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It is generally known that if I is a <7-compact metric
space, then every Borel measure on X is regular. It is not
difficult to prove a slightly stronger result, namely that the
same conclusion holds if X is a Hausdorff space in which
every open subset is σ-compact (1.6 below). The converse is
not generally true, even for compact Hausdorff spaces; a
counter-example appears here under IV. 1. However, it will
be shown in § II that every nondegenerate Borel measure on a
nondiscrete locally compact group is regular if and only if the
group is cr-compact and metrizable. A similar theorem, proved
in § III, holds for dyadic spaces: every Borel measure on such
a space is regular if and only if the space is metric.

The result for groups depends on two structure theorems
which are proved here: every nonmetrizable compact connected
group contains a nonmetrizable connected Abelian subgroup
(11.10), and every nonmetrizable locally compact group contains
a nonmetrizable compact totally disconnected subgroup (11.11).

In § III, it seems that the separable case requires special attention:
a theorem is proved which has as a corollary that every separable
dyadic space is a continuous image of {0,1}C (III.3 and III.4), and one
lemma (III.6) uses a weakened version of the continuum hypothesis.

I* Regular and irregular measures*

1. Let X be a topological space, M a σ-algebra of subsets of X,
and μ a (countably additive, nonnegative) measure function whose
domain is M. The system (X, M, μ) is called regular measure space
and μ is called a regular measure in case

(1) μC < °o for all compact C G M ;
(2) μS = inί{μU: U open, UeM, Uz)S} for all SeM;
(3) μjj = sup{μC:C compact, CeM, Ca U} for all open UeM.
For lack of a better term, a measure μ will be called totally

regular if it satisfies the more exclusive definition of regularity favored
by some authors (e.g., Halmos in [5]), namely:

μS = sup {μC: C compact, C e M, C c S}

= inί{μU: U open, UeM, UZDS} for all SeM .

REMARK 2. According to [7], (10.30) and (10.31), any σ-finite
regular measure on a Hausdorff space is totally regular; the proof as
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given is for Radon measures but almost exactly the same argument
will work for any regular measure.

3. A measure μ will be called irregular if
(1) μ is not regular;
(2) μC < oo for all compact CeM;
(3) μ is nondegenerate: i.e., μ has values other than 0 and coφ

4. Let X be a topological space. B(X) is defined to be the
smallest <7-algebra containing the closed subsets of X. A Borel meas-
ure on X is a measure defined on B(X) which assigns finite measure
to each compact member of B(X).

5. Note. Research on nonregular measures has appeared in [12],
[13], and [14], and examples of irregular Borel measures are to be
found in [5] and [7]; see II.2 and IV.2 below.

It is clear that the construction of a nonregular degenerate measure
on a space which is not σ-compact presents no problem: simply assign
measure 0 to sets which are contained in σ-compact sets, and measure
oo to other sets.

LEMMA 6. Let X be a topological space such that every open
subset of X is the union of countably many closed sets. Let μ be a
σ-finite Borel measure on X. Then

μB = sup {μF: F closed, FaB} = inf {μU: U open, UZDB)

for all B e B(X).
(This result is due to E. Zakon [16],)

THEOREM 7. Let X be a Hausdorff space. If every open subset
of X is σ-compacty then every Borel measure on X is totally regular.

Proof. This follows easily from the preceding lemma.

COROLLARY 8. Every Borel measure on a σ-compact metric
space is regular.

II* Locally compact groups* All topological groups in this
section are assumed to be Hausdorff.

THEOREM 1. Let G be a locally compact group which is neither
σ-compact nor discrete. Then G admits an irregular Borel measure.

Proof. Let λ be a left Haar measure on G. For B e B(G), define
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vB = sup {λC: C compact, C c S}. To show that v is a nondegenerate
Borel measure is a routine exercise. Now let H be an open σ-compact
subgroup of G, and let A be a subset of G containing exactly one
element of each left coset of H. Clearly A is closed and, by the
argument in [6], (16.14), λ̂ 4 = oo but A is locally λ-null, i.e., vA = 0.
Since vU — &° for each neighborhood U of A, v is irregular.

[See IV.2 for an example.]

2. Let Ω denote the first uncountable ordinal and Γ denote an
arbitrary ordinal with no countable cofinal subsets, following the
standard convention whereby an ordinal is identified with the set of
its predecessors.

THEOREM. Let Xo = Γ with the order topology. For B e B(X0),
define

(1 if B contains a closed cofinal subset of XoμB = \
(0 otherwise .

Then μ is an irregular Borel measure on XQ.

Proof. The argument is essentially the same as that required
for the special case Γ = Ω, which appears as an exercise in [5] (p. 231).
Using a variation of the "interlacing lemma" as in [1], it can be shown
that the intersection of countably many closed cofinal sets is cofinal;
thus a member of B(-XΌ) has measure 1 if and only if its complement
has measure 0 and the union of countably many sets of measure 0 has
measure 0 also, so that μ is indeed a Borel measure. The measure
is irregular as μXQ = 1 while μC — 0 for every compact subset C of Xo.

COROLLARY 3. Let Xλ = Γ U {Γ} with the order topology and
let X be a Tλ space. Suppose that there is a continuous function h
from Xί into X such that h^{{hΓ)} is not cofinal in Xo. Then X
admits a finite irregular Borel measure.

Proof. It is easy to verify that h~ι(B) Π Xo is in B(X0) whenever
B is in B(X). Let μ be the irregular measure defined in II.2 and
define v on B(X) by vB = μ{h~ι{B) D Xo); evidently v is a Borel meas-
ure, which is irregular since v{h(Γ)} = 0 but vU = 1 for each neigh-
borhood U of h(Γ).

EMBEDDING THEOREM 4. Let X± = Ω\j {Ω} with the order to-
pology. Xλ is homeomorphic to a subspace of {0,1}Ω (with the product
topology).
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Proof. For a e Xu define h(a) in {0,1}Ω by

(0 if a ^ β

Evidently, h is one-to-one. Each coordinate function hβ is con-
tinuous from X1 into {0,1}; thus h is continuous.

COROLLARY 5. Any space which contains {0,1}Ω as a closed
subspace admits a finite irregular Borel measure.

REMARK 6. According to a theorem of Ivanovskii et. al. ([6],
(9.15)), every nonmetrizable compact totally disconnected group is
homeomorphic to {0, l}m for some uncountable m. By II.5, every such
group therefore admits an irregular Borel measure; this is a special
case of corollary 11.12 below. In order to prove 11.12 in general, we
show that every nonmetrizable locally compact group has a non-
metrizable compact totally disconnected subgroup.

LEMMA 7. Let G be a locally compact group with identity e
and closed normal subgroup H. If H and G/H are both metrizάble,
then so is G.

Proof. This follows from (8.5) of [6], together with the con-
tinuity of the natural homomorphism.

LEMMA 8. Let G be a torsion-free Abelian group of rank r.
Then there exists a subgroup K of G such that G/K is a torsion
group and card (G/K) Ξ> r + 1. If G is uncountable, then card (G/K) =
card (G).

Proof. Let L be a maximal independent subset of G, let Ko be
the subgroup generated by L, and (using additive notation) let K = 2K0.
By the maximality of L, G/Ko and therefore G/K are torsion. If a
and β are distinct elements of L, then a $ K and a — β & K by the
independence of L. Thus card (G/K) ^ card (L) + 1 = r + 1. A stand-
ard argument (e.g., see [4], p. 32) shows that if G is uncountable then
card (G) = r, so that card (G/K) = card (G).

THEOREM 9. Let G be a nonmetrizable compact connected Abelian
group. Then G contains a nonmetrizable compact totally disconnected
subgroup.

Proof. Let Γ be the dual group of G; Γ is an uncountable discrete
torsion-free Abelian group and thus, by the previous lemma, has a
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subgroup K such that Γ/K is an uncountable torsion group. Let
H = {ge G: y(g) = 1 for all 7 e K}; H is a subgroup of G, topologically
isomorphic to the dual group of Γ/K, and therefore compact, non-
metrizable, and totally disconnected. (See [6], (23.25), (24.26), and
(24.15).)

LEMMA 10. Let G be a nonmetrizable compact connected group.
Then G contains a nonmetrizable compact connected Abelian group.

Proof. Let H be any maximal Abelian subgroup of G; according
to [9], H is connected and every maximal Abelian subgroup of G is
a conjugate of H. Let V be any intersection of countably many
neighborhoods of e. By [6], (8.7), V contains a compact normal sub-
group N oί G such that G/N is metrizable. Suppose NnH = {e};
then N Π H' — {e}, where H' is any other maximal Abelian subgroup
of G. Consequently N — {e}, which is impossible since G is not metri-
zable. Thus V Γ\ Hz) Nf) H =£ {e}, and thus H is not metrizable.

THEOREM 11. Let G be a nonmetrizable locally compact group.
Then G contains a nonmetrizable compact totally disconnected sub-
group.

Proof. (1) Assume G is compact. Let C be the component of e
in G. If C is metrizable, then there exists a compact normal sub-
group H of G such that H Π C = {e} and G/H is metrizable; by II.7,
H is not metrizable. The natural homomorphism g~+gc is a topological
isomorphism of H onto CH/C, a subgroup of the totally disconnected
group G/C ([6], (7.3)); H is therefore totally disconnected. If C is
not metrizable, then C contains a nonmetrizable compact totally dis-
connected subgroup, by II.9 and 11.10.

(2) Now suppose G is not compact. By part (1), we have only
to show that G has a nonmetrizable compact subgroup. Let H be an
open compactly generated subgroup; by [6], (8.5) and (8.7), H is not
metrizable and has a compact normal subgroup N such that H/N is
metrizable, and thus N is not metrizable.

COROLLARY 12. Every nonmetrizable locally compact group ad-
mits a finite irregular Borel measure, concentrated on a compact
totally disconnected subgroup.

This follows from the remark in Π.6. Combining 11.12 with II.l
1.8, we have:

THEOREM 13. Let G be a nondiscrete locally compact group.
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Then every nondegenerate Borel measure on G is regular if and only
if G is o-compact and metrizable.

ILL Dyadic spaces*

1. A dyadic space is a Hausdorίf space which is the image, under
a continuous mapping, of {0,1}Λ for some set A, where {0,1} is discrete
and the product has the product topology. According to a standard
theorem, every compact metric space is a dyadic space; thus a dyadic
space is any Hausdorίf space which is a continuous image of a product
of compact metric spaces. Recent interesting papers on dyadic spaces
include [2] and [3], which contain references to earlier writings.

THEOREM 2. Let X be a dyadic space. Then every Borel meas-
ure on X is regular if and only if X is metric.

Proof. If X is metric, then every Borel measure on X is regular,
by 1.8; to prove the converse statement, some preliminary results have
to be established, as follows:

THEOREM 3, Let X be a dyadic space and D a dense subset of
X. Then there is a continuous function from {0,1}2D onto X.

[See [3], Theorem 1, for related result.]

Proof. Let / be a continuous function from {0,1}4 onto X.
Choose Ed {0,1}4 such that / \E is one-to-one and f(E) - D. Define
an equivalence relation ~ on A as follows: a ~ β in case xa — xβ for
all x e E. Define u{a) = {x e E: xa — 1} and U = {u(a): aeA}; clearly
u(a) = u(β) if and only if a ~ β. Define a mapping g from {0,1}^
into {0,1}A by [g(t)]a = ga(t) = tu{a) for each t = (tu{a)) in {0,1}U and

•each a in A. Each ga is continuous from {0,1}U into {0,1), thus g is
continuous, and / o g is a continuous mapping from {0,1}U into X.
The image of g in {0,1}* is the set {x: xa = xβ whenever a — β}, which
contains E. Thus / o g is a continuous function from {0,1}Γ onto a
dense compact subset of X, which must be X itself. Now card U
^ 2card2? = 2cardZ); thus there is a continuous function from {0, lfD

onto X.

COROLLARY 4. A dyadic space is separable if and only if it
is a continuous image of {0,1}C.

Proof. By [11], Theorem 1, {0,1}C (and every continuous image
thereof) is separable. The converse follows from III.3.
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THEOREM 5. Let X be a topological space and let {Xa: a < Γ}
be a nondecreasing transfinite sequence of proper closed subsets of
X with U Xa dense in X. Let A be a subset of Γ. Then the follow-
ing statements are equivalent:

(1) A is cofinal in Γ.
(2) \J{Xa:aeA} = \J{Xa:a<Γ}.
(3) \J{Xn:aeA} is dense in X.

Proof. It is clear that each of (1) and (2) implies the statement
following it. To show that (3) implies (1), suppose A has an upper
bound a{<Γ. Then \J{Xa: a e A} c Xao, which is a proper closed
subset of X, and so \J{Xa:aeA} is not dense in X, contradicting (3).

[Note: To prove the next lemma, we assume a weakened version of
the continuum hypothesis, namely that c = y^ for some j = 1, 2, •].

LEMMA 6. Let X be a nonmetric dyadic space. Let Γ be the
smallest ordinal such that X contains a nonmetric subspace which
is a continuous image of {0, l}r. Then Γ does not have a countable
cofinal subset.

Proof. Let XΓ be the continuous image of {0,1}Γ referred to in
the hypothesis; Γ is uncountable since XΓ is not metric. If XΓ is
separable, then card (Γ) ̂  c, so by the note above, Γ does not have
a countable cofinal subset. On the other hand, if XΓ is not separable,
let / be a continuous function from {0, 1}Γ, onto XΓ and for a < Γ let

Fa = {y:ye {0,1}Γ, yβ = 0 for all a ^ β < Γ} .

Let Xa = f(Fa). \JFa is dense in {0,1}Γ and thus \JXa is dense in
XΓ. Now, for each a < Γ, Fa is homeomorphic to {0, l}α, thus Xa is
a compact metric (hence closed and separable) subspace of XΓ. Since
XΓ is not separable, it is impossible for the union of countably many
Xa to be dense in XΓ, and therefore by III.5, Γ does not have a
•countable cofinal subset.

Proof of 111.2 (Conclusion). Suppose X is a nonmetric dyadic
space. Let Γ and XΓ be as in III.6; let / , Fa, and Xa(a < Γ) be as
defined above. Since Γ has no countable cofinal subset, \JXa Φ Xι

(by [2], Corollary 1.). Choose h(Γ) in {0,1}Γ such that f(h(Γ))
Let A = {a < Γ: h(Γ)a = 1}; then we have

Γ

h(Γ) e {0, ψ -UFa = Πa ({0, IK - Fa)

= Γίa {y: yβ = l for some a ^ β < Γ) ,
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thus A is cofinal in Γ and so has no countable cofinal subset. Let
JCi = A U {Γ} with the well-ordering inherited from Γ U {Γ} and with
the order topology. Define a function & from Xx into {0,1}Γ coordi-
natewise by

(1 if βeA and β<a
[h(α)]β = /ι«(α) = J
L v Ĵ  >\ | 0 o t h e r w i s e

for α e A and β < Γ; h(Γ) has already been defined. By the definition
of the topologies of X1 and {0,1}, each coordinate function hβ is con-
tinuous, thus, h is continuous. It is obvious that h is one-to-one.
Now /oft is a continuous function from Xx into X, and (/oh)~\Γ) —
{Γ}, for if α e A then /o h(α) e Xα, but / o h(Γ) = /(Λ(O) ί -Σ«. S*n<*
A has no countable cofinal subset, II.3 applies and X admits an ir-
regular Borel measure.

COROLLARY 7. Every nonmetrizαble locally compact group ad-
mits a finite irregular Borel measure, concentrated on a compact
subgroup.

Proof. 11.11(2) of this paper shows that a nonmetrizable locally
compact group has a nonmetrizable compact subgroup. According to
a theorem of Kuzminov, [6] p. 106, every compact group is a dyadic
space.

The reader will note that this corollary is a less precise version
of 11.12.

8. (A concluding remark on finite irregular measures.) A meas-
ure v is continuous if each point x e X is an element of a set of
measure; 0; v is atomic if it has an atom, i.e., a measurable set A,
such that vA > 0 and such that, when S is a measurable subset of
A, either vS = 0 or vS = vA.

THEOREM. Let X be a Hausdorff space and let (X, M, v) be a
measure space with v = vγ + v2i where vt is a finite continuous atomic
measure. Then v is irregular.

Proof. We assume without loss of generality that v2 = 0 and
{x} e M for all xeX. Let A be an atom and let C = {C: C e M, C com-
pact, C c i , vC = vA}. If C = 0 , v is irregular, according to 1.2.
If C Φ 0 , then f\C Φ 0 as C is a collection of closed compact seta
with the finite intersection property. Let x e ΠC. If C is a compact
measurable subset of A — {x}, then vC = 0 as CaA and a g C. But
v(A — {#}) = yA > 0, thus v is irregular.

It will be noted that the finite irregular Borel measures described
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in §11 and §111 are atomic. The author is not aware of any finite
irregular measures that do not have the properties described in the
theorem above.

IV* Examples^

1. Let X be the one-point compactification of a discrete space
of cardinality ^ 1 # Evidently, every subset of X is either open or
closed (or both), and thus a member of B(X). Every Borel measure μ
on X is therefore a finite measure defined on all subsets of X, and so,
by a theorem of Ulam [15],

= sup {μA: A is finite and A c E]

= inf {μS: X - S is finite and BczS} .

Thus μ is totally regular. However, any uncountable subset of X — {co}
is an open set which is not σ-compact.

This example provides a comment on II.3; we cannot weaken the
hypothesis by eliminating the condition that h~ι{(hΓ)} not be cofinal,
even if we substitute the condition that X have non-σ-compact open
subsets. Let Γ = Ω and take X to be the one-point compactification
of the isolated ordinals in Ω. Define h:X1—^X by

foo if a is a limit ordinal
h(a) = .

(a otherwise .

Then h is continuous but X, as just noted, admits no irregular Borel
measure.

2. Let R denote the reals with the usual topology and Rd the
reals with the discrete topology; let G = Rd x R with the product
topology. For r eR d and S c G , set S(r) = {x: (r, x) e S}. Note that
if B e B(G), then B(r) e B(R) for all r e Rd. Define

vB = ΣMB(r)) (reRd)
r

where λ denotes Lebesgue measure on R. Clearly v is a nondegenerate
Borel measure, which is irregular since there is a set A = Rd x {0} such
that vA = 0 but vU = °o for any neighborhood U of A.

This example, which has appeared in [7] (Exercise 12.58), provides
a specific illustration for Theorem II. 1. For let

μS = inf {v U: U open, Uz> S}
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it can be shown (see [10], 2.22) that μ is a Haar measure for G,
and that

vB = sup {μC: C compact, C c B} .
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