ON UNICITY OF CAPACITY FUNCTIONS

Akio Osada
ON UNICITY OF CAPACITY FUNCTIONS

Akio Osada

Sario’s capacity function of a closed subset γ of the ideal boundary is known to be unique if γ is of positive capacity. The present paper will determine the number of capacity functions of γ in terms of the Heins harmonic dimension when γ has zero capacity, under the assumption that γ is isolated. This includes the special case where γ is the ideal boundary.

1. Capacity functions. Denote by β the ideal boundary of an open Riemann surface R in the sense of Kerekjártó-Stoïlov. We consider a fixed nonempty closed subset γ ⊆ β which is isolated from δ = β − γ. Throughout this paper D will denote a fixed parametric disk about a fixed point ζ ∈ R with a fixed local parameter z and the uniqueness is always referred to this fixed triple (ζ, D, z). Here we do not exclude the case where γ = β.

For a regular region Ω ⊃ D we denote by γo the part of ∂Ω which is “homologous” to γ. The remainder δo = ∂Ω − γo consists of a finite number of analytic Jordan curves δoj. For a regular exhaustion \{Rn\}n=0 with R0 ⊃ D and nonempty γR0, set γn = γRn and δnj = δRnj. Then there exists a unique function pn ∈ H(Rn − ζ) satisfying

(a) pn|D = log|z − ζ| + hn(z) with hn ∈ H(D) and hn(ζ) = 0,
(b) pn|γn = kn(γ) (const.) and pn|δnj = dnj (const.) so that \[\int_{\gamma_n} *dp_n = 0, \]

which is called a capacity function of γn (Sario [6]).

It is known that kn(γ) increases with n and the limit k(γ) is independent of the choice of \{Rn\}n=0. We call e−k(γ) the capacity of γ and denote it by cap γ. When cap γ > 0, pn converges to a functions pr, which is independent of the choice of the exhaustion (Sario [6]). Even when cap γ = 0, we can also choose a subsequence of \{pn\} which converges to a function pr. Such functions pr will be called capacity functions of γ (Sario [6]). As mentioned above there exists only one capacity function when cap γ > 0.

It is the purpose of this paper to determine the number of capacity functions pr when cap γ = 0.

2. The harmonic dimension of γ. Let R, β, γ and δ be as in 1. Furthermore we suppose that γ is of zero capacity. For a regular region Ω ⊃ D we denote by Vαi components of R − Ω whose derivations are contained in γ and by Wαj the remaining components. Here an ideal boundary component will be called a derivation of Vαi when it is contained in the closure of Vαi in the compactification of R. Here-
after we always choose Ω so large as to make the derivations of $W_\alpha = \bigcup_j W_{\alpha_j}$ contain in δ. Therefore W_α is always a neighborhood of all of δ.

We consider the normal operator $L^{(\alpha)}_i$ with respect to $R - \bar{\Omega}$ associated with the partition $P' = \gamma + \sum_j \delta_j$ of β where δ_j is a component of δ (Ahlfors-Sario [1]).

Let q be a harmonic function in $R - \zeta$. Then q will be called of L_i-type at δ when $q = L^{(\alpha)}_i q$ in W_α for an admissible Ω. It is easy to see that this property depends only on δ, i.e., if $q = L^{(\alpha)}_i q$ in W_α, then $q = L^{(\alpha')}_i q$ in W_α for every admissible Ω'.

We denote by $HP_\Omega(V_\Omega)$ the family of functions u such that u is a positive harmonic function in $V_\Omega = \bigcup_i V_{\alpha_i}$ with boundary values zero at $\gamma_u = \partial V_\alpha$. We may extend u to be identically zero in W_α.

Moreover we consider the following two families of functions. The first family N_α consists of $u \in HP_\Omega(V_\Omega)$ such that $\int_{\partial \Omega} \nu u = 2\pi$ where γ_α is positively oriented with respect to Ω. The second family is the family F of $q \in H(R - \zeta)$ having the following properties:

(c) $q \mid_D = \log |z - \zeta| + h(z)$ with $h \in H(D)$ and $h(\zeta) = 0$,
(d) q is of L_i-type at δ,
(e) q is bounded from below near γ.

In addition to the obvious fact that N_α and F are convex, they are related to each other as follows.

Lemma. There exists a bijective map T of N_α onto F satisfying

(f) $T(\lambda u + (1 - \lambda)v) = \lambda Tu + (1 - \lambda)Tv$ for $u, v \in N_\alpha$, $0 < \lambda < 1$,
(g) $Tu - u$ is bounded in V_α.

For the proof let $u \in N_\alpha$ and denote by L the direct sum of $L^{(\alpha)}_i$ and the Dirichlet operator with respect to D (Sario [5]). Take the singularity function s_u on $(R - \bar{\Omega}) \cup (D - \zeta)$ defined by $s_u = u$ in $R - \bar{\Omega}$ and $s_u = \log |z - \zeta|$ in $D - \zeta$. Since the total flux of s_u is zero, the equation $p - s_u = L(p - s_u)$ has a unique solution p_u on R, up to an additive constant. Normalize p_u so as to satisfy (c) and set $Tu = p_u$. Obviously $Tu \in F$. Since γ is of zero capacity, T is clearly injective. The property in (f) and (g) follows easily from the definition of T.

To see the surjectivity let $q \in F$. We denote by Bq the bounded harmonic function in V_α with the boundary values $q \mid \gamma_\alpha$ at γ_α. Set $u = q - Bq$ in V_α and $u = 0$ in W_α. Since q is of L_i-type at δ and bounded from below near γ, $u \in N_\alpha$. Therefore we have only to show that $q - s_u = L(q - s_u)$ in $(R - \bar{\Omega}) \cup (D - \zeta)$. By the definition of u, $q - u = Bq$ in V_α and $L^{(\alpha)}_i(q - u) = L^{(\alpha)}_i Bq$ in V_α. Furthermore $Bq - L^{(\alpha)}_i q$ is bounded in V_α and vanishes on γ_α. Hence $Bq = L^{(\alpha)}_i q$
in V_α. On the other hand, $L_i^{(q - u)} = L_i^{(q)}$ in W_α. Consequently $q - u = L(q - u)$ also in W_α. Finally it is obvious that the same equality holds in $D - \zeta$.

3. We denote by M_α the set of all minimal function in $HP_i(V_\alpha)$ normalized as $\int_{\partial V}^* du = 2\pi$. Lemma 2 guarantees that the cardinal number of M_α is independent of the choice Ω. Extending Heins' definition (Heins [3]), we call it the harmonic dimension of γ, which we shall denote by d_γ.

4. The number of capacity functions. We are now able to state our main result:

Theorem. Suppose that γ is an isolated closed subset of zero capacity in the ideal boundary of R. If the harmonic dimension of γ is 1, then the capacity function of γ is unique. If the harmonic dimension of γ is greater than 1, there are a continuum of capacity functions of γ.

Denote by C_γ the family of all capacity functions of γ, by c_γ the cardinal number of C_γ and also by ψ the cardinal number of the continuum. Then the statement of our theorem can also be summarized in a single formula as follows:

$$c_\gamma = 1 + (d_\gamma - 1)\psi.$$

5. Before entering the proof we need two lemmas, which will be used to show that $C_\gamma = F$. Let R_n, γ_n and δ_n be as in 1. Set $V_{ni} = V_{R_n i}$ and $W_{nj} = W_{R_n j}$ (see 2). Moreover put $\Omega_{\delta_n} = R - \overline{V}_0 - \overline{W}_n$ with $V_0 = \bigcup_i V_{oi}$ and $W_n = \bigcup_j W_{nj}$.

Lemma. Let $p \in F$. Then there exists a sequence $\{p_n\}_{n=0}^\infty$ with $p_n \in H(\Omega_{\delta_n} - \zeta)$ satisfying

- (h) $p_n | D = \log |z - \zeta| + h_n(z)$ with $h_n \in H(\overline{D})$ and $h_n(\zeta) = 0$,
- (i) $p_n | \gamma_0 = p + k_n$ (const.) and $p_n | \delta_n = d_{ni}$ (const.) with $\int_{\delta_n}^* dp_n = 0$,
- (j) $\{p_n\}$ converges uniformly to p on any compact K with $\overline{K} \subset \Omega_0 = R - \overline{V}_0 - \zeta$.

For the proof construct p_n with (h) and (i) by the linear operator method of Sario [5]. Denote by D_ε a parametric disk about ζ with
radius ε and by a_ε its circumference. We orient a_ε and τ_0 negatively with respect to $\Omega_{Q_0} - \bar{D}_\varepsilon$ and write according to Ahlfors-Sario [1]:

$$A_\varepsilon(p) = \int_{\omega + \varepsilon} p^* dp, \quad B_n(p) = \int_{\omega + \varepsilon} p^* dp, \quad A_\varepsilon(p, q) = \int_{\omega + \varepsilon} p^* dq$$

and

$$B_n(p, q) = \int_{\omega + \varepsilon} p^* dq.$$

For $m > n$ we denote by $D_{n, \varepsilon}(p_m - p_n)$ and $D_n(p_m - p_n)$ Dirichlet integrals of $p_m - p_n$ taken over $\Omega_{Q_0} - \bar{D}_\varepsilon$, and Ω_{Q_n} respectively. Since $B_n(p_n) = 0$, $B_n(p_n, p_m) = 0,$

$$D_{n, \varepsilon}(p_m - p_n) = B_n(p_m) + 2A_\varepsilon(p_n, p_m) - A_\varepsilon(p_n) - A_\varepsilon(p_m).$$

Observing that $B_n(p_m) < 0$ and letting $\varepsilon \to 0$,

$$D_{n, \varepsilon}(p_m - p_n) \leq a_m - a_n$$

where $a_j = \int_{\gamma_0} p^* dp_j + 2\pi k_j$ (j = n, m).

Moreover we construct another sequence $q_n \in H(\Omega_{Q_n} - \zeta)$ satisfying

(h') $q_n |D = \log |z - \zeta| + h'_n(z)$ with $h'_n \in H(\bar{D})$ and $h'_n(\zeta) = 0$,

(i') $q_n |\gamma_0 = p + k'_n$ (const.) and the normal derivative of q_n vanishes on δ_n. By the same way as above we obtain

(3) $D_n(q_m - q_n) \leq b_n - b_m$ where $b_j = \int_{\gamma_0} p^* dq_j + 2\pi k'_j$ (j = n, m) and

(4) $D_n(p_n - q_n) = b_n - a_n$.

From (2), (3) and (4) we see a_n is increasing and b_n is decreasing as n increases and that $a_n \leq b_n$. Therefore $\lim_n a_n$ and $\lim_n b_n$ exist and are finite. In particular it follows from (2) that p_n converges uniformly to p on any compact K with $\bar{K} \subset \Omega_{Q_0}$.

6. The following lemma is easy to see and plays an important role in the proof of our theorem.

Lemma. Let $p \in F$. Then there exist an exhaustion $\{R_n\}_{n=0}^{\infty}$ and a sequence $\{p_n\}_{n=0}^{\infty}$ with $p_n \in H(R_n - \zeta)$ having the properties (h) of Lemma 5 and

(k) $p_n |\gamma_n = p + k_n$ (const.) and $p_n |\delta_n = d_n$ (const.) with

$$\int_{\delta_n} p_n^* dp_n = 0,$$

(1) $\{p_n\}$ converges uniformly to p on any compact K in $R - \zeta$.
Since \(\gamma \) has zero capacity we can see that there exists an Evans potential \(e_0 \) for \(\gamma \), i.e., a function \(e_0 \in H(R - \zeta) \) satisfying the following conditions (Nakai [4]):

\[
\begin{align*}
(m) & \quad e_0 | D = \log | z - \zeta | + w(z) \text{ with } w \in H(\bar{D}) \text{ and } w(\zeta) = 0, \\
(n) & \quad e_0 \text{ is of } L_\Gamma \text{-type at } \delta, \\
(o) & \quad \lim_{z \to \delta} e_0(z) = +\infty.
\end{align*}
\]

Needless to say \(e_0 \in F \).

7. Proof of theorem. Consider \(p_\lambda = \lambda e_0 + (1 - \lambda)q \) with a fixed \(q \in F \) and \(0 < \lambda < 1 \). It is clear that \(\lim_{\lambda \to 0} p_\lambda(z) = +\infty \) and \(p_\lambda \in F \). Therefore by Lemma 6 we obtain

\[
(5) \quad \{ p_\lambda \}_0 < \lambda < 1 \subset C_\gamma.
\]

On the other hand, obviously

\[
(6) \quad C_\gamma \subset F.
\]

Moreover observe that \(\lambda \to p_\lambda \) is injective if \(e_0 \neq q \).

By the approximation theorem of Heins [2], we can see at once that if \(d_\gamma = 1 \), so is the cardinal number of \(F \). It is trivial that the converse is valid. Hence \(c_\gamma = 1 \) if and only if \(d_\gamma = 1 \).

Suppose that \(d_\gamma \geq 2 \). Then there exists a \(q \in F \) with \(q \neq e_0 \). By the injectivity of \(\lambda \to p_\lambda \), \(\psi \leq c_\gamma \). Conversely it follows from (6) that \(c_\gamma \leq \) the cardinal number of \(F \) which is not greater than \(\psi \). Thus \(c_\gamma = \psi \). In either case, since \(d_\gamma \leq \psi \), we have \(c_\gamma = 1 + (d_\gamma - 1)\psi \).

The author would like to express his warmest thanks to Professor Nakai for his kind guidance. He is also grateful for the valuable comments of the referee.

References

Received October 2, 1967 and in revised form February 27, 1968. This is a part of the author’s thesis for the partial satisfaction of the degree Master of Science at Nagoya University.

MATHEMATICAL INSTITUTE

NAGOYA UNIVERSITY
Patrick Robert Ahern, *On the geometry of the unit ball in the space of real annihilating measures* ... 1
Kirby Alan Baker, *Equational classes of modular lattices* 9
E. F. Beckenbach and Gerald Andrew Hutchison, *Meromorphic minimal surfaces* .. 17
Tae Ho Choe, *Intrinsic topologies in a topological lattice* 49
John Bligh Conway, *A theorem on sequential convergence of measures and some applications* .. 53
Roger Cuppens, *On the decomposition of infinitely divisible probability laws without normal factor* .. 61
Lynn Harry Erbe, *Nonoscillatory solutions of second order nonlinear differential equations* .. 77
Burton I. Fein, *The Schur index for projective representations of finite groups* ... 87
Stanley P. Gudder, *A note on proposition observables* 101
Kenneth Kapp, *On Croisot’s theory of decompositions* 105
Robert P. Kaufman, *Gap series and an example to Malliavin’s theorem* 117
E. J. McShane, Robert Breckenridge Warfield, Jr. and V. M. Warfield, *Invariant extensions of linear functionals, with applications to measures and stochastic processes* 121
Marvin Victor Mielke, *Rearrangement of spherical modifications* 143
Akio Osada, *On unicity of capacity functions* 151
Donald Steven Passman, *Some 5/2 transitive permutation groups* 157
Harold L. Peterson, Jr., *Regular and irregular measures on groups and dyadic spaces* ... 173
Habib Salehi, *On interpolation of q-variate stationary stochastic processes* .. 183
Michael Samuel Skaff, *Vector valued Orlicz spaces generalized* *N*-functions. I ... 193
Thomas Paul Whaley, *Algebras satisfying the descending chain condition for subalgebras* ... 217
G. K. White, *On subgroups of fixed index* .. 225
Martin Michael Zuckerman, *A unifying condition for implications among the axioms of choice for finite sets* 233