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The theory of Orlicz spaces generated by N-functions of
a real variable is well known, On the other hand, as was
pointed out by Wang, this same theory generated by N-func-
tions of more than one real variable has not been discussed
in the literature, The purpose of this paper is to develop and
study such a class of generalized N-functions (called GN-
functions) which are a natural generalization of the functions
studied by Wang and the variable N-functions by Portnov,
In second part of this study we will utilize GN-functions to
define vector-valued Orlicz spaces and examine the resulting
theory,

This paper is divided into five sections. In §2, we define and
examine some basic properties of GN-functions. A generalized delta
condition is introduced and characterized in §3. In §4 and §5 we
present, respectively, the theory of an integral mean for GN-functions
and the concept of a conjugate GN-function. A complete bibliography
on Orlicz spaces, N-functions, and related material can be found in
[4,8]. The study of variable N-functions by Portnov can be found
in [6, 7] and the study of nondecreasing N-functions by Wang in [9].

2. GN-functions. In what follows 7T will denote a space of
points with o-finite measure and E” n dimensional Euclidean space.

DEFINITION 2.1. Let M(t, ) be a real valued nonnegative function
defined on T x E™ such that

(1) M(t,x) =0 if and only if x =0 for all teT,xc E",

(ii) M(t, z) is a continuous convex function of 2 for each ¢ and
a measurable function of ¢ for each =,

(iii) For each te T, 1im[x[m% ~ o, and

(iv) There is a constant d = 0 such that
(*) inf inf k(¢, ¢) > 0
t c2d
where

M(t )

M(t, ¢)’

M, c) = [mf M(t, x)
z|=¢

k(t, ¢) = , M(t, ¢) = sup M, x) ,
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194 M. S. SKAFF

and if d > 0, then M(¢, d) is an integrable function of . We call a
function satisfying properties (i)—(iv) a generalized N-function or a
GN-function.

G N-functions are coordinate independent and are not necessarily
symmetric. Therefore, such functions as M(t, x) = 2 + a2 + (x, — @,)°
which are not nondecreasing (as defined in [9]) are allowed in the class
of GN-functions. The next theorem illustrates this point.

THEOREM 2.1. If M(t, %) is @ GN-function and A is an o'rghogonal
linear transformation defined on E™ with range in E™, then M(t, x) =
M(t, Ax) is a GN-function.

Properties (i)—(iv) when applied to (¢, ) follow immediately from
the same properties for M(¢, ) (see [8, Th. 8.1]).

The next theorem characterizes a part of property (iv) in Defini-
tion 2.1 and provides a means of comparing function values at different
points for GN-functions when |z | is large.

THEOREM 2.2. A mnecessary and sufficient condition that (*) hold
1s that if x| =< |y, then there exist constants K =1 and d = 0 such
that M(t, x) < KM(t, y) for each te T and x| =d.

If (*) is true, then there exists a constant d = 0 such that l(¢)=
inf,., k(t, ¢) > 0 for each ¢ in T. By definition of k(¢, ¢) this means

(2.2.1) M@, y) = M@,y ) = UDME, |y )

for any y such that |y] =c¢ =d. On the other hand, if d < |2|
|y, then the convexity of M(t, ) and M(¢, 0) = 0 yields

(2.2.2) M, |y)) = sup Mt 2) .

Combining (2.2.1) and (2.2.2) we arrive at
M(t, y) = U(t) sup M(1, z) = K'M(2, 2)
fz]=1=}

whenever d < |2| < |y| where K~ = inf, [(t) > 0
The converse follows easily from the condition in the theorem.
It is interesting to note that if M(¢, x) is a GN-function, then
2M(¢, ») = M(3, ») + M(t, ) is also a GN-function where (¢, x) is de-
fined as in Theorem 2.1. This means we can construct a symmetric
(in ) GN-function from one which does not possess this property.
For, if M(t, ) = M(t, —x), then M(t, ) is clearly symmetric in 2.
Property (iv) of Definition 2.1 provides the condition which allows
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a natural generalization from N-functions of a real variable to those
of several real variables. Let us observe that the function M(t, c) is
also a GN-function of a real nonnegative variable ¢. On the other
hand, M(Z, ¢) need not even be convex in c.

Since M(t, ¢) < M(t, x) < M(t, c) for each x such that |z|=c, we
would like to find a GN-function which bounds M(t, ¢) from below for
all ¢. If d =0 in Theorem 2.2, then K~'M(¢, ¢) would do.

One might accomplish the construction of such a function by taking
the supremum of a class of convex functions bounding M(t, ¢) from
below. This function would be convex. However, this class may be
empty. The next theorem shows that this is not the case whenever
M(t, ) is a GN-function. The construction employed can be applied
to more general settings than exist here.

THEOREM 2.3. If M(t, x) is a GN-function and M(t, c) is defin-
ed as above, then there exists a GN-function E(t, ¢) such that R(t, ¢) <
M(t, ¢) for all ¢ = 0.

Since M(t, ¢) satisfies property (iii) of Definition 2.1, given any

d > 0 there is a ¢, > 0 such that M(¢, ¢) = de¢ whenever ¢ = ¢,. Let
us define the function

sup M, ew) if c=¢

0<w=1 w

P(t, ¢) = |2

JM(t, c) if0=e<e.
Then it is easy to show that (i) P(¢, ac) < aP(t,c) for 0 < a <1, (ii)
{P(t, ¢)/c} is a nondecreasing function of ¢, and (iii) P(¢, ¢) is finite
for each ¢. We now obtain the desired function R(f, ¢) by defining

Rt ¢) = S: Q(t, s)ds

where
_M if ¢c=¢
” =
cP(t, ¢,
2

Cy

Q(t, C) =

if0gse<e.

We have immediately that
R(t, c) < ¢Q(¢, ¢) = P, ¢) < M(t, o) .

If is not difficult to show that R(¢, ¢) is also a G N-function.
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3. Delta condition. In this section a generalized growth con-
dition is defined for GN-functions. This growth or delta condition
generalizes that definition usually given for a real variable N-function
(e.g., see [4, 6, 7]).

DEerFINITION 3.1. We say a GN-function M(Z, x) satisfies a 4d-con-
dition if there exist a constant K = 2 and a non-negative measurable
function §(¢) such that the function M(t, 20(t)) is integrable over the
domain T and such that for almost all ¢ in T we have

**) M(¢, 2¢) = KM(t, x)

for all x satisfying | x| = 0(2).
We say a GN-function satisfies a d,-condition if it satisfies a 4-
condition with d(¢) = 0 for almost all ¢ in T,

In Definition 3.1 we could have used any constant [ > 1 in place
of the scalar 2 in (**). This is the basis of the next theorem which
gives an equivalent definition to that employed in 3.1.

THEOREM 3.1. A GN-function M(t, ) satisfies a A-condition if
and only if given any 1> 1 there exists a constant K, = 2 and «
nonnegative measurable function 8(t) such that M(t, 20(t)) is integra-
ble over T and such that for almost all t in T we have

(3.1.1) Mt, Iz) < K,M(t, %)

whenever | x| = 0(t).

Suppose M(t, x) satisfies a d-condition and I > 1. We choose m
so large that 2» = [. Then by convexity and our assumption of a
4-condition there is a K = 2 and measurable (t) = 0 such that for
almost all ¢t in T

M(t, lx) £ M(t, 2™x) < K™M(t, ©)

whenever |z | = 6(¢t). Therefore (3.1.1) holds with K, = K™. The con-
verse follows as easily.

Whenever we deal with convex functions of several variables the
concept of a one sided directional derivative plays an important role.
The next result utilizes such a function, so we define it now.

DEFINITION 3.2. For each ¢ in T the directional derivative of a
GN-function M(t, x) in o direction vy is defined by

M(t, © + hy) — M(, »)
- .

M'(t, z;9) = }}izrg
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The important properties of directional derivatives of convex func-
tions of several variables which will be needed can be found in [3, 8].
Using the directional derivative defined above, the next result charac-
terizes the delta condition and generalizes similar results given in
[4, 6, 7].

THEOREM 3.2. A GN-function M(t, x) satisfies a Ad-condition if
and only if there exists a nonnegative measurable function 6(t) such
that M(t, 26(t)) s integrable over T and a constant ¢ > 1 such that
for almost all t in T

M'(t, »; )

(3.2.1) M, )

<e
whenever | x| = o(t). Moreover, if (3.2.1) holds, then for almost all
t in T and for each x such that |x| = 0(t) we have
(8.2.2) Mi(t, px) < M(¢, x)p°
Jor all p > 1,

Suppose M(t, x) satisfies a d-condition. Then, by convexity (see,
[8, Th. 5.3]), we must have for some K =2 and 4(t) = 0

KM(t, x) = M(t, 2x) = M(t, x) + M'(t, x; )

whenever |z | = d(t). This means (3.2.1) holds with ¢ = K.

Conversely, suppose (3.2.1) holds. We choose s such that s = 1.
Then, by assumption, there is a constant ¢ > 1 and §(t) > 0 such that
for almost all ¢ in T

M'(t, sx; sx)
3.2.3 2L, o, Sy
(3.2.3) MG, sm)

whenever | 2| = 6(t). On the other hand, we have

M(t, sx + hx) — M(t, sx)
h

d L
(3.2.4) - Mz, sz) = lim
= M’(t, ST, w) B

Since M'(t, sx; sx) = sM'(t, sx; x) for all s = 0, we obtain from (3.2.3)
using (3.2.4) that

(3.2.5) log M(t, sz) |:=2 = SM“_”@ ds < ¢ Szﬁi = log 2° .
v M(t, sx) 18

Therefore, upon simplifying the last inequality, we arrive at

M(t, 2x) < 2°M(¢, «)
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whenever |z | = 6(¢t) proving the first part of the theorem.

The last inequality (3.2.2) in the theorem is obtained from (3.2.5)
whenever we integrate over 1 < s < p, p > 1.

Inequality (3.2.2) states that GN-functions which satisfy a d4-con-
dition do not grow faster than a power function along any ray pass-
ing through the origin. Let us also observe that any function M(¢, x)
defined on T x E"™ which is either subadditive or a positive homogene-
ous (of degree one) convex function always satisfies a 4,-condition.

4. Generalized mean functions. In this section an integral
mean will be defined for GN-functions. We will show under what
conditions the mean function is a GN-function and satisfies a 4-con-
dition. Moreover, we examine how the minimizing points in the de-
finition of the mean function affect a basic property of the ordinary
integral mean.

Let us begin with a definition.

DEFINITION 4.1. For each ¢t in T and & > 0 let

My, ) = | Mt o + Iy

where J,(y) is a nonnegative, ¢ function with compact support in a

ball of radius % such that g Ju(y)dt = 1. Moreover, let z, be any
E’ﬂ

point (depending on h, t) which satisfies the inequality

M, (¢, x) = M,(¢, )

for all 2 in E». Then the function M,(t, ) defined for each t in 7
and £ > 0 by

M,(t, @) = M,(t, & + ) — M,(¢, %)

is called a mean function for M(t, x) relative to the minimizing point
Zye

The next theorem shows under what condition M,(¢, 2) is a GN-
function.

TueoREM 4.1. If M(t, %) is a GN-function for which M(t, ¢) is
integrable in t for each ¢, then M,(t, x) is a GN-function.

We will show this result by justifying conditions (i)—(iv) of De-
ﬁpition 2.1. By hyQothesis and the choice of %, we have for each h,
M,(t,x) =0 and M,(t,0) =0. On the other hand, if 2 = 0, then
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M(t, z) > 0, and hence there is constant h, such that
a = infmého M(t, xr + Z) > 0 .

However, since M(t, ) = 0 if and only if # = 0, the minimizing points
x, tend to zero as h tends to zero. Therefore, we can choose g, < &,
such that if 2 < ¢,, then M(¢t, 2,+¥) < a for all y for which |x,+y| < h.
For this g, we obtain the inequality
M@, @+ o +y) = inf M, + 2) = a> M, 2 + y)
|

zl<9p

whenever |z, + ¥ | < ¢,. This means for some h < g, we have
Mh(t, X + m0) > Mh(tv xo)

or M,(t, x) > 0 if @ == 0 which proves property (i).

Properties (ii) and (iii) for M,(t, z) follow easily from the same
properties for M(t, ). Let us now show (iv). By assumption, there
is a constant d = 0 such that

(4.1.1) Wt)M(t, ¢) = M(t, c)

for all ¢ = d. Furthermore, it is not difficult to show that for all ¢
we have

(4.1.2) M(¢, ¢) = sup M(¢, x)

lzlse

and for some fixed z,

(4.1.3) inf M(t, 2 + 2) < inf M(t, 2 + 2) .

lzlze lzl=c

Using (4.1.2), we obtain for each ¢ in T that
l(t)fupM(t,Z)él(t) sup  M(¢, w)
z|=c

(;1.1.4) lwl <o+ lzgtyy)
=Uit) sup M, w)
|

lwl=c+izg+yy
where z = ¢ + %, + y. On the other hand, by (4.1.1) and (4.1.3), we
achieve
Wt) sup M@E,w)=< inf M(t, w)

lwl=c+lzg+yyl lwl=c+lwg+yyl

(4.1.5) < inf M(t, & + @, + ¥)

lzlze

< inf M(t,x + x, + ¥) .

lzi=c

If we combine (4.1.4) and (4.1.5), then for all ¢ = d we arrive at

Ity sup M(t, » + @, + y) < inf M@, % + @ + ¥) .

l2]=c lzl=c
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From this inequality we obtain

inf M,(t, x) = S inf {M(t, ® + %, + y) — M(t, x, + ¥)}J.(y)dy

4.1.6) == B |z1=0
= gm{l(t) sup Mit, @ + @ + 9) = M(t, % + Y}i(y)dy

and

(4.1.7) sup Mt w) < Sm sup M,z + x, + y)J(y)dy .

Moreover, since lim,_,, sup,,,-. M(t, * + 2, + y) = o for fixed x,, y such
that |y| < h, given K,\(t) = 2 sup, <, M(t, x, + y)/inf, l(t) there is a
d, > 0 such that if ¢ = d,, then sup,,-. M(¢, x + 2, + y) = K,. There-
fore, using (4.1.6) and (4.1.7), we achieve the inequalities

inf M,(t, x) sup M(z, z, + )
(4.1.8) lel=e > (t) — —luisk

sup M, (¢, x) ‘llngfh |slep M, x4+ x, +y)

jx|=¢ ¥ z|=c

> I(t) — %ir:f 1)

for all ¢ = d, = max (d, d,, | 2,|). Taking the infimum of both sides of
(4.1.8) over t, shows the first part of property (iv). To show the
latter part, assume d, > 0. Then sup,, 4 M,(t, «) is integrable over
t in T since it is bounded by the integrable function M(t, d,) where
d, =d, + |x,| + h. This proves property (iv) and the theorem.

In the next theorem we show under what ¢ondition M, (¢, ) satisfies
a 4-condition.

THEOREM 4.2. If M(t, x) is a GN-function satisfying a A-Acondi-
tion and for which M(t, ¢) is integrable in t for each c, then M,(t, x)
satisfies a A-condition.

It suffices to show that M,(t, x) satisfies a 4-condition. For, M, (¢, x)
is the sum of a constant and a translation of M,(¢, ) and neither of
these operations affects the growth condition, Let us observe first
that if |2]=2,|y|h <1, then |22 + y| <3|2 + y|. Hence, by
Theorem 2.2, there are constants K > 1 and d, = 0 such that

Myt 20) < K| | M(t, 3@ + w)Tu(w)dy
for all z such that |z| = d, = max(d, 2). On the other hand, by

Theorem 3.1, there is a constant K, = 2 and 6(¢) = 0 such that for
almost all ¢ in T
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[, Mt 3@ + 9) @)y < KMi(t, o)

for all z,y such that |x + y| = 6(¢) where |y| < h. Combining the
above two inequalities we achieve

M(t, 2¢) < KK, M,(t, %)

for all |2 | > max (d,, 6(t) + k) = 0,(t). Since M(t, 25,(t)) is integrable
over T, this yields the integrability of M,(t, 26,(¢)) proving the theorem.

For each t in T and each « in E* it is known that lim,_, M,(¢, 2)=
M(t, ). However, the same property does not hold in general for
M,(t, ). This is the point of the next theorem.

THEOREM 4.3. For each h > 0 let at be the minimizing point
of M,(t,z) defining M,(t, x). Then for each t in T and each x in
E", there exists K(t, x) such that

lim M, (t, ©) = M(¢, ) + K(t, z) lim | =] .
=0 h=0

By definition of M,(t, ) we can write

| Miy(t, @) — M(t, )|
4.3.1)
= Ln‘ M(t, @ + o + y) — M(t, at + y)— M, @) | Ju(v)dy .

However, we know that

| M(t, © + x5 + y) — M(t, o + y) — M(t, @)|
(4.3.2) S| ME 2+ ap + y) — M2, @) |
+ | M@, xp + y) — M(t, y) | + | M, v)] .
Moreover, since M(t, ) is a convex function, it satisfies a Lipshitz

condition on compact subsets of E" (see, [8, Th. 5.1]). Therefore, there
exist K(t, ) and K,(t, «) such that

(4.3.3) | M(t, x + a3 + y) — M(t, )| < K,(t, ) |2t + y|
and
(4.3.4) | M(E, 20 + y) — M(t, y)| = Ky(t, a) |ai] .

If we combine (4.3.3) and (4.3.4) with (4.8.2) and if we substitute thz
resulting expression into (4.3.1), we achieve the inequality

| M, %) — M(t, o) | < | | (Ki(t, @) + Ki(t, )
+ |, Kt o) [yl Ty + | 1M, )| Ty .
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Since the last two integrals on the right side tend to zero as h tends
to zero, we prove the theorem by setting K(t, ) = K,(¢, ) + K,(¢, x).

COROLLARY 4.3.1. Suppose M(t, x) s a GN-function such that
M@, x) = M(t, —x). Then for each t in T and x in E*,

lim M, (t, o) = M, ) .

This result is clear since lim,_,|2*| = 0 if M(¢, x) = M(¢, —x). In
fact, if M(t, ) is even in & then the ! = 0 for all A.

For each ¢ in T let A, denote the set of minimizing points of
M,(t, ) and let B represent the null space of M(Z, x) relative to points
in B, i.e.,

B ={y in E": M(t,y) = 0} .

If M(t, «) is a GN-function, then B = {0}. For the sake of argument,
let us suppose that M(t, ) has all the properties of a GN-function
except that M(Z, ) = 0 need not imply « = 0. We will show the re-
lationships that exist between A, and B. This is the content of the
next few theorems.

THEOREM 4.4. The sets B and A, are closed convexr sets.

This result follows from the convexity and continuity of M(¢, x)
in z for each ¢ in 7.

THEOREM 4.5. Let B, = {x: M(t, x) < e} for each t in T. Then
given any e > 0, there 1s a constant h, > 0 such that A, S B, for
each h < h,.

Since B< B,, we can choose h, sufficiently small so that if z is
in B, then x + y is in B, for all ¥ such that |y| < h,. Let z be an
arbitrary but fixed point in A4,, » £ h,. Then

Mh(tv z) é Mh(tv x)

for all z. Therefore, if 2 is in B, we have by our choice of &, that
M,(t, z) < e. Letting h tend to zero yields M(t,?) < e, i.e., z in B,.

We have commented above that A, = {0} if M(¢, ) = M(t, —=).
It is also true if M(¢, ) is strictly convex in « for each ¢ in T.

THEOREM 4.6. Suppose M(t, x) s a GN-function which is strict-
ly convex in x for each t. Then for each h, A, = {0}.

Suppose there exists ¥, = «, such that z,, ¥, are in A4,. Let z =
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(%, + ¥)/2. Then, since M(t, x) is strictly convex, M,(t, x) is strictly
convex in ». Therefore, we have

(4.6.1) My, 2) < % Mi(t, z) + -;— M(t, v -

However, x,, ¥, being in A, reduces (4.6.1) to the inequality
Mh(t’ Z) < Mh(ty J/')

for all . This means 2z is in 4, and %, ¥, are not in A, which is a
contradiction. Hence, x, = y,. Since M(t, z) is a GN-function, B = {0}.
In this case z, = y, = 0.

5. Conjugate GN-functions. In the study of Orlicz spaces the
concept of a conjugate N-fuction plays a significant role. In particular,
the definition of these linear spaces may involve a conjugate function.
The study of convex functions of several variables and their related
conjugate functions can be found in [1, 2, 3, 5].

In this section the concept of a generalized conjugate function is
defined and some of its important properties are examined. Many of
the standard results which hold for N-functions and conjugate func-
tions of a real variable will be generalized here.

We begin with the main definition.

DEFINITION 5.1. Let M(¢t, «) be a GN-function. Then we call
M*(t, x) the conjugate function of M(t, x) if for each ¢ in T

(+) M*(t, ) = sup {z — M(t, D)} .

The notation zx represents the scalar product of the vectors « and z.

Let us observe that if 2z <0 in (+), then zx — M(¢, 2) < 0. This
means we could, equivalently, restrict the definition to those z for
which zx = 0. Moreover, the equation (+) yields immediately for each
t in T that

(+4) 20 < M(t, 2) + M*(t, %)

for all z,# in E*, Inequality (+ +) could have been used as a defini-
tion of the conjugate function.

Fenchel [3] states that to every z in E™ such that M'(¢, z; y) < oo
for all ¥ for which it is defined, there is at least one point x in E”
such that equality holds in (+ +). However, by [8, Th. 5.2] when
applied to GN-functions, we know for z in E™ that M'(¢, z; y) < oo
for all y. Therefore, the supremum in (+) is attained for at least
one point.
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The next theorem gives a necessary and sufficient condition in
order that equality hold in (+ +).

THEOREM 5.1. Let M(t, x) be a GN-function for which M'(t, x; y)
18 linear in y. Then, given any 2z, z' = M'(t, x,;6;) for all 1 =1,
ceo,n 4f and only if zx, = M(t, x) + M*(t, 2) where {e;} is a basis
Jor E*,
Clearly, if
22, = M(t, ;) + M*(t, 2)

for each ¢ in T, then z' = M'(¢, ,; ¢;) for each ¢. On the other hand,
suppose z' = M'(t, x,; ¢;) for each 2 =1, ..., n. Then, by convexity
of M(t, x) and linearity of M'(t, x; y), we have for ¢ in T

(5.1.1) M(t, x) = M(t, ®) + 2(x — x,)

for all # in E*, Rewriting (5.1.1) we obtain for all z in E”
X2 — M(t, 2) = w2z — M(t, ) .

Therefore, we have

%2 — M(t, @) = sup {az — M(¢, 2)} = M*(2, 2)

or
(5.1.2) TR = M(t, x) + M*(, 2) .

Since (+ +) always holds, combining (5.1.2) with (+ +) shows that
equality holds in (5.1.2).

The properties of GN-functions possessed by M*(¢, x) are give in
the next result.

THEOREM 5.2. Let M(t, x) be a GN-functions for which

lim,,,_, A& %)
Ed

for each t in T. Then M*(t, x) satisfies properties (i)—(iii) of De-
finition 2.1. Moreover, if M(t, x) = M(t, —x), then

M*(t, x) = M*(t, —x) .

=0

Condition (i) for M*(¢, x) follows directly from the same condition
for M(t, ) and the equation in the hypothesis. Convexity follows
from the inequality
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M*(t, ax + by) = sup {axz — aM(t, 2) + byz + bM(¢, 2)}
< aM*(t, x) + bM*(t, y)

where a +b=1,a =0,b = 0. Measurability in ¢ also follows from
the same property for M (¢, x). Finally, if we substitute z = ka/| x|, k>1
into (+ +) we arrive at

kx
(5.2.1) M*(t, @) < g _ M (t’ W)
el — B

However, M(t, kxz/|«|) is bounded on every compact set in E" (see
[8, Th. 2,5]). Letting |« | tend to infinity in (5.2.1) results in proper-
ty (iii).
Suppose M(¢, ) is an even function of x. Then
M*(t, x) = sup {—zx — M(t, —2)}
= sup {z(—x) — M(¢, 2)} = M*(¢, —x) .

Finally, we give conditions when M(Z, «) is the conjugate function
of M*(t, x).

THEOREM 5.8. Suppose M(t, x) is a GN-function for which M’(t,
x; y) 18 linear in y. Then M(t, x) is the conjugate function of M*(t, x).

Since M(t, x) is convex in x and M'(¢t, «;y) is linear in y, we
achieve for any z, 2, in E".

M(t, x) — M(t, x)) = M'(2, 20; © — @)
= M'(E, % x) — M'(2, 2, 2,)
from which it follows that

(5.3.1) M'(t, xo; x) — M(t, %) = sup {zy — M(Z, )}

where y* = M'(t, x,; ;) for each 7 =1, ..., n and {¢;} basis vectors for
E*, On the other hand, it is clear that

(5.3.2) M'(t, 2; %) — M(t, @) < sup {wy — M(t, )}

since M'(t, ,; %,) = #,y. Combining (5.8.1) and (5.3.2) we obtain the
equation

(5.3.3) wy — M, ) = M*(¢, y) .
However, by (++), we know that
(5.3.4) xR < M(t, %) + M*(t, 2)
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for all z,, z in E*. Rewriting (5.3.4) yields

(5.3.5) M(t, ) = sup, {x.z — M*(, ?)} .

Since (5.3.3) holds for some y, it follows that

(5.3.6) M(t, x) = xy — M*(t, y) < sup, {xg — M*(2, 2)} .

Therefore, combining (5.3.5) and (5.3.6) produces the desired result that
M(t, x,) = sup {xz — M*(t, 2)} .
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