. Then

we say that the weak stochastic process (X, j^f(T, Σ), P) is relative-
ly stationary if the following condition holds: whenever tu " ,tkeT
and τ is a real number such that tx — r, , tk — τ are all in ϊ7, and
Ax, , A* are in 2̂ , we have

P{xeX:x(tdeAί9- -,x(tk)eAk}

ixfo - τ)(eAu ...,a?(ί4 - r ) ) e A J .

Our principal theorem on extension of stochastic processes is the fol-
lowing:

THEOREM 7. Let To be an interval and let (Yτ°, S*f(T*, Σ), Po)
be a relatively stationary weak stochastic process. Then there is a
stationary weak process (Yτ, J^(T, Σ), P), where T is the whole real
line, which extends (Yτ°, J^(T0, Σ), Po); that is, for all figures A
based on To, P0(A) = P(A).

Proof. We shall discuss the case in which To is a closed interval
[α, 6]; open or half-open intervals call for only trivial changes.

We first define simple functions: Map Yτ into Yτ° by the restric-
tion map 7Γ, namely if x: T —> Γ, π(x): To —> Y is defined by π(x) = x \ To.
The set of inverse images under π of sets in jy(T 0 , Σ) will be called
SflT.Σ). For Ae J^(TfΣ) with image Aoej^(To, Σ) we define P(A)
= P0(A0). We wish to extend this P to all figures of X. The members



INVARIANT EXTENSIONS OF LINEAR FUNCTIONALS 137

of j#ί(T, Σ) form a proper subclass of the class of all figures j*f{T, Σ);
they are the figures based on subsets of TQ. A simple function is a
function on Yτ having finitely many values, assumed on disjoint sets
belonging to Jϊf(T, Σ). Observe that a simple function is based on
JΓ0 if and only if each of its sets of constancy belongs to J^(T, Σ).
Observe also that there is a one-to-one correspondence between finite-
ly additive measures P on X and positive linear functionals on the
space of simple functions where if P is a measure we denote the cor-
responding functional by I fdP.

Let us define SQ to be the class of simple functions based on T.
Then we define S1 to be the class of simple functions that can be re-
presented as a finite sum fx + + fk in which each fά is a simple
function based on a translate of To. This class Si is clearly invariant
under translations; that is, if we define Uτ(f) by

ίUΛf)](x) = f(θτ(x)) where [θτ(x)](t) = x(t - τ) ,

then for all functions / in St and all real τ, Uτ(f) e Sx.
Let us define So to be the (linear, but not translation-invariant)

space of simple functions based on To, and S the space of all simple

functions. We have defined a linear functional \fdP on So; we wish

to find a translation-invariant extension to S. We first define an
extension to Slf and for this we need a lemma.

LEMMA. If fu , fn are in So, and there exist real numbers
n

τi> •••>*"* such that Σ Uτ.fi ^ 0, then

fi + + fn)dP ^ 0 .

The proof comes fairly directly out of Parthasarathy and Vara-
dahan [10]; we include it for completeness. We proceed by induction;
the case n = 1 is clear. Suppose that the assertion of the lemma
holds for an integer n; we shall prove that it holds for n + 1. As-
sume then that fl9 , fn+1 are in So, rx < τ2 < < τn+1 are reals

%-f 1

and Σ ^ . / i ^ 0. Since fn+1 is based on a subset £ί, , tk of [α, 6],
UτJjn+1 is based on t[ + rn + 1, , tk + τ Λ + 1 . We denote by C+i +
τ%+ii •••>** + Γ

w+i the members of this set (if any) which exceed b +
τ n . The sum UτJγ + + UVnf% is based on a subset Γ* of [α + τu

•• ,6 + r n ] , hence is independent of the values a?(ί»+1 + τn+1), ,
%(tk + "̂n+i). Given any xeX and any set of points ym+1, * ,yk in y
there is an xe X such that x(t) — x(t) on Γ* and x(t'5 + rΛ+1) = ?/,,• for
i = m + l, •••,&. From the first of these equations we see that
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UTjfi(x) = UTjfd(x),j = 1, •• , n . So by the hypothesis of the lemma

UTιMx) + + UτJn(x) + Uΐn+1fn+1(x) ^ 0 .

We define another functional g in X as follows: For each xeX let
g(x) be the least of the (finitely many) values of UTn+ίfn+1(z)f where
z is any member of X such that z(t'j + τn+1) = x(t) + τn+1) for j = 1,
• , m. Then g is based on ί{ + rn + 1, , C + rΛ+1, and is easily seen
to be a simple function.

By the previous inequality,

Σ Uτ.fj(x) + g(x) ^ 0 for all ί c i n l .

If we write this as

Σ UT.fs{x) + [UTJn(x) + ΛΓ(O?)I ^ 0 ,

we notice that the expression in brackets defines a simple function
based on [a + τn9 b + τn], so fn + U^ng is in So. Hence by the in-
duction hypothesis

Σ \fidP + ί [Λ + CΓ-r.flr]dP ^ 0 .
i=i J J

But the difference Urn+1fn+ι(x) - Q{%) is based on [α + τn+lf b + τn+ι]
and is simple, and by definition of g it is nonnegative. Hence fn+1 —
U-.Tn+1g is in So and is ^ 0, so

Finally, both U_Tng and U-Tn+1g are based on [α, b] and are translates
of each other, and the process is relatively stationary on [α, 6], so

Adding this equality and the previous two inequalities, we obtain the
lemma.

By changing sign we can prove that the lemma holds with ^ 0

in place of ^ 0 , hence it holds with = 0 in place of ^ 0 . This implies

that if / € Sx and fl9 • • • , / * are members of So and τlf , τn are real

numbers such that / = UTJ1 + + Uτ fn, the sum Σ xfβP is uni-

quely determined by / and is independent of representation.
We can therefore define a functional L1 on Sλ by the rule
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where the /< are in So. This functional is clearly linear and nonnega-
tive on Sly and is invariant under Uτ for all real τ. By Theorem 1,
Lλ has a nonnegative linear extension L to the space S of all simple
functions, and L is invariant under all Uτ. Hence L defines a weak
stochastic process on YT which is stationary and is an extension of

REMARK. For any given property of stochastic processes, one can
ask whether the extended process guaranteed by Theorem 7 has the
property (or can be required to have the property) if the original one
does. If the space Y of values is a metric space, the notion of
stochastic continuity in measure is very easily adapted to weak sto-
chastic processes and it does extend in the way discussed. As usual,
given any set E in X, we define P*(E) to be the infimum of P(A)
for all sets A in j ^ that contain E. Then the process (X, jzf, P) is
continuous in measure, or stochastically continuous, at a point t0 if

lim P*{x e X: d(x(t), x(Q) > ε} = 0
t-*t0

for each positive ε. Clearly if this property holds for (Yτ°, J^(T 0, Σ), Po)
in Theorem 7 it also holds for (Yτ, J*(T, Σ), P).

A more difficult question is that of countable additivity. It is not
clear whether if the original process, viewed as a measure, is countab-
ly additive we can conclude that the extended one is. We content our-
selves with proving this in a special case.

COROLLARY 5. If in Theorem 7 we require that Y be a locally
compact separable metric space and Σ be the σ -algebra generated by
compact subsets of Y, and if the original measure Po was countably
additive, then so is the extended P.

Proof. To prove the measure countably additive it suffices to
show that if Bl9 B2, are measurable and £χ S J?2 S and Π 7=1Bi = φ
then PBi-+Q (Cf. Loeve [8, p. 89]). (In this case the probability mea-
sure on j^f(TfΣ) extends to a countably additive probability measure
on the σ -algebra in Yτ generated by J^(T, Σ).). For every finite
subset T* of T there is a natural restriction map Yτ —+ Yτ* and we
can think of Yτ* as a finite product of copies of Y, one for each
point in ϊ7*. There is a standard theorem due to Kolmogorov (cf.
Loeve [8, p. 93]) which states that if 7 is a interval on the real line
and if the measures on the spaces F Γ * satisfy certain consistency
conditions (trivially satisfied here) then the extended measure P is
countably additive. The crux of the proof is that in any of the spaces
Yτ% the measure of a set can be approximated arbitrarily closely by
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the measure of a compact set contained in it. Since this is guarante-
ed in this case (the spaces Yτ* are locally compact metric spaces) the
usual proof is valid. This completes the proof of the corollary.

8* Covariances and a theorem of M* Krein* From Theorem
7 we can deduce a generalization of a well-known theorem of M.
Krein on the extension of positive definite functions. We first need
to generalize a known characterization of covariances, given for real
or complex processes in (Doob[4], p. 72). The generalization requires
a somewhat lengthy proof; we here present an abbreviated version,
and undertake to furnish the proof in full detail to any one who re-
quests it in a reasonable number of years.

We use the notation of § 7, and add the following hypotheses.
K is the real field or the complex field, Y is a linear space over K, A
is a linear aggregate of linear functionals λ: Y-+K, and J* is the
set of all linear functionals f:Λ~>K. Σ is the algebra of subsets of
Y generated by the half-spaces {y e Y: RX(y) ^ c] with X e A and c real.

For fixed λ in A and t in T, (X(x(t)): xeX) is a function from X
to K, and its integral and that of | X(x(t)) |2 can be defined by an ob-
vious limit process. We assume that the latter integral is finite; the
former integral then exists, and is denoted by M(t, λ). By standard
arguments the covariance R, whose value at each (tlf t2) in T x T is
the sesquilinear function

R(tlf t2: Xlf λ2) = \ [XMtύ) ~ M(tlf XfliXMt*)) ~ M(tt, X2)]dP ,
JX

exists, and if (tlf XL), •••,(*«, λw) are in T x A the matr ix with the
elements

(8.1) riά = R(tif t- \i9 λy) (i, j = 1, , n)

is nonnegative definite Hermitian. We now state the converse.

THEOREM 8. With the preceding notation, let R: T x T x A x A
—>K be sesquilinear on A x A for each (tlf t2) in T x T; let the ma-
trix with elements (8.1) be nonnegative definite Hermitian; and let
M: T—>A* be a function such that for each t in T there is an x(t)
in X(=YT) such that M(t,X) — X(x(t)) (XeA). Then there is a weak
stochastic process (X, <Ssf(T, Σ), P) with mean value M and covariance
R. Also, if K is the complex field, we can choose P so that

= M(tίf X,)M{t2, X2)[
JX

for all t1912 in T and X19 X2 in A.
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The general case is easily deduced from the case M = 0. We
choose a Hamel base H for A. Then R defines a function on (TxH)
x (T x H) that satisfies the hypotheses of the theorem (Doob [4], p.
72), so there is a Gaussian process on T x H with that function as
covariance. There remains the verification of numerous details to
show that the probability measure on KTxH corresponding to that
Gaussian process can be used to define a weak stochastic process (i.e.,
a finitely additive measure on Λτ) with R as covariance.

Note that in the above situation, if T is the real line and if the
process is stationary, then the covariance R(t1912) depends only on the
difference tι — t2, and can be thought of as a function of one real
variable (whose value at each point is a sesquilinear functional). We
now apply Theorem 7 to prove an extension theorem for such functions.

DEFINITION. Let A be a linear space over K and R*(t) a function
assigning to each real number in the interval (~A, A) (where 0 < A
^ co) a sesquilinear functional Ax A—+ K. Then 22* is positive definite
if for each finite set (tu λx) (ίΛ, λΛ) of elements of [0, A) x A the
matrix with coefficients

R*(U - h; λ4> λ, )

is nonnegative definite Hermitian.

THEOREM 9. If R* is a positive definite function (in the sense
of the above definition) on the interval ( — A, A), then R* extends to
a positive definite function on the real line.

This is an immediate application of Theorems 7 and 8 and the
above remark. If Λ is one dimensional, then "positive definite" in our
sense agrees with the classical definition, so this theorem generalizes
the theorem of Krein on extensions of complex-valued positive definite
functions. We can also show that if R*(t, λx, λ2) is continuous at
t = 0 for all fixed λlf λ2, then the extension is continuous on (—<*>, co)
for all λj and λ2 in A.

The authors take this opportunity to express their thanks to the
referee, who found two incorrect statements and a number of typo-
graphical errors in the manuscript.
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