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This paper, continuing previous work by the same author,
is concerned with the following problem: Given a metrisable
uniformity 1 for a set X, does there exist another (distinct)
uniformity B fer X such that the two corresponding Hausdorff
uniformities induce the same topology on the set, S(X) say,
of all nonempty subsets of X7 Sufficient conditions for the
existence, and sufficient conditions for the nonexistence, of
such a uniformity UV are given, together with related results
concerning the Hausdorff unifermities (derived from Ul and )
for S(X,), where X, is a subset of X, everywhere dense in
the topology derived from 11,

The notation is that used in the previous paper [4]; Theorem 1
of that paper will be referred to as Theorem 1A, and so on. We
shall also say for brevity that a uniformity L is H-singular (over X)
if and only if there exists no distinct uniformity for X which is H-
equivalent to ¥ on X,

1. H-equivalence on dense subsets. Our first theorem will allow
an improvement of Theorem 4A.

THEOREM 1. Let B be a metrisable uniformity for X (that is,
one with an enumerable base in X x X) and X, a subset dense in
X, n the topology & (L) induced by V. Let W be another unifor-
maty for X, such that

) g WM co (B) on X;

(b)y the restrictions 0, B, of U, B o X, x X, are H-equivalent
on X,.

Then ©f W and B are not H-equivalent on X the cardinal of X
must be measurable.

We achieve the proof by five propositions, the first two of which
do not depend on the metrisability of %,

(i) UcX.

By Theorem 1A', U, and B, are proximity-equivalent (on X,); as
B, is metrisable this implies U, c B,. Given U, e U, take a symmetric

3
U el such that U < U,, and a symmetric V e B such that Is/' N(X, x X)

1 The part of Theorem 1A actually used here was proved earlier by D. H. Smith,
[1, Th. 1}.
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c U. Given any z¢ X, since .7 () 7 (L) and X, is dense in X,
we have V() N Ux) N X, = @. Thus if (x,2")e V there exist z,, x]
in X, with (x, z,) and («/, 2}) both in V 0 U. Then

@, ) e VX, x X)CU
so that (x,z') e (3J<: U,. That is, V< U, so that U, %B.

(i1) U, B are proximity-equivalent on X; hence 7 (1) = 7 (V).

Let A, B be B-remote, say f/-remote where Ve is symmetrie,
Then 4, = V(4) N X, and B, = V(B) N X, are V-remote subsets of X,
so (again since 11,, %51 are proximity-equivalent) there exists symmetrie
Uell with A,, B, U-remote. Then U(4), U(B, are U-remote in X,
but as X, is dense we have A — (4,; B) = (4,; 1) < U(4)), where (4,; B)
and (A,, ) are the closures of 4, in .7 (B), .7 (1) respectively. Simi-
larly B U(B,), so that A, B are also ll-remote; the reverse implica-
tion follows at once from (i).

From now on we suppose U, B not H-equivalent on X. It follows
from (i), (i) and Theorem 1A that there exists a set E,c X which
is B-discrete but not -discrete.

(i) If {E,;n=1,2, ...} is a sequence of disjoint subsets of E,
then, for some N, U(E,; n = N) is U-discrete.

We can choose a base {V,;n =1,2, ---} of 8 such that each V,
3
is symmetric, V,.,c V, for all », and E, is V,-discrete. Let

S=UE;:n=1)CE,),

and let f: S— X, be such that, for all z in E,, (z, f(z)) ¢ V, (for each
n=1). Thus if x€FE,, yc E, are distinct (whether or not m = n)
we have (f(x), f(¥)) ¢ V,, for otherwise we should have (z,y)e V,oV,
3
oV, V.. Thus f is one-one and S, = f(S) is V -discrete. By (b) and
3
Theorem 1A, S, is also U-discrete, say U-discrete where U el is sym-
metric. By (i) above there exists N with V,c U. Repeating the
argument just used, we see that if m, n are both =N then (for x+7v)

xel, yeE, imply (¢,y)¢ U, since V,oUoV,C Zsf

(iv) A finite or countable union of disjoint U-discrete subsets of
E, is U-discrete.

By (iii) it is clearly sufficient to consider the union of two such
sets D, D,. As disjoint subsets of E,, D, and D, must be LB-remote,
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hence by (ii) U-remote; it follows at once that if each is U-discrete
so is their union.

(v) There exists a subset E, of E,, not itself N-discrete, such
that one at least of any two disjoint subsets of E, is U-discrete.

It is sufficient to consider the case of subsets which are comple-
mentary in E, (and so by (iv) cannot both be U-discrete). We suppose
the proposition false and obtain a contradiction. By induction, there
exists (if the proposition is false) a sequence of disjoint subsets of
E,, say {E,,n =1,2, ---} such that, for each 7, neither E, nor E;\
(E,U --- U E,) is U-discrete. (If this holds for n = p, since E = E,\
(E,U --- U E,) is not of the required type, there exists F,.,C E such
that neither E,,, nor E\E,,, is U-discrete.) But this contradicts (iii),
which implies that E, is 1-discrete for all sufficiently large n.

Finally, we write, for all Ec X, ¢(E) = 0 if and only if E N E,
is U-discrete, (&) = 1 otherwise. Propositions (iv) and (v) assure us
that o is a countably additive two-valued measure for X, nontrivial
since (X) =1 and @(F') = 0 for every finite set F. That is, the
cardinal of X must be measurable.

Before applying this theorem to obtain an improved form of The-
orem 4A, we prove the following converse.

THEOREM 2. If & s any wmeasurable cardinal, there exists a
space (X,B), X of cardinal & and B metrisable, and a uniformity
NW(£B) for X such that N, B are proximity-equivalent but not H-
equivalent on X, while their restrictions to X, x X,, where X, is a
certain dense subset of X, are H-equivalent on X,.

Let Y be a set of cardinal &, A the set of ordinals a,1 < a =< w,
and X = Y x A, also of cardinal 8 We define a metric p for X,
and the associated uniformity B, by writing

oly, @), (v, a)] =11if y = y';
mrify=vy,a=m, ¢ =w,
orif y=9%,a=w,da =m;
Im™*—ntify=9,a0a=m,a = n;
Oify=9,a=a.
It is clear that this is a metric, and that .7 (8) is the product of
the discrete topology on Y and the order topology on A. Let ¢ be a
nontrivial measure for Y with values 0 and 1; write & = {E;EcCY

and @(E) = 1}. We remark that & is a countably intersective non-
trivial ultrafilter over Y. For Ec¢ . and 1 < n < w we define (E, n)
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as the set of points [(y, @), (¥, @')] in X x X such that either y =y’
and a =a or y=1vy and a, & both =un or again y,y" both in E and
a,a’ both =n. It is easily checked that the system {(#, n); Ec 7,
1 £#»n < w} is finitely intersective and is the base of a uniformity
for X, which we take for Ul. Finally, we put X, = Y x(4\{w}), po-dense
in X.

The set {(y, ®); y € Y} is B-discrete but not U-discrete; by Theorem
1A 1 and B are not H-equivalent on X. We prove that the remain-
ing conditions are satisfied.

(i) W,V are proximity-equivalent on X.

If P, Q are subsets of X such that o(P, @) = N, then for each
yeY the set {(y,a); @ > N} meets at most one of the sets P, Q.
Write P,C Y = {y; 3, « > N, (y, @) € P} and define @, similarly. Since
P,NnQ, = &, at most one of P, @,, and hence at least one of Y\P,
Y\Q,, is in & : say Y\P,e ¥ . Then for (y,a)e P and (v, a')eQ,
[y, @), (v, &) & (Y\P,, N + 1). Thus P, @ are U-remote so that 11 is
proximity-finer than B: the reverse relation is trivial. (As B is metric
we now know that W, a fact which is easily checked directly.)

(ii) The restrictions of U, B are H-equivalent on X,.

Let Pc X, be B-discrete; say po(p, »’) = N~ if p = p’ and both
are in P, Then for each y e Y there is at most one m with m = N,
(y, m)e P. The sets Y, ={y; (y,m)e P}, N=m < w, are disjoint,
so there is at most one such m, say m = M, with Y,e & . If M
exists it is easily checked that P is (Y, M + 1)-discrete. If no M
exists then, since o(Y,) =0, all m = N, Y, = Y\U(Y,; m = N) must
be in & ; again we check that P is (Y,, N)-discrete. Thus every %-
discrete subset of X, is also U-discrete; by Theorem 1A, since (i) holds
and 1B, the restrictions of U, B are H-equivalent on X,

To obtain as wide a generalization as possible of Theorem 4A, we
remark that in the statement and proof of Theorem 2A it is essentially
irrelevant that K X; K may be any compact uniform space (with
uniformity 28), in particular, any compact 7T, space with its unique
natural uniformity. With a view to a later application, we point out
further that when we say that an indexed set {y;; ¢ € I} is V-discrete,
we mean that (y;,y;)eV and 4,jel imply y; = y;, not necessarily
i=17.

THEOREM 3. Let (X, B) be a uniform space, LB having an enu-
merable base, (B, L) any precompact uniform space. Suppose there
exists a set of functions {fi: B— X;1el} such that
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(1) U(f(B)iel) =X;

(ii) for each be B, the set E = {fib); 1€ l} is V-discrete, for
some fized Ve

(iii) the functions fi, i € I form an equi-uniformly continuous set.
Then, if (and in general only if) the cardinal of X is nonmeasura-
ble, B is H-singular over X,

COROLLARY. The theorem holds whenever I has monmeasurable
cardinal.

We omit the details of the proof, which proceeds by extending
the functions f; to map the compact completion of (B, ) into the
completion of (X, B), almost precisely as in the first part of the proof
of Theorem 4A, and then applying Theorem 1. (It is known that if
the cardinal & of X is nonmeasurable then so is the cardinal of its
completion; in this case as L is metrisable the completion has cardinal
at most 2@.)

To prove the Corollary we observe that, whatever may be the
cardinal of B, each f;(B) is precompact in a metrisable uniformity,
hence of cardinal €, so that by (i) and the properties of cardinals we
know that the cardinal of X is nonmeasurable.

If the cardinality condition is dropped, the subspace (X, B|
(X, x X)) of Theorem 2 provides a counter-example. We take for B
the subspace {n*;n=1,2,.--} of R', with the obvious mappings
fo(n™) = (y,n)e X,, for each yeY.

2. A simple sufficient condition for a metric uniformity to be
H.singular. The criterion of Theorem 2A is intrinsic for the space con-
cerned, but rather complex. Our remark above, that K need not be
a subspace of X, strengthens the theorem but removes its intrinsic
character. We can however deduce, in the case when L is metrisable,
a simple intrinsic criterion sufficient for H-singularity. The idea used,
and the basic lemma needed, can be stated without the assumption
of metrisability; the rest of the proof is essentially similar to that of
the well-known theorem stating that every compact metric space is a
continuous image of the Cantor set, though there are minor technical
complications.

We say that a uniform space (X, RB) is equi-uniformly locally
totally bounded (abbreviated as e.l.t.b.)’; and in particular V-e.l.t.b.,
if and only if there exists V,e 8 such that, for every V,e B, the
number of (distinct) points in an arbitrary V,-small and V-discrete
" 21 am indebted to the referee for pointing out that this is equivalent to saying

that ¥ has a basis defined (in the usual manner) by a star-bounded [2, p. 94] collec-
tion of coverings of X.
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subset of X is bounded. We denote by N(V,) the greatest such
number (for a given V,). We define similarly a (V,)-e.l.t.b. subset of X,

LEMMA. If X is Vie-el.t.b., and if V, V,€B are symmetric and

IZ/'C V,, then there exists a set of at most N(V)) sets E,, each V-dis-
crete, such that U V(E,) = X.

Proof. Let E be a maximal V,-discrete subset of X; since E is
maximal V(F) = X. Let E, be a maximal V-discrete subset of E, E,
of E\E, E, of E\(E,U E,) and so on; if and as soon as E,U +--- U E,
= F we terminate the process. If « is any point of F, V(x) (being
V-small) contains at most N(V)) points of E. If, for any m, E, is
defined and ¢ F, U --- U E,, then by the maximality condition each
of E,, -+., E, must meet V(z) N E. Thus m < N(V)-1, as xz e E; hence
xeE U--- UE, for some m < N(V)). Since z is arbitrary in £ we
have, for some m < N(V),E=E, U ---UE, and so X =V (F) =
V{E)U -+ U V(E,)

THEOREM 4. If (X, B) is a complete el.t.b. space, and B has a
countable base, then B is H-simgular over X.

COROLLARY. The same is true if X is not complete, if its car-
dinal is nonmeasurable.

We suppose, for convenience, B defined by a metric p; we write
as usual V, for {(z, v); po(x, ¥) < €}, S(E, ¢) for V.(E), and say e-discrete,
e-e.l.t.b. for V .-discrete, V.-e.l.t.b. Let then X be g-e.l.t.b., and let
€, = &/10. By the lemma, we can find a finite number N, of disjoint
be,-discrete sets, say E,, 1 < n < N,, such that U S(F,,e)=X. We
now take a sufficiently large index set I, the same for all %, and
index the points of each E, as x,(n) (repetitions being allowed but the
whole of E, being covered).

For each integer p =1, let N, be the maximum number of points
in any 2-?e¢-discrete set of diameter at most 2°7¢,(<e,). We define,
in succession, for each x ¢ E, = U E, and each finite set of indices n,,
«++, m, such that 1 < #n, < N, all , a point y(x;n,+-+, n,) in such a
way that

(1) US[y;n), 1/2)e]; 1 = n, = N) D S(w, €);

(1) U(S[y;ny, -+, m,),27%; 1 <n, = N,)

D Sly(w; nyy « -, ny_y), 27%] for p > 15

(i) ply(; n), 2] < &;

(ii )’ lo[y(x; Mgy 02y nz)): y(m; Mgy =0y np—l)] < 21—p81’ > 1.

By the definition of N, this is obviously possible (repetitions be-
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ing allowed).

Let K (compact) be the product of discrete spaces D,, D, ---, D,,
-«+; D, having N, members for each p = 0. A point ¥ of K may be
represented by a sequence of integers {k(p);1<k(p) =< N,,p=0,1, ---};
the product—topology is induced by the metric d(k, k') = 2-* if and only
if p is the least » such that k(r) = k'(r) (and of course d(k, k) = 0). We
define fi(k) as lim,_. y(z]k(0)]; k1), --- k(p)). It follows from our re-
quirements above, by standard arguments, that f;(k) is defined for all
ke K and that the functions f; are equi-uniformly continuous from
(K, d) into (X, p). Moreover, the set {fi(k); k(0) = m} is compact and
contained in the closure of S(x;(m), 2¢,) and, being dense (at least) in
S(xy(m), ,), it contains S(z;(m), ;). We note that, since the points y
are defined as functions of the points xz, not directly in terms of the
indices ¢ ¢ I, if for any ¢, j € I we have x(m) = xz;(m) then fi(k) = fi(k)
whenever k(0) = m. If however ,[k(0)] and z,;[k(0)] are distinct then
(since E, is 5¢, discrete for each n) o(fi(k), fi(k)) = be, — 4¢, = ¢,. Thus
all the conditions of Theorem 1A, as modified by the remarks follow-
ing Theorem 2, are satisfied, and our theorem is proved.

The corollary follows at once, with the help of Theorem 1, by
applying the theorem to the (metric) completion of X, which is clear-
ly also e.l.t.b.

3. Griteria similar to that of Theorem 4. There seems to be
a natural connection, at least for metrisable uniformities, between
local total boundedness and H-singularity. The construction of the
counter-example in [3] depended essentially on the fact that the space
considered was, so to speak, “uniformly locally nontotally-bounded”; one
can make this notion precise and show that such a (metric) uniformity
is certainly not H-singular. The wide gap between these two oppos-
ing criteria may be somewhat narrowed; we give below two theorems
which say, very roughly, that in each case a finite number of small
portions of the space may be disregarded (as will be seen, the exact
expression is rather complicated). I have not however been able to
obtain any necessary and sufficient condition for H-singularity. (For
simplicity, our results are stated in terms of a given metric.)

THEOREM 5. If (X, p) is a complete metric space such that, for
each 0 > 0, there ewxists a finite set E(8) with X\S(E(d), ) e.l.t.b.,
then the uniformity B defined by p- is H-singular. The same holds
for X mot complete, if its cardinal is nonmeasurable.

Proof. Suppose X p-complete, and 11 H-equivalent to B on X.
Given € > 0, put § = (1/3)¢ and form E(0). For each =z, in E(J) the
sets S(x,, 6) and X\S(z,, 20) are p-remote, hence (Theorem 1A) U-
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remote; that is, 3U, e U such that if p(x,, ) < é and (z, y) e U, then
O(%,, ¥) < 20 and hence p(x, y) < 30 = ¢. By Theorem 4,11 and ¥ in-
duce identical uniformities over the closed, hence complete, set X\
S(E(d), 0). Since E(6) is finite it easily follows that for some U,ell
we have (z,y9)e U, p(x,y) <e, all z,yeX; that is, UDB. The
reverse inclusion certainly holds since B is metric and U, B are prox-
imity-equivalent.

As before, we deduce the corollary by means of Theorem 1. We
remark that it is easy to show by examples that Theorem 5 is effec-
tively stronger than Theorem 4.

Finally, we give a theorem in the opposite direction. Since the
construction and proof are very similar to those used in the special
case described in (2), they are given in a slightly condensed form.

THEOREM 6. Let (X, p) be a metric space such that, for some
0, > 0, there exists in X a 20,discrete sequence {x,;n =1,2, «..} of
distinct points, with the following property; for any 6,0 < 4 = 0,
there exists 7 = 1(9),0 < n < 9, such that, for every integer m and
every sequence {y,;n = 1,2, ...} satisfying S¥., 6) C S(x.,, d,) for all
n, all but a finite number of the sets S(y,, 0) contain n-discrete sets
A, each having more than m members. Then the uniformity L de-
fined by p is mot H-singular over X,

Proof. Define 6, inductively by d,., = (1/4){(1/2)d,}, all p =0
(so that 9, < 27%§, since 7(6) < 0). If and only if E is a 20,-discrete
set we define h(p, E, ) as max [0,1 — ¢~*,,,0(%, E)], and d, :(x, y) =
h(p, E, ) + h(p, E, y), except when there is a point z of E such that
2 and y are both in S(z,d,.,), in which case d, (%, ¥) = | h(p, E, %) —
hip, E,y)|. We define a uniformity 11 with a sub-base consisting of
all sets of one of the forms

@) {(z,y);d, (x,y) < ¢}, where ¢ > 0 and F is 20,-discrete;

(b) {(z, v); | f(®) — f(y)| < €}, where f is any uniformly continuous

function from (X, p) to the unit interval [0, 1].
It is easily checked that 1< B, that U, B are proximity equivalent
(because of the presence of the sets of type (b)), and that any B-
(i.e., p-)discrete set E is also U-discrete, since, for some p, E is 20,
discrete. Thus, by Theorem 1A, Il and B are H-equivalent.

It remains to prove that U == B. It is sufficient to show that,
given any finite set of h-functions, there exists an infinite (1/2)0.-
discrete set, at all points of which all the A-functions vanish; for as
the f-functions are bounded we can apply to them a “pigeon-hole”
argument and thus show that, for any given Uecll, (x, y) € U cannot
imply o(z, y) < (1/2)d..



ON H-EQUIVALENCE OF UNIFORMITIES (II) 215

Suppose then that m, of the given A-functions have p =0, m,
have p = 1, and so on up to m, with p = ¢ say. Apply the condition
of the enunciation, first with ¢ = (1/2)d, and m = 1 + m,, putting
Y, = £,. It can be seen, by calculating distances, that for any 24,
discrete set E and any given n there is at most one set S(y, 9.),
ye A,, which meets {x; (0, E, ) = 0}. If therefore n = N, (say) we
can choose z, , € A, such that all the m, h-functions with p = 0 vanish
throughout S(z, ., 6,): moreover S(z,,, 6,) C S{x.,, (3/4),}. We repeat
the argument with y, = z,,, for n = N, (and, say, ¥y, = 2, for n < N,),
putting m = m, + 1, 6 = (1/2)0,, and so on. Finally we obtain a set
of points {x,,.,;7 = N,} at which all the given A-functions vanish;
since @,,,., € S{®,, (3/4)d,} the set {, ...} is (1/2)d,-discrete.

As an example of the application of Theorem 6, let X, be (cf.
[3]) the set of all bounded real sequences x = (x,, %, X, -+-) with the
metric p(x, «') = sup |z, — x|, and let X, be the subset of X, defined
by 2, =r, 0z, <1 forlsn<r X,=0 for n > r. The subspace
X=UX,;r=1,2, --.) satisfies the conditions of Theorem 6, so that
the uniformity defined by o is not H-singular over X. We note that
X is locally compact and g-compact, so that a metric uniformity may
have quite a ‘good’ topology and yet not be H-singular.
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