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SOME 5/2 TRANSITIVE PERMUTATION GROUPS

D. S. PASSMAN

In this paper we classify those 5/2-transitive permutation
groups & such that & is not a Zassenhaus group and such
that the stabilizer of a point in & is solvable, We show in
fact that to within a possible finite number of exceptions &
is a 2-dimensional projective group.

If p is a prime we let I'(p") denote the set of all functions of
the form

ax® + b
cx’ + d

where a,b,¢,de GF(p"), ad — be = 0 and ¢ is a field automorphism.
These functions permute the set GF(p") U{c} and I'(p") is triply
transitive. Moreover I'(p™).. = S(p™), the group of semilinear trans-
formations on GF(p"). Let I'(p") denote the subgroup of I'(p") con-
sisting of those functions of the form

ax + b
cx +d

with ad — bec a nonzero square in GF(p"). Thus I'(p*) = PSL(2, p").

Let @ be a permutation group on GF(p") U {co} with I'(p") 2
& > I'(p"). Since I'(p") is doubly transitive so is . Now I'(p")/[(p™)
is abelian so & is normal in I"(p~). Hence G., A I'(P")w. Since a
nonidentity normal subgroup of a transitive group is half-transitive
we gee that &., is half-transitive on GF(p*)* and hence & is 5/2-
transitive, It is an easy matter to decide which group & with
I'(p") 2 & > I'(p") are Zassenhaus groups. If p = 2, there are none
while if p > 2, we must have [®:'(p")] = 2. In this latter case,
there is one possibility for # odd and two for n even. The main
result here is:

THEOREM. Let & be a 5/2-transitive group which s not a
Zassenhaus group. Suppose that the stabilizer of a point is solvable.
Then modulo a possible finite number of exceptions we have, with
suitable identification, I'(p") 2 > I'(p*) for some p~.

The question of the possible exceptions will be discussed briefly
in §3. We use here the notation of [4]. Thus we have certain
linear groups T(p™) and T,(p") and certain permutation groups S(p")

157



158 D. S. PASSMAN

and S,(p"). These play a special role in the classification of solvable
3/2-transitive permutation groups.

1. Lemmas. The lemmas here are variants of known results,
the first two from [1] and the second two from [9]. We use the
following notation and assumptions:

& is a doubly transitive permutation group of degree 1 + m
<o and 0 are two points

@:—@m, @:®m0:©0

Te® is an involution with 7' =(0 <) ---.

The above implies that T normalizes  and $ = TN D7,
In the following we use the usual character theory notation.

LemmA 1.1, Let a == 1y be a linear character of D with a(H') =
a(H) for all He . Then

(i) If DeD then a*(D) = a(D)LL(D).

(i1) a* =y, + ¥, where y, and ¥, are distinct trreductble non-
principal characters of O,

Proof. We show first that if A, Be® with A = B? then a(4) =
a(B). This is clear if GeD so we assume that GeD. From & =
DU DTD we have G = DTFE with D, Ee®. Then

Aﬁ—l — Bm’e@ n D = Sg

so by assumption a(B"") = a(B”). Thus a(4) = a(A*™) = a(B"") =
a(B”) = a(B) and this fact follows.
Let De®. Then by definition and the above we have

a*(D) = | DT, ya,( D)
= a(D) | DTy lp (D7) = «(D)14(D)
and (i) follows.

We now compute the norm [a*, a*]y using Frobenius reciprocity
and the fact that « is linear so a@ = 1. We have

la*, a¥lg = [a, @ | Vg = [@, a1 | D)l
= laa, 15 | D]y = [1g, 151 Dy
= [, 15]s = 2 -
Thus we must have a* = y, + ¥, with ¥, and ¥, distinet irreducible

characters of ®. Now [a*, 1]y = [a, 1y| Dy = [, 1g]ly =0 and
hence both ¥, and y, are nonprincipal. This proves (ii).
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LEMMA 1.2. Let T A D with D/T cyclic. Suppose that T con-
tains all elements DeD satisfying either D*=1 or D = D™,
Suppose further that m is a prime power and T fizes precisely
zero or two points. Then there exists K A ® with END = F.

Proof. The result is trivial if £ =9 so we can assume that
T #D. Let a be a faithful linear character of /T viewed as one of
of ®. Then a # 1o, If He® then D = H'H satisfies D" = D™ so
DeZ. Hence a(H"H™') = 1 and the hypothesis of Lemma 1.1 holds.
Thus we have a* = x, + y,. Further, as is well known, 14 =14 + &
where £ is an irreducible nonprincipal character. We will prove that
either yx, or x, is linear. Suppose say y, is linear. Then 1 = [a*, ]y =
[, x. | D]y implies that x, | D = a. If & is the kernel of 3, then R A S
and 8N D = T, the kernel of &. If either y, or y, is & then since
deg 14 = dega* =m + 1 and deg ¢ = m we would have some y; linear
and the result would follow. Thus we can assume that 14, &, ¥, and %,
are all distinct.

Let 8 = @ — 1. We show now that 5* vanishes on all elements of
the form G = T\T, with T, and T, conjugate to T. We can certainly
assume that G is conjugate to an element of ®© and hence that G e D.
If G € T then by Lemma 2.1 (i), a*(G) = a(G)14(G) = 15(G) and B*(G) =
0. Thus it suffices to show that GeZ. Suppose first that T,eD.
Then also T,e® and since T, and T, are involutions, we have by
assumption T, T,€ ¥ so G = T\ T,€¥. Now we suppose that T,¢ D.
From & = DU DTD we see that a suitable D conjugate of T, is of
the form TD with De®. By taking conjugates again we can assume
that G = WTD with G,De® and W and TD involutions. Since
(TD)y =1 we have D" = D', Also = WTeD and since T and W
are involutions E” = E-', Hence E,De & so G = ED e I and this fact
follows.

Let class function v of ® be defined by +(G) is the number of
ordered pairs (T, T,) with T, and T, conjugate to T and T.T, = G.
As is well known, ¥(G@) = |® || T® 2 X%(T)%(G)/x(1) where the sum
runs over all irreducible characters of &. By the remarks of the
preceding paragraph [8%,v]y = 0. Hence since 1y, y, 1. and ¢ are
distinct and B* = ¥, + ). — 1z — & we have

Ty | IL(T) _ eIV Ty

X:(1) X=(1) 1g(1) &1

Note since T is an involution y(T) is a rational integer for all such
. Now £(1) = m and 1§(T) = r, the number of fixed points of T.
Since by assumption » = 0 or 2, &T) = (»r — 1)> = 1. Hence

XDAATY + (DT = 1D (1) + 1)/m .
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Since m and m + 1 are relatively prime and the above left hand side
is a rational integer, we conclude that m | y,(1)y(1).

Now m = p™ is a prime power. Since ¥, (1) + 1) =m + 1 we
see that p cannot divide both ¥,(1) and %.(1) so say »/t x.(1). Then
m | %, (1)x.(1) implies that m | x,(1) so y(1) = m. From y,(1) + %1) =
m + 1 we conclude that y,(1) =m and x,(1) = 1. Since y, is linear
the result follows.

The proof of the next lemma is due to G. Glauberman.

LemMmaA 1.3. If T fizes two points the || = (m — 1)/2. If in
addition & contains an tnvolution fixing more than two points, then
|9 > (m — 1)/2.

Proof. Let 6 =145 be the permutation character. Then ({3]
Th. 8.2) 3,.40(G) = |®] and ¥ 0(G*) = 2|@|. Hence

8] = Zeeld(G?) — 0(G)] .

Note that for all Ge®, 0(G*) — 6(G) = 0 and if G is conjugate to T
then (G — 8(G) = (m + 1) —~ 2 =m —~ 1. By considering only con-
jugates of T in the above we obtain

18] = [®: Cy(T)l(m — 1) .

Note here that if & has an involution H fixing more than two points,
then H is not conjugate to 7 and 6(H? — 8(H) > 0. Thus the above
inequality is strict.

We have [Cx(T)| = (m — 1) and Cyx(T) permutes the set of points
{v,y} fixed by T. Hence since [Cx(T): &,, N Cx(T)] =2 we have
[®,,| = (m — 1)/2 with strict inequality if involution H exists. Since
o and §,, are conjugate, the result follows.

LEMMA 1.4. Suppose D = HB where BV is a regular normal
abelian subgroup of . We identily the set of points being permuted
with B U {} and use additive notation in B. Then every element

of ® can be written as D = <a(x§c+ b) with (a(xx)>e® and beB,

Let T = < fo(c@) and assume that T commutes with the permutation

r
—/°
(i) B=DUDTV = DU BTD.

(i1) For each ac B, there exists a unique <a?;x)> €D with

Then we have

@) + a) = fla@) — a) + fla) .

(iil) Let a be a subgroup of © normalized by T and containing
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all the (a?oc)) elements which occur above. Then & = (9,8, T> is

doubly transitive with ®.., = 9.
(iv) If <_xx)e© then T acts on the orbits of O on B.

Proof. Now G =DUDTD and ® = HBV = BH. Since T nor-
malizes © we have T = THV = HTL and DT = BHT = BTH so (i)
clearly follows.

Let Ve Bt be the permutation V = ( . f’f_ a)‘ Then TVTe® and

(2)TVT = (@)T # . Thus TVT ¢ DTV and hence

(e £ a)(rt) = (aw + ) (rm)a 5 o)

This is equivalent to

f(f@) + a) = fla@) +b) +c.

Note that (a"fx)>e@ and b,ceB. With o = « in the above we

obtain ¢ = f(a). Then x = 0 yields f(b) = — f(a) and since f2 =1,
b= f(— f(a)). Now by assumption 7 commutes with (—xx> S0

f(—x)=— f(x) and b :“—f2(a) = —a. Since (a?x»e&g is now
clearly unique, we have (ii).

By definition of © we have T®T = HBVTL and since T normalizes
D, =958 UDOVTV is a group. Since 8 2B, T, G is doubly transi-
tive. This clearly yields (iii).

Finally set x = — f(a) in the formula of part (ii). Since f(x) =
—a we obtain a(—f(a)) = @ or — a(f(a)) = a. Since (_ ﬁ(x)) €D, a
and f(a) are in the same orbit of . This completes the proof of
this result.

2. b/2-transitive groups. In this section we consider the transi-
tive extensions of the infinite families of solvable 3/2-transitive per-
mutation groups. We use the following notation and assumptions:

& is a b/2-transitive permutation group of degree 1 + m

@& is not a Zassenhaus group

c and 0 are two points

D=0, 9=0.=9,D is solvable,

Thus ® is a 3/2-transitive permutation group which is not a
Frobenius group. By Theorem 10.4 of [8] D is primitive and hence
@ is doubly primitive. Since D is solvable it has a regular normal
elementary abelian p-group B. Thus ® = $B and m is a power of p.
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LEMMA 2.1. Let R A® with & = <1>. Then & is doubly transi-
tive and has no regular normal subgroup.

Proof. We show first that & has no regular normal subgroup.
Suppose by way of contradiction that € is such a group. Since @ is
doubly transitive £ is a elementary abelian ¢-group for some prime gq.
Then BL is sharply 2-transitive so since B is an elementary abelian
p-group it follows that B is cyclic of order pand p +1 = |L|. Now
$ acts faithfully on B and hence  acts semiregularly on Bf. Thus
D = $B is a Frobenius group, a contradiction.

Now let A ® with & = (1). Since & cannot be regular and &
is doubly primitive, it follows that R is doubly transitive. If £ is a
regular normal subgroup of &, then 2 is abelian. This implies easily
that € is the unique minimal normal subgroup of & so LA G, a
contradiction.

The following is a restatement of Proposition 3.3 of [5].

LeMMA 2.2. Let D< T(p™) and suppose O acts ‘1/2-transitively
but mot semiregularly on GF(p*)t. Set & = {He | H = ax} so that
9 is isomorphic to a multiplicative subgroup of GF(p™). If 19, =E,
then:

(i) FEach 9, is cyclic of order k and k|n.

(ii) S2{ax|a = b, be GF(p")} where o is a field automor-
phism of order k.

(i) C (@’) = 9 except for p* =8, | 9| = 8.

@iv) Sg 18 characteristic and self centralizing in 9.

LeMMA 2.8, Let » > 2 and consider T(p™) as a subgroup of Sym
(GF(p™). Then T(p") & Alt (GF(p™)). Moreover we have the following:
(1) If a generates the wmultiplicative group GF(p")f, then

(&) € AltGFo™).
(ii) If n is even and ¢ is a field automorphism of order m,
then ( jj) e Alt (GF(p) if and only if p = 1 modulo 4.

(il) If n is even, then (_xx>eAlt (GF(p).

Proof. The group generated by (awx> acts regularly on GF(p")*

and hence (fw) is a (p" — 1)-cycle. Since p > 2, p* — 1 is even and

hence ( axx) is an odd permutation. This also yields the contention
that T(p™) £ Alt (GF(p™)).
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1

(ii) Let ¢ be an integer and suppose that for some r» =1, ¢ ' =
+ 1mod 2+, Then ¢* ™' = +1 + \2*

”

qZ — (qzr—l)z — (i 1 + K27+1)2 — 1 i )\127-}—2 + K2221+2 .

Since » =1, 2r + 2= r + 2 and hence ¢* = 1mod 2°°, Now if ¢ is
an odd integer, then ¢ = + 1mod4, and thus by the above and
induction we obtain for » > 1, ¢* ' = 1mod 27+,

Let n = 2's with s odd. We can write ¢ = 7o where t has order

2" and p has order s. Clearly (aa;,)eAlt (GF(p™)) if and only if

(;) ¢ Alt (GF(p"). It is easy to see that if q — p°, then (;) has
(@ — ¢&7")/2" cycles of length 2¢ for ¢ = 1,2, ..., 7. These cycles are
all odd permutations so (;ﬂ) has the parity of Xj(¢* — ¢*™")/2". Now

q is odd and
(¢F — ¢ )2 = ¢ (¢ — 1)/2° .

By the above, if 7> 1 then 2¢'|(¢*" —1) and hence (;;,) has the
parity of ¢(q¢ — 1)/2. If ¢ = 1mod 4 then this is even and if ¢ = — 1 mod
4 then this term is odd. Finally since s is odd and ¢ = p°® we see that
¢ = p mod 4 and (ii) follows.

(iii) _xx is a product of (p" — 1)/2 transpositions. If = is
.even, then 4| (p" — 1) and the result follows.

We will consider these transitive extensions in four separate cases.
PROPOSITION 2.4, If © = Sy(p"), then p* = 3 and I'(3%) < & < I'"(3?).

Proof. Since D is 3/2-transitive we have p = 2. Let G be the
central involution of = T\(p*) and let H be another involution.
Then G fixes precisely two points and H fixes p” + 1 > 2 points.
Since the degree of & is 1 + p*™, Lemma 1.3 yields

4p" — 1) = [Tpm) | =D > (@ — 1)/2

or 7> p*. Thus p" =3 or 5.
Since & is doubly transitive we can find T conjugate to G with
T=(0c)---. Then T normalizes  and centralizes its unique

central involution G= #ac <) By Lemma 1.4 (iv), T acts on each

orbit of © on Bf., Now if ve B then |H,| = 2. This implies easily
that if H is a noncentral involution of §, then H7” is conjugate to
Hin . Let p~ =5. Then 9 is easily seen to be generated by its
noncentral involutions so 7S 9. Thus [9: Cy(T)] =197 = 19| =
2 and ]C&,(T)I = 8. On the other hand C(T) acts on the fixed points
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of T namely {a, b}, so [CS(T) :Cy(T)N D] =2. Since |9,| =2, this
is a contradiction.

Finally let p” = 3. Here T,(3) is a dihedral group of order 8 and
Sy(8) = 8S(3%). This case is then included in Proposition 2.7 and we

obtain I'(3") < < I'(3%). By order considerations & = I"(3%) so this
results follows.

ProposiTION 2.5. If DS S(2") then ['(2") < @ = I'(27).

Proof. Let 1 bea point. Then &, has a regular normal elementary
abelian 2-group. Let T be an involution in this subgroup. Then T
fixes precisely one point. Say T = (0 «)(1) --- and use the notation

of §1. It is easy to see that we can assume that point 1 corresponds
to the unit element of GF(2).

Now T normalizes . If He Cy(T), then 1H = (1T)H = 1H)T
so T fixes 1H and hence HS 9,. In particular in the notation of
Lemma 2.2, Cy(T)=<1). Then 97 = 9. Since /D is abelian,
(D/9)-" is a group and hence 7 is a group containing 9. If
He 9", then H” = H* so -7 is abelian. By Lemma 2.2 (iv),
97 = 5. Now [&7[[Cy(T)| =9I, |$]19:] = |9 and Cy(T)S 9.
This yields Cy(T) =, and $ = £9,. The latter shows that each
orbit of © on GF(2)* has size | 9|, an odd number.

In characteristic 2 the permutation _x . is trivial so by Lemma

1.4 (iv) T acts on each orbit of  on GF(2")!. These orbits have odd

size so T fixes a point in each orbit. Thus there is only one such
orbit and 9 is transitive. This yields

97 =9 = {be | be GF(2")} .
IfH:(&)tMnHﬁ:Hﬂm

(£t) %) = (52)( )

and b'f(x) = f(bx). At x = 1 this yields f(b) = b~ and hence we see
that f(z) = 1/x for all x.

Finally, since @ = D U DTDB, the result follows easily.
The following is an easy special case of a recent result of Bender

([1D.

PROPOSITION 2.6. If D= S(p”) with p # 2 and D] is odd, then
T(p™) < &= I(p").

Proof. Since ® is doubly transitive it has even order. Let T
be an involution in ® with 7 = (0 =) ---. By assumption T fixes
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no points. We use the notation of Lemma 2.2, Then T normalizes
both § and §. We show now that 7 centralizes the quotient $/9.
If not, then since /9 is abelian and has odd order, we can find a
nonidentity subgroup W< 9/ on which T acts in a dihedral manner.
Then dihedral group (B, T) acts on . Since § is cyclic, Aut § is
abelian and hence B = (W, T’ centralizes 9. This contradicts the
fact that O is self centralizing in 9.

Set T=9BAD so that D/T = /9 is cyclic. Since D/T has
odd order, we see easily that the hypotheses of Lemma 1.2 are satisfied.
Hence there exists 8 A ® with RN D =2T. Now D is maximal in &

and contains no nontrivial normal subgroup of ®&. Hence & = 8D
and G/ = D/(& N D) has odd order and T e K.

By Lemma 2.1, & is doubly transitive and has no regular normal
subgroup. Furthermore R, = = $B and LB is abelian. Thus K is
a Zassenhaus group and the result of Feit ([2]) implies that 7 is a
permutation of the form v ) and |9| = (p* — 1)/2. Since G =

— ajx
DU DTY, the result follows easily.

PropOSITION 2.7. If DS S(p”) with p = 2 and |D| is even, then
T'(p™) < @ < I'(p™).

Proof. We proceed in a series of steps.
Step 1. 9 has central element <_mm) of order 2. 9 is normalized

by involution T = (fa(cx)) with 7= (0 o)(1)(—~1)--... The fixed

points of T are precisely 1 and — 1 and T centralizes _mx so Lemma

1.4 applies. In the notation of Lemma 2.2 we have one of the following
two possibilities.

(i) $=9"" and [9:59] =2 or

(i) [D:9"1=2 and $ = 99
In either case [H:9.]=2|9"T]|.

Now by assumption 2||D| so since p =2, 2||9|. If 2/|9],
then certainly  has a central element of order 2. This is of course

the permutation (_x x) which fixes precisely two points. Suppose

2419| and let He have order 2. Since H # (_x »)» H must have
a fixed point on Bf. Hence ZLI 9.l. If pis a field automorphism of
order 2, then by Lemma 2.2, 92 {b' 2| be GF(p")*}. Since this latter

group has order (p* — 1)/(p"* — 1) = p"* + 1 and this is even we have
a contradiction.

Since & is doubly transitive we can choose T conjugate to (_xx)
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with 7= (0 =) ---. Then T fixes precisely two points and T
normalizes . We can clearly write the latter group in such a way
that 7T fixes point 1. Clearly T centralizes (_x %> e soif T = < f@)),

then f(—#) = — f(z). This shows that T also fixes —1 so T =
(0 o)(I)(— 1) ---.
Let HeCy(T). Then 1H = (1T)H = (1H)T so 1H = 1 and

H e<<_mf6)>®l. On the other hand since o, fixes 1 and — 1 and
T is central in &,,_,, we see that CQ(T)2<<_WW>> 9, so CJD(T) =

<<—%“c>> i

Now T acts on $ and Cy(T) :<<_x%>>. Thus since $ is

abelian, 97 is a group and [D: 97| = 2. Now 97 A $ and O/HT
is abelian since /97 is central in this quotient and $/9 is cyclic.
This implies that 7 is a group so 97 is abelian and centralizes
9 <97, By Lemma 2.2 (iii), D7 &9 with the possible exception of
p* = 3* and 9 dihedral of order 8. However in the latter case | /9| = 2
so clearly "< 9.

We use the fact that | 9] = |91 | Co(T)| and Cy(T) = <(_xx)>sa
Suppose first that © = $~". Then [9:99] =2 and we have (i).
Now let [$:9'-7] =2. Then [©:99,] =1 and we have (ii). This
completes the proof of this step.

Step 2. For each ae GF(p")* we have

(") SF @) + a) = fla's” —a) + fla)

where <a?“;cg> e and o' = —a/f(a)’. Let g denote the set of all field
automorphisms ¢ which occur in the above. If g = {1}, then

I'p" <SS I(p”) .

Equation (*) follows from Lemma 1.4 (ii). Setx = — f(a) = f(— a)
in (*). Then ¢’z° —a =0 so o’ = — a/f(a)°. Suppose now that g =
{1}. This implies by Lemma 1.4 (iii) that & =<9, 8, T is doubly
transitive with &., = . Hence ® is a Zassenhaus group. Let £ =
{Heg | H" = H™} so that ¥ is a subgroup of 9 containing (_'Tx>.

With T = 28 A OV we see easily that the hypotheses of Lemma 1.2
hold. Hence there exists & A ® with &N (9B) = ¢B. Since & is
doubly transitive and R 28 we see that & £ HB. Hence & is doubly

transitive and (_xﬁ) c & By Lemma 1.3, |2 = (p* — 1)/2.
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Let I = {b e GF(p™)} (wa) € 8} Thus M is a subgroup of GF(p™)*

of index 1 or 2 and in particular MM contains all the nonzero squares
in GF(p"). Note that for all be I, f(bx) = b~'f(x) and at « = 1 this
yields f(b) = b7,

Let ae MM in (*) and let « = 1. Since g = {1}, &'’ = — a* and we
obtain

S+ a)=f(—a —a) + fla)
=—af1l+a)+at.

This yields f1 +a) = 1 + a)™*. If beIN, then
Ol +a)=b"f1+a)=0""A+a)".

Since M contains the squares in GF(p")* and every element of the
field is a sum of two squares, the above yields f(x) = 1/x. Since
G =DUDTY and |H| = (p" — 1)/2 the result follows here.

Step 3. Let %={bcGFo|(f)eo}. Let oeg— (L.
Then 0*=1 son is even. Set S ={beGF(p")|b°*eR}. If beR
and b+ 1¢&, then b =b. Furthermore, if » = [GF(p")*:R] and
s = [GF(p™)*: &] then we have

(i) r=2,4 or 6.

(ii) s =r/(g.c.d{r, p"* — 1}) < r/2.

Define £ A D as follows. If £/ has odd order, set T = $B. If
£/9 has even order and /D is its subgroup of order 2, set T = WV.
By Step 1 it follows that the hypotheses of Lemma 1.2 are satisfied

here. Thus there exists 8 A® with £ 1D =2. Since (_xx)e@
and 7T is conjugate to <—x x) in @, it follows that Te ®. Thus & is

doubly transitive with . = T and R., = © or . Applying the uni-
queness part of Lemma 1.4 (ii) to both & and @ we conclude that in

equation (*), ( a'xw"> e or W. Hence if ¢ =1 then o> = 1 and = is even.

We now find » and s. By Step 1, 2|9 7| =[D:9D:]. Since 9 is
half-transitive [ : 9.] || GF(p")*| so ris even. Set £ = &.,. By Step
1 and the definition of & we have one of the following three possibilities:
1) L= [£:9771=2 2 =98,(&(=2,[$:97=2 @) [2:
9]1=29=9"". We apply Lemma 1.3 to f since Tef. In cases
(1) and (3) above we have |2| = (p" — 1)/2 so |H* 7| = (p" — 1)/4. In
case (2) since | &,| = 2 we have | & > (p" — 1)/2 and | 7| > (p" — 1)/8.
Hence either » < 4 or » < 8. Since r is even we have r = 2,4 or 6.

Now ¢ acts on the cyclic quotient GF(p*)*/R like x — «*"* since
o has order 2. Thus [&/R| = g.c.d.{r, p** — 1} = 2 since r is even.
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Hence we have (i) and (ii).
Now suppose ¢ occurs in equation (*) and let b satisfy beR,
b+1e8. Set x = f(ba) = b~*f(a) in (*) so that f(x) = ba and

fl@) = fba + a) + flaf(@)~b~°f(a)” + a)
= f((b + Da) + f(b~(b° + 1)a).

Now b’cRand since b + 1S we have (b°+1)/(b + 1) = (b + 1) e R,
Thus

O~ + 1)a) = b°f((b° + 1)a)
= VAL + 1/(b+ 1] + 1)a)
= [b°(b + 1)/(b° + D)]F((d + L)a) .
This yields
fla) = f((b + L)a) + [6°(6 + 1)/(b° + ]S (b + 1)a)
and hence
S((d + Dya) = [(b° + 1)/(bb° + 2b° + 1)]f(a) .

Now b'eR and b+ 1=0bb+ 1)eS so applying the above
with b replaced by b yields

SO+ Da) = [(07° + 1)/(070° + 20~ + 1)]f (@)
= b(b° + 1)/(bb° + 2b + 1)]f(a) .

Finally
S0 + Da) = f(b7(b + Da) = bf((b + 1)a)

so the above yields clearly b = b°.

Step 4. Proof of the theorem. Let N, denote the number of
ordered pairs (x,y) with x,yeGF(p*) and y* — 2" — 1 =0. By [7]
(page 502) we have |N, — p*| < (r — 1)(s — 1)p"* so that

N, = p"— (r — 1)(s — Dp*.

Let N} count the number of solutions with zy = 0 so that N} >
N, — r —s. Finally let N count the number of pairs (7, y¥*) with
¥y —a"—1=0 and 2y = 0. Clearly N = Ni/rs so

Nz[p"—(r—1)(s—Dp"" = (r + s)l/rs .

Note that R = {&" |2 e GF(p")*} and & = {y*} so that N counts the
number of beR with b + 1.

Suppose we do not have I'(p") < @< I'(p*). Then by Step 2,
g#{1}. Let oecg with o+ 1. By [Step 3 we have n even, ¢° =1
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and for all becR with b 4+ 1e®, b is in the fixed field of ¢. Thus
p™* > N and

P> [p* — (r — (s — Dp""* — (r + 9)]/rs
or

**) (r + s) > p*[p™* — (r — 1)(s — 1) —rs].

Let us consider n = 2 first. Clearly = £9, here since $ does
not act semiregularly. We have » = 2,4 or 6. Suppose r = 6. Then
clearly [T(p™) : ] = 3 and hence by Lemma 2.3, $ Z Alt (GF(p") U {c0})

but (_xw> is in the alternating group. Apply Lemma 1.3 to doubly
transitive ® N Alt (GF(p™) U {e}). We obtain

|9 N AL (GF(p™) U {c]) | = (p* — 1)/2

so | 9| = (p~ — 1). This contradicts the fact that | 9| = 2(p" — 1)/3.
Thus r = 6.

Let » =4. If p =1 modulo 4, then by Step 8 (ii), s = 1. Then
equation (**) yields p < 5, a contradiction. Let » = — 1 modulo 4.
Since r = 4 we see that < Alt (GF(p™) U {eo}) but by Lemma 2.3 (ii)
O, L AL (GF(p™) U {==}). Applying Lemma 1.4 (ii) to doubly transitive
©& N Alt (GF(p™) U {==}) yields g = {1}, a contradiction. Finally if » = 2,
then s = 1 and (**) yields no exceptions.

Now let n >2 so n is even and n>=4. Since r<6, s<3
equation (**) becomes 9 >p"*[p"* —28] or p"* < 28. Hence we have
only p” = 34 5' and 3°. Note that »|(»" — 1) so that if p = 3 then
r = 2 or 4, This eliminates p" = 3% and by (**) we must have p" = 3¢,
r=4 or p =5, r=6. If p~ =3 r =4, then Step 3 (ii) yields
s =1 and this contradicts (**). Finally let p» =5 r=6. If a =
42 in GF(5*) then

@C+a+40®)+1=aqa+ 3& + 2¢° = (2 + 3a® + 2a%)°.

Hence if b=4+ a + 3a* + 2a° then beR, b +~ 1ecSand b° = b, This
contradicts Step 3 and the result follows.

3. The main result. We now combine the preceding work with
the main result of [4] to obtain,

THEOREM 3.1. Let ® be a 5/2-transitive permutation group which
18 mnot a Zassenhaus group. Suppose that the stabilizer of a point
1s solvable. Then modulo a possible finite number of exceptions we
have I'(p)2® > ['(p™) for some prime power p*.

Proof. The group ®. is a solvable 3/2-transitive group which is
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not a Frobenius group. By the main theorem of [4] we have either
6. < S(p™), G.. = Sy(p™) with p = 2, or &., is one of a finite number
of exceptions. The result therefore follows from Propositions 2.4,
2.5, 2.6 and 2.7.

Presumably we can find the possible exceptions here without
knowing all the exceptions in the 3/2-transitive case. This is the
case since the existence of a transitive extension greatly restricts the
structure of a group. However it appears that we still have to look
closer at normal 3-subgroups of half-transitive linear groups. For
example, if we can show that for such a linear group 9, 0,(9) is
cyclic, then we would know (see [4]) that (1) if p = 2, then G.. = S(2"),
(2) if p+2 and |®.| is odd, then &.= S(p*), 3) if p = 2 and | G.. |
is even, then = &, has a central involution. Here &, has degree
p™. Hopefully these normal 8-subgroups will be studied at some later
time,

Finally we consider the possible transitive extensions of these
5/2-transitive groups.

THEOREM 3.2. Let ® be an (n + 1/2)-transitive permutation group
ond let D be the stabilizer of (n — 1) points. Suppose that D is
solvable and not a Frobenius group. If n =3 then & = Sym,, .

Proof. We note first that if & = Sym, ., then & is (n 4 3)-tran-
sitive and hence (n + 1/2)-transitive. Also ® = Sym, is solvable and
not a Frobenius group. Thus these groups do occur.

To prove the result it clearly suffices to assume that » = 3 and
to show that & = Sym,. Let n = 3 and let «, 0,1 be three points.
Set 8 =0, =0, =0,. Then & is 5/2-transitive and by
Lemma 2.1, & has no regular normal subgroup. We know that O
has a regular normal elementary abelian subgroup L so D = HB.
Since B is abelian and ® is primitive, ¥ is the unique minimal normal
subgroup of ©®. Hence L is characteristic in © and $ acts irreducibly
on B, Since D is not a Frobenius group, we cannot have |B| = 3.
Further ¥ is elementary so we cannot have |¥| = 8 with ¥ having
a cyclic subgroup of index 2. By Theorems 1 and 3 of [6] we must
therefore have [T| =4 or 9 and hence deg & =8|+ 2 =6 or 11,
Suppose deg & = 6. Since ®& is 7/2-transitive we have |&| > 6-5-4
s0 [Sym; : ] < 6. Hence ® = Alt; or Sym,. If & = Alt, then D = Alt,,
a Frobenius group. Thus we have only & = Sym; here,

We now assume that |8} =9 and derive a contradiction. Now
B contains an element of order 3 fixing precisely two element, Since
& is triply transitive, & contains W a conjugate of this element with
W = (a)(0)(0 o= 1) --. . Hence W normalizes . If He Cg(W), then
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aH = (aW)H = (aH)W so aH = a or b and hence |Cy(W)| =< 2(9,|.
If W acts trivially on ©, then [ : $,] = 2 and since 9 is half-transi-
tive, it must be an elementary abelian 2-group. This contradicts the
fact that © acts irreducibly on 8. We have D = GL(2, 3) and W acts
nontrivially on . Further $ acts irreducibly so 04(9) = {1).

If 3/ |9]|, then  is a 2-group with a cyclic subgroup of index
2 which admits W nontrivially. Since $ acts irreducibly we conclude
that © is the quaternion group of order 8. Then D is a Frobenius
group, a contradiction. Hence 3 ||| so since 04(9) =<1) we have
9 = SL(2,38) or GL(2.3). Let O = 0,49). Then Q is the quaternion
group of order 8. It acts regularly on 8 points and fixes 3. Now
S, a Sylow 3-subgroup of <9, W) is abelian of type (3,3) and acts
on L. Hence there exists Se®&' with S centralizing Q. From the
way L acts as a permutation group it is clear that S is a 3-cycle,
in fact S = (0 1) or (01 ). Since ® is triply transitive it contains
all 3-cycles so @ = Alt,,. Thus ©2 Alt, and this contradicts the
solvability of ©. This completes the proof.

In a later paper, “Exceptional 3/2-transitive Permutation Groups”
which will appear in this journal, we completely classify the solvable
8/2-transitive permutation groups. Moreover the exceptional groups,
which have degrees 3%, 5° 7% 11% 17* and 3‘, are shown to have no
transitive extensions. Thus no exceptions occur in our main theorem.
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