SOME 5/2 TRANSITIVE PERMUTATION GROUPS

DONALD STEVEN PASSMAN
SOME 5/2 TRANSITIVE PERMUTATION GROUPS

D. S. PASSMAN

In this paper we classify those 5/2-transitive permutation groups \(\mathcal{G} \) such that \(\mathcal{G} \) is not a Zassenhaus group and such that the stabilizer of a point in \(\mathcal{G} \) is solvable. We show in fact that to within a possible finite number of exceptions \(\mathcal{G} \) is a 2-dimensional projective group.

If \(p \) is a prime we let \(\Gamma(p^n) \) denote the set of all functions of the form

\[
x \mapsto \frac{ax^\sigma + b}{cx^t + d}
\]

where \(a, b, c, d \in GF(p^n), ad - bc \neq 0 \) and \(\sigma \) is a field automorphism. These functions permute the set \(GF(p^n) \cup \{\infty\} \) and \(\Gamma(p^n) \) is triply transitive. Moreover \(\Gamma(p^n)_\infty = S(p^n) \), the group of semilinear transformations on \(GF(p^n) \). Let \(\bar{\Gamma}(p^n) \) denote the subgroup of \(\Gamma(p^n) \) consisting of those functions of the form

\[
x \mapsto \frac{ax + b}{cx + d}
\]

with \(ad - bc \) a nonzero square in \(GF(p^n) \). Thus \(\bar{\Gamma}(p^n) \cong PSL(2, p^n) \).

Let \(\mathcal{G} \) be a permutation group on \(GF(p^n) \cup \{\infty\} \) with \(\mathcal{G} > \Gamma(p^n) \). Since \(\bar{\Gamma}(p^n) \) is doubly transitive so is \(\mathcal{G} \). Now \(\Gamma(p^n) / \bar{\Gamma}(p^n) \) is abelian so \(\mathcal{G} \) is normal in \(\Gamma(p^n) \). Hence \(\mathcal{G} \triangleleft \Gamma(p^n) \). Since a nonidentity normal subgroup of a transitive group is half-transitive we see that \(\mathcal{G} \) is half-transitive on \(GF(p^n)^t \) and hence \(\mathcal{G} \) is 5/2-transitive. It is an easy matter to decide which group \(\mathcal{G} \) with \(\Gamma(p^n) \supseteq \mathcal{G} > \bar{\Gamma}(p^n) \) are Zassenhaus groups. If \(p = 2 \), there are none while if \(p > 2 \), we must have \([\mathcal{G} : \bar{\Gamma}(p^n)] = 2\). In this latter case, there is one possibility for \(n \) odd and two for \(n \) even. The main result here is:

Theorem. Let \(\mathcal{G} \) be a 5/2-transitive group which is not a Zassenhaus group. Suppose that the stabilizer of a point is solvable. Then modulo a possible finite number of exceptions we have, with suitable identification, \(\Gamma(p^n) \supseteq \mathcal{G} > \bar{\Gamma}(p^n) \) for some \(p^n \).

The question of the possible exceptions will be discussed briefly in \(\S \, 3 \). We use here the notation of [4]. Thus we have certain linear groups \(T(p^n) \) and \(T_6(p^n) \) and certain permutation groups \(S(p^n) \)
and \(S_3(p^n) \). These play a special role in the classification of solvable 3/2-transitive permutation groups.

1. Lemmas. The lemmas here are variants of known results, the first two from [1] and the second two from [9]. We use the following notation and assumptions:

- \(\mathcal{G} \) is a doubly transitive permutation group of degree \(1 + m \).
- \(\mathcal{G} \) and \(0 \) are two points.
- \(\mathcal{D} = \mathcal{G}_0, \quad \mathcal{H} = \mathcal{G}_m = \mathcal{D}_0 \)
- \(T \in \mathcal{G} \) is an involution with \(T = (0 \infty) \cdots \).

The above implies that \(T \) normalizes \(\mathcal{H} \) and \(\mathcal{H} = \mathcal{D} \cap \mathcal{D}' \).

In the following we use the usual character theory notation.

Lemma 1.1. Let \(\alpha \neq 1_\mathcal{D} \) be a linear character of \(\mathcal{D} \) with \(\alpha(H^T) = \alpha(H) \) for all \(H \in \mathcal{H} \). Then

(i) If \(D \in \mathcal{D} \) then \(\alpha^*(D) = \alpha(D)1_\mathcal{D}(D) \).

(ii) \(\alpha^* = \chi_1 + \chi_2 \) where \(\chi_1 \) and \(\chi_2 \) are distinct irreducible non-principal characters of \(\mathcal{G} \).

Proof. We show first that if \(A, B \in \mathcal{D} \) with \(A = B^D \) then \(\alpha(A) = \alpha(B) \). This is clear if \(G \in \mathcal{D} \) so we assume that \(G \in \mathcal{D} \). From \(\mathcal{G} = \mathcal{D} \cup \mathcal{D}T\mathcal{D} \) we have \(G = DTE \) with \(D, E \in \mathcal{D} \). Then

\[
A^D = B^D \in \mathcal{D} \cap \mathcal{D}' = \mathcal{H}
\]

so by assumption \(\alpha(B^D) = \alpha(B^D) \). Thus \(\alpha(A) = \alpha(A^D) = \alpha(A^D) = \alpha(B^D) = \alpha(B) \) and this fact follows.

Let \(D \in \mathcal{D} \). Then by definition and the above we have

\[
\alpha^*(D) = |\mathcal{D}||^{-1} \sum_{g \in \mathcal{G}} \alpha_0(D^g) = \alpha(D) |\mathcal{D}||^{-1} \sum_{g \in \mathcal{G}} 1_\mathcal{D}(D^g) = \alpha(D)1_\mathcal{D}(D)
\]

and (i) follows.

We now compute the norm \(|\alpha^*, \alpha^*|_\mathcal{G} \) using Frobenius reciprocity and the fact that \(\alpha \) is linear so \(\alpha \alpha = 1_\mathcal{D} \). We have

\[
[\alpha^*, \alpha^*]_\mathcal{G} = [\alpha, \alpha^* | \mathcal{D}]_\mathcal{D} = [\alpha, \alpha(1_\mathcal{D}) | \mathcal{D}]_\mathcal{D} = [\alpha, 1_\mathcal{D} | \mathcal{D}]_\mathcal{D} = [1_\mathcal{D}, 1_\mathcal{D}]_\mathcal{D} = 2.
\]

Thus we must have \(\alpha^* = \chi_1 + \chi_2 \) with \(\chi_1 \) and \(\chi_2 \) distinct irreducible characters of \(\mathcal{G} \). Now \([\alpha^*, 1_\mathcal{G}]_\mathcal{G} = [\alpha, 1_\mathcal{G}]_\mathcal{D} = [\alpha, 1_\mathcal{D}]_\mathcal{D} = 0 \) and hence both \(\chi_1 \) and \(\chi_2 \) are nonprincipal. This proves (ii).
LEMMA 1.2. Let $\mathcal{X} \triangleleft \mathcal{D}$ with \mathcal{D}/\mathcal{X} cyclic. Suppose that \mathcal{X} contains all elements $D \in \mathcal{D}$ satisfying either $D^2 = 1$ or $D^r = D^{-1}$. Suppose further that m is a prime power and T fixes precisely zero or two points. Then there exists $\mathcal{K} \triangleleft \mathcal{G}$ with $\mathcal{K} \cap \mathcal{D} = \mathcal{X}$.

Proof. The result is trivial if $\mathcal{X} = \mathcal{D}$ so we can assume that $\mathcal{X} \neq \mathcal{D}$. Let α be a faithful linear character of \mathcal{D}/\mathcal{X} viewed as one of \mathcal{K}. Let a be a faithful linear character of \mathcal{K} and b a character of \mathcal{D} such that $ab \neq 1$. Then $\alpha = \chi_1 + \chi_2$ where χ_i is an irreducible nonprincipal character. We will prove that either χ_1 or χ_2 is linear. Suppose say χ_1 is linear. Then $1 = [\alpha^*, \chi_1]_0 = [\alpha, \chi_1 | \mathcal{D}]_0$ implies that $\chi_1 | \mathcal{D} = \alpha$. If \mathcal{K} is the kernel of χ_1, then $\mathcal{K} \triangleleft \mathcal{G}$ and $\mathcal{K} \cap \mathcal{D} = \mathcal{X}$, the kernel of α. If either χ_1 or χ_2 is ξ then since $\deg 1_\mathcal{D} = \deg \alpha^* = m + 1$ and $\deg \xi = m$ we would have some χ_i linear and the result would follow. Thus we can assume that χ_1, ξ, χ_1 and χ_2 are all distinct.

Let $\beta = \alpha - 1_\mathcal{D}$. We show now that β^* vanishes on all elements of the form $G = T_1 T_2$ with T_1 and T_2 conjugate to T. We can certainly assume that G is conjugate to an element of \mathcal{D} and hence that $G \in \mathcal{D}$. If $G \in \mathcal{X}$ then by Lemma 2.1 (i), $\alpha^*(G) = \alpha(G)1_\mathcal{D}(G) = 1_\mathcal{D}(G)$ and $\beta^*(G) = 0$. Thus it suffices to show that $G \in \mathcal{X}$. Suppose first that $T_2 \in \mathcal{D}$. Then also $T_1 \in \mathcal{D}$ and since T_1 and T_2 are involutions, we have by assumption $T_1, T_2 \in \mathcal{X}$ so $G = T_1 T_2 \in \mathcal{X}$. Now we suppose that $T_2 \not\in \mathcal{D}$. From $\mathcal{G} = \mathcal{D} \cup \mathcal{D} T \mathcal{D}$ we see that a suitable \mathcal{D} conjugate of T_2 is of the form $T D$ with $D \in \mathcal{D}$. By taking conjugates again we can assume that $G = W T D$ with $G, D \in \mathcal{D}$ and W and $T D$ involutions. Since $(TD)^2 = 1$ we have $D^r = D^{-1}$. Also $E = WT \in \mathcal{D}$ and since T and W are involutions $E^r = E^{-1}$. Hence $E, D \in \mathcal{X}$ so $G = ED \in \mathcal{X}$ and this fact follows.

Let class function γ of \mathcal{G} be defined by $\gamma(G)$ is the number of ordered pairs (T_1, T_2) with T_1 and T_2 conjugate to T and $T_1 T_2 = G$. As is well known, $\gamma(G) = |\mathcal{G}|^{-1} |T^\mathcal{G}| \sum T^\mathcal{G}(T)^2 \chi(G)/\chi(1)$ where the sum runs over all irreducible characters of \mathcal{G}. By the remarks of the preceding paragraph $[\beta^*, \gamma]_0 = 0$. Hence since $1_\mathcal{G}, \chi_1, \chi_2$ and ξ are distinct and $\beta^* = \chi_1 + \chi_2 - 1_\mathcal{G} - \xi$ we have

$$\frac{\chi_2(T)^2}{\chi_2(1)} + \frac{\chi_3(T)^2}{\chi_3(1)} = \frac{1_\mathcal{G}(T)^2}{1_\mathcal{G}(1)} + \frac{\xi(T)^2}{\xi(1)}.$$

Note since T is an involution $\chi(T)$ is a rational integer for all such χ. Now $\xi(1) = m$ and $1_\mathcal{D}(T) = r$, the number of fixed points of T. Since by assumption $r = 0$ or 2, $\xi(T)^2 = (r - 1)^2 = 1$. Hence

$$\chi_1(1)\chi_1(T)^2 + \chi_2(1)\chi_2(T)^2 = \chi_1(1)\chi_2(1)(m + 1)/m.$$
Since \(m \) and \(m + 1 \) are relatively prime and the above left hand side is a rational integer, we conclude that \(m | \chi_1(1)\chi_2(1) \).

Now \(m = p^n \) is a prime power. Since \(\chi_1(1) + \chi_2(1) = m + 1 \) we see that \(p \) cannot divide both \(\chi_1(1) \) and \(\chi_2(1) \) so say \(p | \chi_1(1) \). Then \(m | \chi_1(1)\chi_2(1) \) implies that \(m | \chi_2(1) \) so \(\chi_2(1) \leq m \). From \(\chi_1(1) + \chi_2(1) = m + 1 \) we conclude that \(\chi_1(1) = m \) and \(\chi_2(1) = 1 \). Since \(\chi_1 \) is linear the result follows.

The proof of the next lemma is due to G. Glauberman.

Lemma 1.3. If \(T \) fixes two points the \(|\mathcal{S}| \geq (m - 1)/2 \). If in addition \(\mathcal{S} \) contains an involution fixing more than two points, then \(|\mathcal{S}| > (m - 1)/2 \).

Proof. Let \(\theta = 1^\mathcal{S}_{\mathcal{S}} \) be the permutation character. Then ([3] Th. 3.2) \(\Sigma_{\theta \in \mathcal{S}}\theta(G) = |\mathcal{S}| \) and \(\Sigma_{\theta \in \mathcal{S}}\theta(G^2) = 2 |\mathcal{S}| \). Hence

\[
|\mathcal{S}| = \Sigma_{\theta \in \mathcal{S}}[\theta(G^2) - \theta(G)].
\]

Note that for all \(G \in \mathcal{S} \), \(\theta(G^2) - \theta(G) \geq 0 \) and if \(G \) is conjugate to \(T \) then \(\theta(G^2) - \theta(G) = (m + 1) - 2 = m - 1 \). By considering only conjugates of \(T \) in the above we obtain

\[
|\mathcal{S}| \geq [\mathcal{S} : C_{\mathcal{S}}(T)](m - 1).
\]

Note here that if \(\mathcal{S} \) has an involution \(H \) fixing more than two points, then \(H \) is not conjugate to \(T \) and \(\theta(H^2) - \theta(H) > 0 \). Thus the above inequality is strict.

We have \(|C_{\mathcal{S}}(T)| \geq (m - 1) \) and \(C_{\mathcal{S}}(T) \) permutes the set of points \(\{x, y\} \) fixed by \(T \). Hence since \([C_{\mathcal{S}}(T) : \mathcal{S}_{xy} \cap C_{\mathcal{S}}(T)] \leq 2 \) we have \(|\mathcal{S}_{xy}| \geq (m - 1)/2 \) with strict inequality if involution \(H \) exists. Since \(\mathcal{S} \) and \(\mathcal{S}_{xy} \) are conjugate, the result follows.

Lemma 1.4. Suppose \(\mathcal{D} = \mathcal{S} \mathcal{B} \) where \(\mathcal{B} \) is a regular normal abelian subgroup of \(\mathcal{D} \). We identify the set of points being permuted with \(\mathcal{B} \cup \{\infty\} \) and use additive notation in \(\mathcal{B} \). Then every element of \(\mathcal{D} \) can be written as \(D = \begin{pmatrix} x \\ f(x) \end{pmatrix} \) with \(\begin{pmatrix} x \\ \alpha(x) \end{pmatrix} \in \mathcal{S} \) and \(b \in \mathcal{B} \).

Let \(T = \begin{pmatrix} x \\ f(x) \end{pmatrix} \) and assume that \(T \) commutes with the permutation \(\begin{pmatrix} x \\ -x \end{pmatrix} \). Then we have

(i) \(\mathcal{S} = \mathcal{D} \cup \mathcal{D}T\mathcal{B} = \mathcal{D} \cup \mathcal{B}T\mathcal{D} \).

(ii) For each \(a \in \mathcal{B} \), there exists a unique \(\begin{pmatrix} x \\ \alpha(x) \end{pmatrix} \in \mathcal{S} \) with

\[
f(f(x) + a) = f(a(x) - a) + f(a).
\]

(iii) Let \(\alpha \) be a subgroup of \(\mathcal{S} \) normalized by \(T \) and containing
all the \(\left(\begin{array}{c} x \\ \alpha(x) \end{array} \right) \) elements which occur above. Then \(\mathfrak{S} = \langle \mathfrak{S}, \mathfrak{B}, T \rangle \) is doubly transitive with \(\mathfrak{S}_\infty = \mathfrak{S} \).

(iv) If \(\left(\begin{array}{c} x \\ -x \end{array} \right) \in \mathfrak{S} \) then \(T \) acts on the orbits of \(\mathfrak{S} \) on \(\mathfrak{B} \).

Proof. Now \(\mathfrak{S} = \mathfrak{S} \cup \mathfrak{S} T \mathfrak{B} \) and \(\mathfrak{D} = \mathfrak{S} \mathfrak{B} = \mathfrak{B} \mathfrak{S} \). Since \(T \) normalizes \(\mathfrak{S} \) we have \(T \mathfrak{S} \mathfrak{B} = \mathfrak{S} T \mathfrak{B} \) and \(\mathfrak{D} T = \mathfrak{B} \mathfrak{S} T = \mathfrak{B} \mathfrak{T} \mathfrak{B} \) so (i) clearly follows.

Let \(V \in \mathfrak{B}^* \) be the permutation \(V = \left(\begin{array}{c} x \\ x + a \end{array} \right) \). Then \(TVT \in \mathfrak{S} \) and \((\infty)TVT = (a)T \neq \infty \). Thus \(TVT \in \mathfrak{D} T \mathfrak{B} \) and hence

\[
\left(\begin{array}{c} x \\ f(x) \end{array} \right) \left(\begin{array}{c} x \\ x + a \end{array} \right) \left(\begin{array}{c} x \\ f(x) \end{array} \right) = \left(\begin{array}{c} x \\ \alpha(x) + b \end{array} \right) \left(\begin{array}{c} x \\ x + c \end{array} \right).
\]

This is equivalent to

\[f(f(x) + a) = f(\alpha(x) + b) + c. \]

Note that \(\left(\begin{array}{c} x \\ \alpha(x) \end{array} \right) \in \mathfrak{S} \) and \(b, c \in \mathfrak{B} \). With \(x = \infty \) in the above we obtain \(c = f(a) \). Then \(x = 0 \) yields \(f(b) = -f(a) \) and since \(f^2 = 1 \), \(b = f(-f(a)) \). Now by assumption \(T \) commutes with \(\left(\begin{array}{c} x \\ -x \end{array} \right) \) so \(f(-x) = -f(x) \) and \(b = -f^2(a) = -a \). Since \(\left(\begin{array}{c} x \\ \alpha(x) \end{array} \right) \in \mathfrak{S} \) is now clearly unique, we have (ii).

By definition of \(\mathfrak{S} \) we have \(T \mathfrak{B} T = \mathfrak{S} \mathfrak{B} \mathfrak{T} \mathfrak{B} \) and since \(T \) normalizes \(\mathfrak{S}, \mathfrak{G} = \mathfrak{S} \mathfrak{B} \cup \mathfrak{S} \mathfrak{T} \mathfrak{B} \) is a group. Since \(\mathfrak{G} \supseteq \langle \mathfrak{B}, T \rangle, \mathfrak{G} \) is doubly transitive. This clearly yields (iii).

Finally set \(x = -f(a) \) in the formula of part (ii). Since \(f(x) = -a \) we obtain \(\alpha(-f(a)) = a \) or \(-\alpha(f(a)) = a \). Since \(\left(\begin{array}{c} x \\ \alpha(x) \end{array} \right) \in \mathfrak{S}, a \) and \(f(a) \) are in the same orbit of \(\mathfrak{S} \). This completes the proof of this result.

2. 5/2-transitive groups. In this section we consider the transitive extensions of the infinite families of solvable 3/2-transitive permutation groups. We use the following notation and assumptions:

\(\mathfrak{G} \) is a 5/2-transitive permutation group of degree \(1 + m \)

\(\mathfrak{G} \) is not a Zassenhaus group

\(\infty \) and \(0 \) are two points

\(\mathfrak{D} = \mathfrak{G}_\infty, \mathfrak{S} = \mathfrak{G}_\infty = \mathfrak{D}_\infty, \mathfrak{D} \) is solvable.

Thus \(\mathfrak{D} \) is a 3/2-transitive permutation group which is not a Frobenius group. By Theorem 10.4 of [8] \(\mathfrak{D} \) is primitive and hence \(\mathfrak{G} \) is doubly primitive. Since \(\mathfrak{D} \) is solvable it has a regular normal elementary abelian \(p \)-group \(\mathfrak{B} \). Thus \(\mathfrak{D} = \mathfrak{B} \mathfrak{G} \) and \(m \) is a power of \(p \).
Lemma 2.1. Let $\mathfrak{S} \triangleleft \mathfrak{G}$ with $\mathfrak{S} \neq \langle 1 \rangle$. Then \mathfrak{S} is doubly transitive and has no regular normal subgroup.

Proof. We show first that \mathfrak{G} has no regular normal subgroup. Suppose by way of contradiction that \mathfrak{S} is such a group. Since \mathfrak{G} is doubly transitive \mathfrak{S} is an elementary abelian q-group for some prime q. Then $\mathfrak{S}/\mathfrak{S}$ is sharply 2-transitive so since \mathfrak{S} is an elementary abelian p-group it follows that \mathfrak{S} is cyclic of order p and $p + 1 = |L|$. Now \mathfrak{S} acts faithfully on $\mathfrak{S}/\mathfrak{S}$ and hence \mathfrak{S} acts semiregularly on $\mathfrak{S}/\mathfrak{S}$. Thus $\mathfrak{S} = \mathfrak{S}/\mathfrak{S}$ is a Frobenius group, a contradiction.

Now let $\mathfrak{S} \triangleleft \mathfrak{G}$ with $\mathfrak{S} \neq \langle 1 \rangle$. Since \mathfrak{S} cannot be regular and \mathfrak{G} is doubly primitive, it follows that \mathfrak{S} is doubly transitive. If \mathfrak{S} is a regular normal subgroup of \mathfrak{G}, then \mathfrak{S} is abelian. This implies easily that \mathfrak{S} is the unique minimal normal subgroup of \mathfrak{G} so $\mathfrak{S} \triangleleft \mathfrak{G}$, a contradiction.

The following is a restatement of Proposition 3.3 of [5].

Lemma 2.2. Let $\mathfrak{S} \subseteq T(p^n)$ and suppose \mathfrak{S} acts 1/2-transitively but not semiregularly on $GF(p^n)$. Set $\hat{\mathfrak{S}} = \{H \in \mathfrak{S} | H = ax\}$ so that $\hat{\mathfrak{S}}$ is isomorphic to a multiplicative subgroup of $GF(p^n)$. If $|\hat{\mathfrak{S}}| = k$, then:

(i) Each $\hat{\mathfrak{S}}$ is cyclic of order k and $k | n$.

(ii) $\hat{\mathfrak{S}} \supseteq \{ax | a = b^{i \cdot \sigma}, b \in GF(p^n)\}$ where σ is a field automorphism of order k.

(iii) $C_\mathfrak{S}(\hat{\mathfrak{S}}) = \hat{\mathfrak{S}}$ except for $p^n = 3^2$, $|\hat{\mathfrak{S}}| = 8$.

(iv) $\hat{\mathfrak{S}}$ is characteristic and self centralizing in \mathfrak{S}.

Lemma 2.3. Let $p > 2$ and consider $T(p^n)$ as a subgroup of $\text{Sym}(GF(p^n))$. Then $T(p^n) \not\subseteq \text{Alt}(GF(p^n))$. Moreover we have the following:

(i) If a generates the multiplicative group $GF(p^n)^*$, then $(\frac{x}{ax}) \in \text{Alt}(GF(p^n))$.

(ii) If n is even and σ is a field automorphism of order n, then $(\frac{x}{x^\sigma}) \in \text{Alt}(GF(p^n))$ if and only if $p \equiv 1$ modulo 4.

(iii) If n is even, then $(\frac{x}{-x}) \in \text{Alt}(GF(p^n))$.

Proof. The group generated by $(\frac{x}{ax})$ acts regularly on $GF(p^n)^*$ and hence $(\frac{x}{ax})$ is a $(p^n - 1)$-cycle. Since $p > 2$, $p^n - 1$ is even and hence $(\frac{x}{ax})$ is an odd permutation. This also yields the contention that $T(p^n) \not\subseteq \text{Alt}(GF(p^n))$.
(ii) Let q be an integer and suppose that for some $r \geq 1$, $q^{2r-1} \equiv \pm 1 \mod 2^{r+1}$. Then $q^{2r-1} = 1 + \lambda 2^{r+1}$.

$$q^{2r} = (q^{2r-1})^2 = (1 + \lambda 2^{r+1})^2 = 1 + \lambda 2^{r+2} + \lambda 2^{2r+2}.$$

Since $r \geq 1$, $2r + 2 \geq r + 2$ and hence $q^{2r} \equiv 1 \mod 2^{r+2}$. Now if q is an odd integer, then $q \equiv \pm 1 \mod 4$, and thus by the above and induction we obtain for $r > 1$, $q^{2r-1} \equiv 1 \mod 2^{r+1}$.

Let $n = 2^r s$ with s odd. We can write $\sigma = \tau \rho$ where τ has order 2^r and ρ has order s. Clearly $\left(\frac{x}{x^s}\right) \in \text{Alt}(GF(p^n))$ if and only if $\left(\frac{x}{x^s}\right) \in \text{Alt}(GF(p^n))$. It is easy to see that if $q = p^s$, then $\left(\frac{x}{x^s}\right)$ has $(q^{2s} - q^{s-1})/2^i$ cycles of length 2^i for $i = 1, 2, \cdots, r$. These cycles are all odd permutations so $\left(\frac{x}{x^s}\right)$ has the parity of $\sum (q^{2i} - q^{s-1})/2^i$. Now q is odd and

$$(q^{2i} - q^{s-1})/2^i = q^{2i-1}(q^{s-1} - 1)/2^i.$$

By the above, if $i > 1$ then $2^{i+1} | (q^{s-1} - 1)$ and hence $\left(\frac{x}{x^{s'}}\right)$ has the parity of $q(q - 1)/2$. If $q \equiv 1 \mod 4$ then this is even and if $q \equiv -1 \mod 4$ then this term is odd. Finally since s is odd and $q = p^s$ we see that $q = p \mod 4$ and (ii) follows.

(iii) $\left(\frac{x}{x^s}\right)$ is a product of $(p^n - 1)/2$ transpositions. If n is even, then $4 | (p^n - 1)$ and the result follows.

We will consider these transitive extensions in four separate cases.

Proposition 2.4. If $\mathcal{D} = S_\xi(p^n)$, then $p^n = 3$ and $\Gamma(3^s) < \mathcal{D} < \Gamma(3^s)$.

Proof. Since \mathcal{D} is $3/2$-transitive we have $p \neq 2$. Let G be the central involution of $\mathcal{D} = T_\psi(p^n)$ and let H be another involution. Then G fixes precisely two points and H fixes $p^n + 1 > 2$ points. Since the degree of \mathcal{D} is $1 + p^n$, Lemma 1.3 yields

$$4(p^n - 1) = |T_\psi(p^n)| = |\mathcal{D}| \geq (p^n - 1)/2$$

or $7 > p^n$. Thus $p^n = 3$ or 5.

Since \mathcal{D} is doubly transitive we can find T conjugate to G with $T = (0 \infty) \cdots$. Then T normalizes \mathcal{D} and centralizes its unique central involution $G = \left(\frac{x}{x^s}\right)$. By Lemma 1.4 (iv), T acts on each orbit of \mathcal{D} on \mathbb{B}_s. Now if $v \in \mathbb{B}_s$, then $|\mathcal{D}_v| = 2$. This implies easily that if H is a noncentral involution of \mathcal{D}, then H^r is conjugate to H in \mathcal{D}. Let $p^n = 5$. Then \mathcal{D} is easily seen to be generated by its noncentral involutions so $\mathcal{D}^r \subseteq \mathcal{D}$. Thus $|\mathcal{D} : C_\mathcal{D}(T)| = |\mathcal{D}^r : C_\mathcal{D}^r(T)| \leq |\mathcal{D}^r| = 2$ and $|C_\mathcal{D}(T)| \geq 8$. On the other hand $C_\mathcal{D}(T)$ acts on the fixed points
of T namely $\{a, b\}$, so $[C_\mathfrak{S}(T) : C_\mathfrak{S}(T) \cap \mathfrak{S}_a] \leq 2$. Since $|\mathfrak{S}_a| = 2$, this is a contradiction.

Finally let $p^* = 3$. Here $T_3(3)$ is a dihedral group of order 8 and $S_3(3) \subseteq S(3^2)$. This case is then included in Proposition 2.7 and we obtain $\Gamma(3^2) \lhd \mathfrak{S} \subseteq \Gamma(3^2)$. By order considerations $\mathfrak{S} \neq \Gamma(3^2)$ so this results follows.

PROPOSITION 2.5. If $D \subseteq S(2^n)$ then $\bar{\Gamma}(2^n) \lhd \mathfrak{S} \subseteq \Gamma(2^n)$.

Proof. Let 1 be a point. Then \mathfrak{S}_1 has a regular normal elementary abelian 2-group. Let T be an involution in this subgroup. Then T fixes precisely one point. Say $T = (0 \infty)(1) \cdots$ and use the notation of §1. It is easy to see that we can assume that point 1 corresponds to the unit element of $GF(2^n)$.

Now T normalizes \mathfrak{S}. If $H \in C_\mathfrak{S}(T)$, then $1H = (1T)H = (1H)T$ so T fixes $1H$ and hence $H \subseteq \mathfrak{S}_1$. In particular in the notation of Lemma 2.2, $C_{\mathfrak{S}_1}(T) = \langle 1 \rangle$. Then $\mathfrak{S}_1^{-T} = \mathfrak{S}_1$. Since $\mathfrak{S}_1/\mathfrak{S}_1$ is abelian, $(\mathfrak{S}_1/\mathfrak{S}_1)^{-T}$ is a group and hence \mathfrak{S}_1^{-T} is a group containing \mathfrak{S}.

If $H \in \mathfrak{S}_1^{-T}$, then $H^T = H^{-1}$ so \mathfrak{S}_1^{-T} is abelian. By Lemma 2.2 (iv), $\mathfrak{S}_1^{-T} = \mathfrak{S}_1$. Now $|\mathfrak{S}_1^{-T}| = |C_{\mathfrak{S}_1}(T)| = |\mathfrak{S}_1|$, $|\mathfrak{S}_1| \leq |\mathfrak{S}|$ and $C_{\mathfrak{S}_1}(T) \subseteq \mathfrak{S}_1$. This yields $C_{\mathfrak{S}_1}(T) = \mathfrak{S}_1$ and $\mathfrak{S} = \mathfrak{S}_1 \mathfrak{S}_1$. The latter shows that each orbit of \mathfrak{S} on $GF(2^n)$ has size $|\mathfrak{S}_1|$, an odd number.

In characteristic 2 the permutation $\left(\begin{array}{c} x \\ \bar{x} \end{array} \right)$ is trivial so by Lemma 1.4 (iv) T acts on each orbit of \mathfrak{S} on $GF(2^n)^4$. These orbits have odd size so T fixes a point in each orbit. Thus there is only one such orbit and \mathfrak{S} is transitive. This yields

$\mathfrak{S}_1^{-T} = \mathfrak{S}_1 = \{ bx \mid b \in GF(2^n)^4 \}$.

If $H = \left(\begin{array}{c} x \\ bx \end{array} \right)$, then $H^T = H^{-1}$ so

$\left(\begin{array}{c} x \\ f(x) \end{array} \right) \left(\begin{array}{c} x \\ b^{-1}x \end{array} \right) = \left(\begin{array}{c} x \\ bx \end{array} \right) \left(\begin{array}{c} x \\ f(x) \end{array} \right)$

and $b^{-1}f(x) = f(bx)$. At $x = 1$ this yields $f(b) = b^{-1}$ and hence we see that $f(x) = 1/x$ for all x.

Finally, since $\mathfrak{S} = D \cup DT \mathfrak{S}$, the result follows easily.

The following is an easy special case of a recent result of Bender ([1]).

PROPOSITION 2.6. If $D \subseteq S(p^n)$ with $p \neq 2$ and $|D|$ is odd, then $\bar{\Gamma}(p^n) \lhd \mathfrak{S} \subseteq \Gamma(p^n)$.

Proof. Since \mathfrak{S} is doubly transitive it has even order. Let T be an involution in \mathfrak{S} with $T = (0 \infty) \cdots$. By assumption T fixes
no points. We use the notation of Lemma 2.2. Then T normalizes both \mathcal{S} and $\tilde{\mathcal{S}}$. We show now that T centralizes the quotient \mathcal{S}/\mathcal{S}. If not, then the quotient \mathcal{S}/\mathcal{S} is abelian and has odd order, we can find a nonidentity subgroup $\mathfrak{V} \leq \mathcal{S}/\mathcal{S}$ on which T acts in a dihedral manner. Then dihedral group $\langle \mathfrak{W}, T \rangle$ acts on \mathcal{S}. Since \mathcal{S} is cyclic, $\text{Aut} \mathcal{S}$ is abelian and hence $\mathfrak{V} = \langle \mathfrak{W}, T \rangle'$ centralizes \mathcal{S}. This contradicts the fact that \mathcal{S} is self centralizing in \mathcal{S}.

Set $\mathcal{I} = \tilde{\mathcal{S}} \triangle \mathfrak{I}$ so that $\mathcal{D}/\mathcal{I} \cong \mathcal{S}/\mathcal{S}$ is cyclic. Since \mathcal{D}/\mathcal{I} has odd order, we see easily that the hypotheses of Lemma 1.2 are satisfied. Hence there exists $\mathcal{F} \triangle \mathcal{S}$ with $\mathcal{F} \cap \mathcal{D} = \mathcal{I}$. Now \mathcal{D} is maximal in \mathcal{S} and contains no nontrivial normal subgroup of \mathcal{S}. Hence $\mathcal{S} = \mathcal{F}\mathcal{D}$ and $\mathcal{S}/\mathcal{S} \cong \mathcal{D}/(\mathcal{F} \cap \mathcal{D})$ has odd order and $T \in \mathcal{F}$.

By Lemma 2.1, \mathcal{F} is doubly transitive and has no regular normal subgroup. Furthermore $\mathcal{F}_0 = \mathcal{I} = \tilde{\mathcal{S}} \mathfrak{B}$ and \mathfrak{B} is abelian. Thus \mathcal{F} is a Zassenhaus group and the result of Feit ([2]) implies that T is a permutation of the form $\left(\begin{array}{c} x \\ \frac{a}{x} \end{array} \right)$ and $|\mathcal{S}| = (p^n - 1)/2$. Since $\mathcal{S} = \mathcal{D} \cup DT\mathfrak{B}$, the result follows easily.

Proposition 2.7. If $\mathcal{D} \subseteq S(p^n)$ with $p \neq 2$ and $|\mathcal{D}|$ is even, then $\bar{f}(p^n) < \mathcal{S} \subseteq \Gamma(p^n)$.

Proof. We proceed in a series of steps.

Step 1. \mathcal{F} has central element $\left(\begin{array}{c} x \\ -x \end{array} \right)$ of order 2. \mathcal{F} is normalized by involution $T = \left(\begin{array}{c} x \\ f(x) \end{array} \right)$ with $T = (0 \infty)(1)(-1) \cdots$. The fixed points of T are precisely 1 and -1 and T centralizes $\left(\begin{array}{c} x \\ -x \end{array} \right)$ so Lemma 1.4 applies. In the notation of Lemma 2.2 we have one of the following two possibilities.

(i) $\tilde{\mathcal{S}} = \mathcal{S} \mathcal{T}^{-1}$ and $[\mathcal{S} : \mathcal{S}\mathcal{T}] = 2$ or

(ii) $[\mathcal{S} : \mathcal{S} \mathcal{T}^{-1}] = 2$ and $\mathcal{S} = \mathcal{S}\mathcal{T}$. In either case $[\mathcal{S} : \mathcal{S}] = 2 |\mathcal{S} \mathcal{T}^{-1}|$.

Now by assumption $2 | |\mathcal{D}|$ so since $p \neq 2$, $2 | |\mathcal{F}|$. If $2 | |\mathcal{S}|$, then certainly \mathcal{S} has a central element of order 2. This is of course the permutation $\left(\begin{array}{c} x \\ -x \end{array} \right)$ which fixes precisely two points. Suppose $2 \nmid |\mathcal{S}|$ and let $H \in \mathcal{S}$ have order 2. Since $H \neq \left(\begin{array}{c} x \\ -x \end{array} \right)$, H must have a fixed point on \mathfrak{W}. Hence $2 | |\mathcal{S}|$. If ρ is a field automorphism of order 2, then by Lemma 2.2, $\mathcal{S} \supseteq \{ b^{1-x}x \mid b \in GF(p^n) \}$. Since this latter group has order $(p^n - 1)/(p^{n/2} - 1) = p^{n/2} + 1$ and this is even we have a contradiction.

Since \mathcal{S} is doubly transitive we can choose T conjugate to $\left(\begin{array}{c} x \\ -x \end{array} \right)$.
with $T = (0 \infty) \cdots$. Then T fixes precisely two points and T normalizes \mathfrak{S}. We can clearly write the latter group in such a way that T fixes point 1. Clearly T centralizes $\left(\begin{array}{c} x \\ -x \end{array}\right) \in \mathfrak{S}$ so if $T = \left(\begin{array}{c} x \\ f(x) \end{array}\right)$, then $f(-x) = -f(x)$. This shows that T also fixes -1 so $T = (0 \infty)(1)(-1) \cdots$.

Let $H \in C_{\mathfrak{S}}(T)$. Then $1H = (1T)H = (1H)T$ so $1H = \pm 1$ and $H \in \left\langle \left(\begin{array}{c} x \\ -x \end{array}\right) \right\rangle \mathfrak{S}$. On the other hand since \mathfrak{S}_1 fixes 1 and -1 and T is central in $\mathfrak{S}_{1,-1}$, we see that $C_{\mathfrak{S}_1}(T) \supseteq \left\langle \left(\begin{array}{c} x \\ -x \end{array}\right) \right\rangle \mathfrak{S}_1$, so $C_{\mathfrak{S}_1}(T) = \left\langle \left(\begin{array}{c} x \\ -x \end{array}\right) \right\rangle \mathfrak{S}_1$.

Now T acts on $\tilde{\mathfrak{S}}$ and $C_{\tilde{\mathfrak{S}}}(T) = \left\langle \left(\begin{array}{c} x \\ -x \end{array}\right) \right\rangle$. Thus since $\tilde{\mathfrak{S}}$ is abelian, $\tilde{\mathfrak{S}}^\tau$ is a group and $[\tilde{\mathfrak{S}} : \tilde{\mathfrak{S}}^\tau] = 2$. Now $\tilde{\mathfrak{S}}^\tau \triangle \mathfrak{S}$ and $\tilde{\mathfrak{S}}/\tilde{\mathfrak{S}}^\tau$ is abelian since $\mathfrak{S}/\tilde{\mathfrak{S}}^\tau$ is central in this quotient and $\mathfrak{S}/\tilde{\mathfrak{S}}^\tau$ is cyclic. This implies that $\tilde{\mathfrak{S}}^\tau$ is a group so $\tilde{\mathfrak{S}}^\tau$ is abelian and centralizes $\mathfrak{S}^\tau \subseteq \tilde{\mathfrak{S}}^\tau$. By Lemma 2.2 (iii), $\tilde{\mathfrak{S}}^\tau \subseteq \tilde{\mathfrak{S}}$ with the possible exception of $p^n = 3^2$ and $\tilde{\mathfrak{S}}$ dihedral of order 8. However in the latter case $[\tilde{\mathfrak{S}} : \tilde{\mathfrak{S}}^\tau] = 2$ so clearly $\tilde{\mathfrak{S}}^\tau \subseteq \tilde{\mathfrak{S}}$.

We use the fact that $|\tilde{\mathfrak{S}}| = |\tilde{\mathfrak{S}}^\tau| = |C_{\tilde{\mathfrak{S}}}(T)|$ and $C_{\tilde{\mathfrak{S}}}(T) = \left\langle \left(\begin{array}{c} x \\ -x \end{array}\right) \right\rangle \mathfrak{S}_1$. Suppose first that $\tilde{\mathfrak{S}} = \tilde{\mathfrak{S}}^\tau$. Then $[\tilde{\mathfrak{S}} : \tilde{\mathfrak{S}}] = 2$ and we have (i). Now let $[\tilde{\mathfrak{S}} : \tilde{\mathfrak{S}}^\tau] = 2$. Then $[\tilde{\mathfrak{S}} : \tilde{\mathfrak{S}}] = 1$ and we have (ii). This completes the proof of this step.

Step 2. For each $a \in GF(p^n)^\ast$ we have

\[(\ast) \quad f(f(x) + a) = f(a'x^\tau - a) + f(a)\]

where $\left(\begin{array}{c} x \\ a'x^\tau \end{array}\right) \in \tilde{\mathfrak{S}}$ and $a' = -a/f(a)^\tau$. Let g denote the set of all field automorphisms σ which occur in the above. If $g = \{1\}$, then

$$\Gamma(p^n) < \mathfrak{S} \subseteq \Gamma(p^n).$$

Equation \((\ast)\) follows from Lemma 1.4 (ii). Set $x = -f(a) = f(-a)$ in \((\ast)\). Then $a'x^\tau - a = 0$ so $a' = -a/f(a)^\tau$. Suppose now that $g = \{1\}$. This implies by Lemma 1.4 (iii) that $\mathfrak{G} = \langle \tilde{\mathfrak{S}}, \mathfrak{S}, T \rangle$ is doubly transitive with $\mathfrak{G}_{m_3} = \tilde{\mathfrak{S}}$. Hence \mathfrak{G} is a Zassenhaus group. Let $\mathfrak{L} = \{H \in \tilde{\mathfrak{S}} | H^r = H^{-1}\}$ so that \mathfrak{L} is a subgroup of $\tilde{\mathfrak{S}}$ containing $\left(\begin{array}{c} x \\ -x \end{array}\right)$. With $\mathfrak{Z} = \mathfrak{G} \triangle \tilde{\mathfrak{S}}\mathfrak{B}$ we see easily that the hypotheses of Lemma 1.2 hold. Hence there exists $\mathfrak{K} \triangle \mathfrak{G}$ with $\mathfrak{K} \cap (\tilde{\mathfrak{S}}\mathfrak{B}) = \mathfrak{G}\mathfrak{B}$. Since \mathfrak{G} is doubly transitive and $\mathfrak{K} \supseteq \mathfrak{B}$ we see that $\mathfrak{K} \subseteq \tilde{\mathfrak{S}}\mathfrak{B}$. Hence \mathfrak{K} is doubly transitive and $\left(\begin{array}{c} x \\ -x \end{array}\right) \in \mathfrak{K}$. By Lemma 1.3, $|\mathfrak{L}| \geq (p^n - 1)/2$.

166 D. S. PASSMAN
Let \(M = \left\{ b \in GF(p^n) \mid \left(\frac{x}{bx} \right) \in \mathcal{S} \right\} \). Thus \(M \) is a subgroup of \(GF(p^n)^* \) of index 1 or 2 and in particular \(M \) contains all the nonzero squares in \(GF(p^n) \). Note that for all \(b \in M \), \(f(bx) = b^{-1}f(x) \) and at \(x = 1 \) this yields \(f(b) = b^{-1} \).

Let \(a \in M \) in \((*)\) and let \(x = 1 \). Since \(g = \{1\} \), \(a' = -a^2 \) and we obtain

\[
f(1 + a) = f(-a^2 - a) + f(a)
= -a^{-1}f(1 + a) + a^{-1}.
\]

This yields \(f(1 + a) = (1 + a)^{-1} \). If \(b \in M \), then

\[
f(b(1 + a)) = b^{-1}f(1 + a) = b^{-1}(1 + a)^{-1}.
\]

Since \(M \) contains the squares in \(GF(p^n)^* \) and every element of the field is a sum of two squares, the above yields \(f(x) = 1/x \). Since \(\mathcal{S} = \mathcal{D} \cup \mathcal{D}T\mathcal{S} \) and \(|\mathcal{S}| \geq (p^n - 1)/2 \) the result follows here.

Step 3. Let \(\mathcal{R} = \left\{ b \in GF(p^n)^* \mid \left(\frac{x}{bx} \right) \in \mathcal{S}^{1-r} \right\} \). Let \(\sigma \in g - \{1\} \). Then \(\sigma^2 = 1 \) so \(n \) is even. Set \(\mathcal{S} = \{ b \in GF(p^n)^* \mid b^{-1} \in \mathcal{R} \} \). If \(b \in \mathcal{R} \) and \(b + 1 \in \mathcal{S} \), then \(b' = b \). Furthermore, if \(r = |GF(p^n)^* : \mathcal{R}| \) and \(s = |GF(p^n)^* : \mathcal{S}| \) then we have

\[
(i) \quad r = 2, 4 \text{ or } 6.
\]

\[
(ii) \quad s = r/(\text{g.c.d.} \{r, \frac{p^n}{2} - 1\}) \leq r/2.
\]

Define \(\mathcal{I} \triangle \mathcal{D} \) as follows. If \(\mathcal{S}/\mathcal{S} \) has odd order, set \(\mathcal{I} = \tilde{\mathcal{S}}\mathcal{B} \). If \(\mathcal{S}/\mathcal{S} \) has even order and \(\mathcal{S}/\mathcal{S} \) is its subgroup of order 2, set \(\mathcal{I} = \mathcal{S}\mathcal{B} \). By Step 1 it follows that the hypotheses of Lemma 1.2 are satisfied here. Thus there exists \(\mathcal{R} \triangle \mathcal{S} \) with \(\mathcal{R} \cap \mathcal{D} = \mathcal{I} \). Since \(\left(\frac{x}{-x} \right) \in \mathcal{R} \) and \(T \) is conjugate to \(\left(\frac{x}{-x} \right) \) in \(\mathcal{S} \), it follows that \(T \in \mathcal{R} \). Thus \(\mathcal{R} \) is doubly transitive with \(\mathcal{R}_\infty = \mathcal{I} \) and \(\mathcal{R}_\infty = \mathcal{S} \) or \(\mathcal{B} \). Applying the uniqueness part of Lemma 1.4 (ii) to both \(\mathcal{R} \) and \(\mathcal{S} \) we conclude that in equation \((*)\), \(\left(\frac{x}{a^2} \right) \in \tilde{\mathcal{S}} \) or \(\mathcal{B} \). Hence if \(\sigma \neq 1 \) then \(\sigma^2 = 1 \) and \(n \) is even.

We now find \(r \) and \(s \). By Step 1, \(|\mathcal{S}^{1-r}| = |\mathcal{S} : \mathcal{S}_t| \). Since \(\mathcal{S} \) is half-transitive \(|\mathcal{S} : \mathcal{S}_t| = |GF(p^n)^*| \) so \(r \) is even. Set \(\mathcal{L} = \mathcal{R}_\infty \). By Step 1 and the definition of \(\mathcal{R} \) we have one of the following three possibilities:

1. \(\mathcal{L} = \tilde{\mathcal{S}} \), \(\left(\frac{x}{-x} \right) = \tilde{\mathcal{S}} \); 2. \(\mathcal{L} = \tilde{\mathcal{S}} \mathcal{B} \), \(|\mathcal{L}_t| = 2 \); 3. \(\left[\mathcal{L} : \tilde{\mathcal{S}} \right] = 2 \) so \(\mathcal{L}^{1-r} = 2 \), \(\tilde{\mathcal{S}} = \tilde{\mathcal{S}}^{1-r} \).

We apply Lemma 1.3 to \(\mathcal{R} \) since \(T \in \mathcal{R} \). In cases (1) and (3) above we have \(|\mathcal{S}| \geq (p^n - 1)/2 \) so \(\tilde{\mathcal{S}}^{1-r} \geq (p^n - 1)/4 \). In case (2) since \(|\mathcal{L}_t| = 2 \) we have \(|\mathcal{L}| > (p^n - 1)/2 \) and \(|\mathcal{S}^{1-r}| > (p^n - 1)/8 \). Hence either \(r \leq 4 \) or \(r < 8 \). Since \(r \) is even we have \(r = 2, 4 \) or 6.

Now \(\sigma \) acts on the cyclic quotient \(GF(p^n)^*/\mathcal{R} \) like \(x \rightarrow x^{p^n/2} \) since \(\sigma \) has order 2. Thus \(|\mathcal{S}/\mathcal{R}| = \text{g.c.d.} \{r, \frac{p^n}{2} - 1\} \geq 2 \) since \(r \) is even.
Hence we have (i) and (ii).

Now suppose σ occurs in equation (*) and let b satisfy $b \in R$, $b + 1 \in \mathcal{S}$. Set $x = f(ba) = b^{-1}f(a)$ in (*) so that $f(x) = ba$ and

$$f(a) = f(ba + a) + f(af(a)^{-\sigma}b^{-\sigma}f(a)^{\sigma} + a) = f((b + 1)a) + f(b^{-\sigma}(b^\sigma + 1)a).$$

Now $b^{-\sigma} \in R$ and since $b + 1 \in \mathcal{S}$ we have $(b^\sigma + 1)/(b + 1) = (b + 1)^{\sigma - 1} \in R$. Thus

$$f(b^{-\sigma}(b^\sigma + 1)a) = b^\sigma f((b^\sigma + 1)a) = b^\sigma f([(b^\sigma + 1)/(b + 1)](b + 1)a) = [b^\sigma(b + 1)/(b^\sigma + 1)]f((b + 1)a).$$

This yields

$$f(a) = f((b + 1)a) + [b^\sigma(b + 1)/(b^\sigma + 1)]f((b + 1)a)$$

and hence

$$f((b + 1)a) = [(b^\sigma + 1)/(bb^\sigma + 2b^\sigma + 1)]f(a).$$

Now $b^{-1} \in R$ and $b^{-1} + 1 = b^{-1}(b + 1) \in \mathcal{S}$ so applying the above with b replaced by b^{-1} yields

$$f((b^{-1} + 1)a) = [(b^{-\sigma} + 1)/(b^{-1}b^{-\sigma} + 2b^{-\sigma} + 1)]f(a) = b[(b^\sigma + 1)/(bb^\sigma + 2b + 1)]f(a).$$

Finally

$$f((b^{-1} + 1)a) = f(b^{-1}(b + 1)a) = bf((b + 1)a)$$

so the above yields clearly $b = b^\sigma$.

Step 4. Proof of the theorem. Let N_1 denote the number of ordered pairs (x, y) with $x, y \in GF(p^n)$ and $y^r - x^r - 1 = 0$. By [7] (page 502) we have $|N_1 - p^n| \leq (r - 1)(x - 1)p^{n/2}$ so that

$$N_1 \geq p^n - (r - 1)(x - 1)p^{n/2}.$$

Let N_1^\dagger count the number of solutions with $xy \neq 0$ so that $N_1^\dagger \geq N_1 - r - s$. Finally let N count the number of pairs (x^r, y^r) with $y^r - x^r - 1 = 0$ and $xy \neq 0$. Clearly $N \geq N_1^\dagger/r$s so

$$N \geq [p^n - (r - 1)(x - 1)p^{n/2} - (r + s)]/rs.$$

Note that $\mathcal{R} = \{x^r | x \in GF(p^n)^k\}$ and $\mathcal{S} = \{y^r\}$ so that N counts the number of $b \in \mathcal{R}$ with $b + 1 \in \mathcal{S}$.

Suppose we do not have $\Gamma(p^n) < \mathcal{S} \subseteq \Gamma(p^n)$. Then by Step 2, $g \neq \{1\}$. Let $\sigma \in g$ with $\sigma \neq 1$. By [Step 3 we have n even, $\sigma^2 = 1$.
and for all $b \in \mathbb{R}$ with $b + 1 \in \mathcal{S}$, b is in the fixed field of σ. Thus $p^{\sigma/2} > N$ and

$$p^{\sigma/2} > [p^s - (r - 1)(s - 1)p^{\sigma/2} - (r + s)]/rs$$

or

(**) \[(r + s) > p^{\sigma/2}[p^{\sigma/2} - (r - 1)(s - 1) - rs].\]

Let us consider $n = 2$ first. Clearly $\mathcal{S} = \mathcal{S}_2$, here since \mathcal{S} does not act semiregularly. We have $r = 2, 4$ or 6. Suppose $r = 6$. Then clearly $[T(p^n) : \mathcal{S}] = 3$ and hence by Lemma 2.3, $\mathcal{S} \subseteq \text{Alt}\,(GF(p^n) \cup \{\infty\})$ but $\left(\begin{array}{c} x \\ -x \end{array}\right)$ is in the alternating group. Apply Lemma 1.3 to doubly transitive $\mathcal{S} \cap \text{Alt}\,(GF(p^n) \cup \{\infty\})$. We obtain

$$|\mathcal{S} \cap \text{Alt}\,(GF(p^n) \cup \{\infty\})| \geq (p^n - 1)/2$$

so $|\mathcal{S}| \geq (p^n - 1)/2$. This contradicts the fact that $|\mathcal{S}| = 2(p^n - 1)/3$. Thus $r \neq 6$.

Let $r = 4$. If $p = 1$ modulo 4, then by Step 3 (ii), $s = 1$. Then equation (***) yields $p < 5$, a contradiction. Let $p = -1$ modulo 4. Since $r = 4$ we see that $\mathcal{S} \subseteq \text{Alt}\,(GF(p^n) \cup \{\infty\})$. But by Lemma 2.3 (ii) $\mathcal{S} \subseteq \text{Alt}\,(GF(p^n) \cup \{\infty\})$. Applying Lemma 1.4 (ii) to doubly transitive $\mathcal{S} \cap \text{Alt}\,(GF(p^n) \cup \{\infty\})$ yields $g = \{1\}$, a contradiction. Finally if $r = 2$, then $s = 1$ and (**) yields no exceptions.

Now let $n > 2$ so n is even and $n \geq 4$. Since $r \leq 6$, $s \leq 3$ equation (**) becomes $9 \geq p^{\sigma/2}[p^{\sigma/2} - 28]$ or $p^{\sigma/2} \leq 28$. Hence we have only $p^s = 3^4, 5^4$ and 3^6. Note that $r \mid (p^n - 1)$ so that if $p = 3$ then $r = 2$ or 4. This eliminates $p^s = 3^6$ and by (**) we must have $p^s = 3^4$, $r = 4$ or $p^s = 5^4$, $r = 6$. If $p^s = 3^4$, $r = 4$, then Step 3 (ii) yields $s = 1$ and this contradicts (**). Finally let $p^s = 5^4$, $r = 6$. If $a = 41/2$ in $GF(5^4)$ then

$$(2 + a + 4a^3)^8 + 1 = a + 3a^2 + 2a^3 = (2 + 3a^2 + 2a^3)^8.$$

Hence if $b = 4 + a + 3a^2 + 2a^3$ then $b \in \mathcal{R}$, $b + 1 \in \mathcal{S}$ and $b' \neq b$. This contradicts Step 3 and the result follows.

3. The main result. We now combine the preceding work with the main result of [4] to obtain.

Theorem 3.1. Let \mathcal{S} be a $5/2$-transitive permutation group which is not a Zassenhaus group. Suppose that the stabilizer of a point is solvable. Then modulo a possible finite number of exceptions we have $\Gamma(p^n) \supseteq \mathcal{S} > \Gamma(p^n)$ for some prime power p^n.

Proof. The group \mathcal{S}_n is a solvable $3/2$-transitive group which is
not a Frobenius group. By the main theorem of [4] we have either $\mathcal{G}_\infty \subseteq S(p^n)$, $\mathcal{G}_\infty = S_\infty(p^n)$ with $p \neq 2$, or \mathcal{G}_∞ is one of a finite number of exceptions. The result therefore follows from Propositions 2.4, 2.6 and 2.7.

Presumably we can find the possible exceptions here without knowing all the exceptions in the 3/2-transitive case. This is the case since the existence of a transitive extension greatly restricts the structure of a group. However it appears that we still have to look closer at normal 3-subgroups of half-transitive linear groups. For example, if we can show that for such a linear group \mathcal{G}, $O_d(\mathcal{G})$ is cyclic, then we would know (see [4]) that (1) if $p = 2$, then $\mathcal{G}_\infty \subseteq S(2^n)$, (2) if $p \neq 2$ and $|\mathcal{G}_\infty|$ is odd, then $\mathcal{G}_\infty \subseteq S(p^n)$, (3) if $p \neq 2$ and $|\mathcal{G}_\infty|$ is even, then $\mathcal{G} = \mathcal{G}_\infty$ has a central involution. Here \mathcal{G}_∞ has degree p^n. Hopefully these normal 3-subgroups will be studied at some later time.

Finally we consider the possible transitive extensions of these 5/2-transitive groups.

Theorem 3.2. Let \mathcal{G} be an $(n+1/2)$-transitive permutation group and let \mathcal{D} be the stabilizer of $(n-1)$ points. Suppose that \mathcal{D} is solvable and not a Frobenius group. If $n \geq 3$ then $\mathcal{G} = \text{Sym}_{n+3}$.

Proof. We note first that if $\mathcal{G} = \text{Sym}_{n+3}$ then \mathcal{G} is $(n+3)$-transitive and hence $(n+1/2)$-transitive. Also $\mathcal{D} = \text{Sym}_n$ is solvable and not a Frobenius group. Thus these groups do occur.

To prove the result it clearly suffices to assume that $n = 3$ and to show that $\mathcal{G} = \text{Sym}_3$. Let $n = 3$ and let $\infty, 0, 1$ be three points. Set $\mathcal{R} = \mathcal{G}_\infty$, $\mathcal{D} = \mathcal{G}_\infty$, $\mathcal{G} = \mathcal{G}_\infty$. Then \mathcal{R} is 5/2-transitive and by Lemma 2.1, \mathcal{R} has no regular normal subgroup. We know that \mathcal{D} has a regular normal elementary abelian subgroup \mathcal{B} so $\mathcal{D} = \mathcal{B}$. Since \mathcal{B} is abelian and \mathcal{D} is primitive, \mathcal{B} is the unique minimal normal subgroup of \mathcal{D}. Hence \mathcal{B} is characteristic in \mathcal{D} and \mathcal{G} acts irreducibly on \mathcal{B}. Since \mathcal{D} is not a Frobenius group, we cannot have $|\mathcal{B}| = 3$. Further \mathcal{B} is elementary so we cannot have $|\mathcal{B}| = 8$ with \mathcal{B} having a cyclic subgroup of index 2. By Theorems 1 and 3 of [6] we must therefore have $|\mathcal{B}| = 4$ or 9 and hence $\deg \mathcal{G} = |\mathcal{B}| + 2 = 6$ or 11. Suppose $\deg \mathcal{G} = 6$. Since \mathcal{G} is 7/2-transitive we have $|\mathcal{G}| > 6 \cdot 5 \cdot 4$ so $[\text{Sym}_3 : \mathcal{G}] < 6$. Hence $\mathcal{G} = \text{Alt}_3$ or Sym_3. If $\mathcal{G} = \text{Alt}_3$ then $\mathcal{D} = \text{Alt}_3$, a Frobenius group. Thus we have only $\mathcal{G} = \text{Sym}_3$ here.

We now assume that $|\mathcal{B}| = 9$ and derive a contradiction. Now \mathcal{B} contains an element of order 3 fixing precisely two element. Since \mathcal{G} is triply transitive, \mathcal{G} contains W a conjugate of this element with $W = (a)(b)(0 \infty 1) \cdots$. Hence W normalizes \mathcal{G}. If $H \in C_\mathcal{G}(W)$, then
$aH = (aW)H = (aH)W$ so $aH = a$ or b and hence $|C_\delta(W)| \leq 2 |\delta|$. If W acts trivially on δ, then $[\delta : \delta] = 2$ and since δ is half-transitive, it must be an elementary abelian 2-group. This contradicts the fact that δ acts irreducibly on \mathfrak{S}. We have $\delta \subseteq GL(2, 3)$ and W acts nontrivially on δ. Further δ acts irreducibly so $O_3(\delta) = \langle 1 \rangle$.

If $3 \nmid |\delta|$, then δ is a 2-group with a cyclic subgroup of index 2 which admits W nontrivially. Since δ acts irreducibly we conclude that δ is the quaternion group of order 8. Then \mathfrak{S} is a Frobenius group, a contradiction. Hence $3 \mid |\delta|$ so since $O_3(\delta) = \langle 1 \rangle$ we have $\delta = SL(2, 3)$ or $GL(2, 3)$. Let $\Delta = O_3(\delta)$. Then Δ is the quaternion group of order 8. It acts regularly on 8 points and fixes 3. Now \mathfrak{S}, a Sylow 3-subgroup of $\langle \delta, W \rangle$ is abelian of type $(3, 3)$ and acts on Δ. Hence there exists $S \in \mathfrak{S}$ with S centralizing Δ. From the way Δ acts as a permutation group it is clear that S is a 3-cycle, in fact $S = (0 \infty 1)$ or $(0 1 \infty)$. Since δ is triply transitive it contains all 3-cycles so $\mathfrak{S} \supseteq \text{Alt}_6$. Thus $\mathfrak{S} \supseteq \text{Alt}_9$ and this contradicts the solvability of \mathfrak{S}. This completes the proof.

In a later paper, “Exceptional 3/2-transitive Permutation Groups” which will appear in this journal, we completely classify the solvable 3/2-transitive permutation groups. Moreover the exceptional groups, which have degrees $3^2, 5^2, 7^2, 11^2, 17^2$ and 3^4, are shown to have no transitive extensions. Thus no exceptions occur in our main theorem.

References

Received July 26, 1967. This research partially supported by Army Contract SAR/DA-31-124-ARO(D) 336.

YALE UNIVERSITY
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patrick Robert Ahern, On the geometry of the unit ball in the space of real annihilating measures</td>
<td>1</td>
</tr>
<tr>
<td>Kirby Alan Baker, Equational classes of modular lattices</td>
<td>9</td>
</tr>
<tr>
<td>E. F. Beckenbach and Gerald Andrew Hutchison, Meromorphic minimal surfaces</td>
<td>17</td>
</tr>
<tr>
<td>Tae Ho Choe, Intrinsic topologies in a topological lattice</td>
<td>49</td>
</tr>
<tr>
<td>John Bligh Conway, A theorem on sequential convergence of measures and some applications</td>
<td>53</td>
</tr>
<tr>
<td>Roger Cuppens, On the decomposition of infinitely divisible probability laws without normal factor</td>
<td>61</td>
</tr>
<tr>
<td>Lynn Harry Erbe, Nonoscillatory solutions of second order nonlinear differential equations</td>
<td>77</td>
</tr>
<tr>
<td>Burton I. Fein, The Schur index for projective representations of finite groups</td>
<td>87</td>
</tr>
<tr>
<td>Stanley P. Gudder, A note on proposition observables</td>
<td>101</td>
</tr>
<tr>
<td>Kenneth Kapp, On Croisot’s theory of decompositions</td>
<td>105</td>
</tr>
<tr>
<td>Robert P. Kaufman, Gap series and an example to Malliavin’s theorem</td>
<td>117</td>
</tr>
<tr>
<td>E. J. McShane, Robert Breckenridge Warfield, Jr. and V. M. Warfield, Invariant extensions of linear functionals, with applications to measures and stochastic processes</td>
<td>121</td>
</tr>
<tr>
<td>Marvin Victor Mielke, Rearrangement of spherical modifications</td>
<td>143</td>
</tr>
<tr>
<td>Akio Osada, On unicity of capacity functions</td>
<td>151</td>
</tr>
<tr>
<td>Donald Steven Passman, Some 5/2 transitive permutation groups</td>
<td>157</td>
</tr>
<tr>
<td>Harold L. Peterson, Jr., Regular and irregular measures on groups and dyadic spaces</td>
<td>173</td>
</tr>
<tr>
<td>Habib Salehi, On interpolation of q-variate stationary stochastic processes</td>
<td>183</td>
</tr>
<tr>
<td>Michael Samuel Skaff, Vector valued Orlicz spaces generalized N-functions. I</td>
<td>193</td>
</tr>
<tr>
<td>Thomas Paul Whaley, Algebras satisfying the descending chain condition for subalgebras</td>
<td>217</td>
</tr>
<tr>
<td>G. K. White, On subgroups of fixed index</td>
<td>225</td>
</tr>
<tr>
<td>Martin Michael Zuckerman, A unifying condition for implications among the axioms of choice for finite sets</td>
<td>233</td>
</tr>
</tbody>
</table>