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For n > 1, let C(n) be the axiom of choice restricted to
sets of n-element sets, We define a condition, (Z7), which is
sufficient to assure the provability of an implication

(Clm,) & Cimy) & - - - & C(my)) — C(n)

in set theory. We compare condition (Z) with various other
conditions related to the above implication,

1. Notation and preliminaries. Let ¢ be the set theory of [3];
this is a set theory of the Godel-Bernays type which permits the ex-
istence of urelemente (objects, other than the null set, which are in
the domain, but not the range, of the e -relation) and which does in-
clude the axiom of choice among its axioms. Our independence state-
ments will assume that ¢ is consistent; this is equivalent to the as-
sumption that Godel’s system A, B, C, of [2], is consistent. Our
logical framework is the first-order predicate calculus with identity.

By the nonnegative integers we mean the Von-Neumann integers,
i.e., 0 is the empty set, 1 = {0},2 =1 U {1},3 = 2 {2}, ete. For each
such n, we let I, be the set of all integers > n and we let J, be the
relative complement of I,., in I, I\I,.,. We let II represent the set
of prime numbers, and we let 11, = I N 1I,.

If there is a function (which is itself a set) which maps the set
x one-one onto the positive integer %, then 2 is called an n-element
set; in this case we let n(z) denote the unique integer n for which
such a mapping exists.

DerFINITION 1. For nel, let C(n) denote the following statement
of set theory: “For every set x of n-element sets there is a function
f defined on x such that for each y ez, f(y) ey. The statements C(n)
are called the axtoms of chotice for n-element sets or simply the axioms
of choice for finite sets.

For any set x let &”(x) denote the power set of x and let .°¥x)
designate the set consisting of 0 together with the set of all n-element
subsets of » for nel,. For Ze &°%1), let C(Z) be the conjunction of
the statements C(z),ze Z. Since a positive integer is not a subset of
I,, no confusion will result from our usage of C(n) instead of C({n}).

We shall be concerned with implications of the form

(1) C(Z) — C(n)
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234 M. M. ZUCKERMAN

which are provable in the set theory o; when this is the case we shall
let (1) abbreviate the statement “The implication (1) is provable in ¢.”
(In general, we shall omit the phrase, “is provable in ¢.”)

In [4], Mostowski introduces the following condition which he
shows to be necessary for (1):

DEFINITION 2. Z(e ZP%I)) together with n(e I)) satisfy condition
(M) if for any decomposition of % into a sum of (not necessarily
distinet) primes,

N =0+ P+ o+ D,
there are r, 7, ---, 7, in I, such that
TP+ T+ e + TP, ED

In §23 of [4] Mostowski states four lemmas with the aid of which,
in Theorem IX, he proves the sufficiency of condition (M) for the im-
plication (1) in certain special cases. The first three of these lemmas
(18, 14, and 15) are sufficiently powerful to yield all but one of the
numerical implications given in [5], [6], pp. 97-103, and in [7], as
well as several of the cases of Theorem IX of [4]. Moreover, various
implicational results which were proved by other methods in [4] and
[5] could have been proved by means of Lemmas 13, 14, and 15. We
define condition (Z) inductively in terms of these three lemmas; this
condition will have all of the above properties and will be intermediate
in strength between conditions (M) and (S) (see Definition 5, below).

2. Condition (Z). We first state the three lemmas in question,
modifying the notation and wording.

(2) (4], Lemma 13) (vn, k € I)(C(nk) — C(k)) .*
(3) ([4], Lemma 14) If n(4) = m(el) ,

n(B) =n(el),ANB =0, and if we know how to realize the proposi-
tion C(km + Iln), where k,lcl, and k + L€ I, then we can choose an
element from A U B.

1 Except for some minor revisions, the section in [6] is a translation of [5]. The
exception noted is C({3, 7}) — C(9); this is proved by different methods in [4] and [5].
A third proof is given by J. H. Conway (unpublished). Each of these proofs utilizes
something in addition to Lemmas 13, 14, and 15 and apparently cannot be proved
on the basis of our condition (Z). However, we remark that condition (Z) is suffi-
cient in the case of the implication C({3, 13}) — C(9).

We note that the implication C({2, 8, 13}) — C(14) ([5], p. 98) is false. (Undoubtedly,
this is a misprint; in [6], p. 102, this is replaced by the (valid) implication C({2, 3, 7})
— C(14).) Further, the implication C({2, 8, 5, 17, 13}) — C(32) ([6], p. 103, Example 3),
is false as is stated and, most likely, was intended as C({2, 3, 5, 7, 13}) — C(32).

2 The proof of this lemma, which is attributed to A. Tarski, is given in [6, p. 99].
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(4) ([4], Lemma 15)* If pell, n(A) = mp

for mel, and if we know how to realize the proposition C(p), then
we can define effectively a decomposition of A into a union of two
disjoint, nonempty sets.

DEFINITION 3. For Ze &% I) and ne l, n is a Z-number provided
either (i), & (i), or else (ii) holds:

(i), There is a ze¢ Z such that (n,z) > 1.

(i), Whenever n = n, + m,, n,, n,€ I,, then there are », r, in I,
such that »mn, + rm, e Z.

(ii) n=1.

DEFINITION 4. Z(e.27%1,)) and n(el,) satisfy condition (Z) if
either (i) or else (ii), & (ii), holds:

(i) = is a Z-number.

(ii), There is a ze Z such that (n,z) > 1.

(ii), Whenever # = n, + n,, n,, %, € I,, either Z and n, satisfy (Z)
or else Z and n, satisfy (Z).

If Z(e o”1)) and n(el) satisfy (ii), and (ii),, but not (i), of
Definition 4, we shall say that Z and n properly satisfy condition (Z).

We note that if » is a Z-number and n = n, + n,, n, n, e I,, it
does not follow that either Z and w, or Z and =, satisfy (Z); for in-
stance, let Z = {25} and » = 5.

Lemma 1. If nell U{1, 4, 6} and Z e F7*1), then Z and n satisfy
condition (Z) if and only if n is a Z-number,

LeEMMA 2. If n is an even integer and if Z(e Y1) contains
only odd integers, then Z and n fail to satisfy condition (Z).

Proof. Let Z be a nonempty, finite set of odd integers. =n =2
fails to meet condition (i), of Definition 3 and, thus, by Lemma 1, Z
and 2 cannot satisfy (Z). For n(even)c I, 2s, + (n — 2)s, is even for
all s,, s, e I,; hence condition (i), of Definition 8 fails. The proof that
Z and n = 2k, ke I, cannot satisfy (Z) follows by a routine induction
on k.

THEOREM 1. Condition (Z) is sufficient for the implication
C(Z) — C(n).

3 The proof of Lemma 15 in [4] erroneously refers to divisibility by p, instead of
by mp, in each of the first two lines on p. 165. The proof is correctly carried out in
[5, pp. 99-100].
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Proof. (by induction on #).

The result is immediate for # = 1 since, in fact, C(1) is a (trivial)
theorem of set theory. Suppose for all k < # and for all Z’ e &7°%1)
that whenever Z’ and k satisfy (Z), then C(Z’) — C(k).

Case 1. m is a Z-number:

By (i), of Definition 3 and (2), C(p) is true if p is the smallest
prime divisor of (n,z) as z ranges over all elements of Z for which
(n,2) > 1. If n is prime, we are finished.

Otherwise, let X be a nonempty set of pairwise disjoint n-element
sets, let X,, be the set of p-element subsets of elements of X, and
let f by any choice function on X,,. Then, by (4), in terms of f we
can define a function F' on X such that for each x e X, F(x) = {x,, .},
where x, and x, are nonempty, disjoint sets whose union is x. Define
the following equivalence relation on X:x ~ " if an element of F(x)
is equipotent with an element of F(x'). Let Y be the corresponding
partition on X. For each y¢ Y define a choice function g, on % as
follows: if for each z ey, f(x) contains a unit set {a} (it can contain
only one such), let g,(x) = a; otherwise, y is such that for each zcy
and each z; € F(x), n(x;) € I,.

Using (i), of Definition 3, let s, and s, be any nonnegative integers
such that for all xey and =z, x,¢ F(), s,-n(z) + s,-n(x,) e Z. By (3),
there is a function g, defined on y such that g,(x) ez for each xey.
Then G = Jyg,(y€ Y) is a choice function on X; hence C(n) is true.

Case 2. Z and n properly satisfy condition (Z):

The first two paragraphs of Case 1 apply here with the exception
that # cannot be prime (by Lemma 1). In the present case, if y is
such that for each x ey and each x;¢ F(x), n(z;) ¢ I,, then either Z
and n(x,) satisfy (Z) or else Z and n(z,) satisfy (Z).

If n(x,) and n(z,) are distinct and if {7, j} = {1, 2}, let =, = «; if
Z and n(z;) satisfy (Z) but Z and n(x;) do not, or if Z and n(zx;) (as
well as Z and n(z;)) satisfy (Z) but n(z;) < n(xz;). In this case let
A, = {z;, x;,cxey). By the inductive hypothesis, there is a function
G, defined on A, such that G,(x;) € z;, ;€ A,; hence there is a function
g, defined on y such that g,(x) ez, xcy.

Now if n(z,) = n(x,), then » = n(x,) + n(x,) is even; by Lemma 2,
Z must contain an even integer, z,. Thus C(2) is true; we can select
one of the sets x, or x,, and proceed as in the preceding paragraph.

Finally, we again have G = Jg,(y € Y) as a choice function on X.

Theorem 1 provides a convenient alternative proof of various
theorems, as well as a unified method of obtaining certain results
which depend on Lemmas 13, 14 and 15 of [4]. We give some examples:
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(i) C@2)—CH4). (4 is a {2}-number.)*

(ii) C(J,) — C(J,) if there is no prime p such that m < p < »n.°
(Using Bertrand’s postulate, [8, pp. 51-64], we see that each keJ,
is a J,-number.)

(iii) For any nel, let T, be the set of composites of J,. Then
C1nJ,)— C(T,,,,) if there is no prime ¢ satisfying » <qg =< n.°
(IT N J, together with each ke T,,,, satisfy (Z).)

(iv)., C({8,13}) —C(9). (9 is a {3, 13}-number.)

(iv), C(2,38,7)— C14)." ({2,8,T} and 14 (properly) satisfy (Z).)

(v) For any Ze .o7%(1,), condition (M) is sufficient for an impli-
cation of the form C(Z) — C(n), whenever n e II U {4,6,8,10,12,18,30}.®
(Whenever Z and % satisfy (M), they also satisfy (Z).)

In connection with example (v), we see that although (Z) is neces-
sary for an implication C(Z)—C(n) whenever n ¢ IT{4,6,8,10,12,18,30},
(Z) is not necessary for such an implication in the general case. In
fact, {2, 5,11, 13, 17} and 20 satisfy (M), and, hence, by Rubin’s ex-
tension of Theorem IX of [4],° C({2,5, 11, 13, 17})— C(20), but they
fail to satisfy (Z). (The successive decompositions—20 = 6 + 14;6 =
343,14 = 7 + T—indicate the failure of (Z).) Similarly, counter-
examples exist for n = 9, 14, 16, 24, and 42.%°

The preceding example further illustrates that condition (Z) is
also weaker than the combined strength of the sufficiency conditions
implicit in the lemmas (13, 14, and 15 of [4]) upon which (Z) is based."
Using C(2), we could choose a 3-element set (in the second decomposi-
tion) and using C(17) we could pick an element from among the remain-
ing elements. Our condition makes no provision for either of these
devices. Another example will be afforded by Theorem 5 of [10].

3. (Z) in relation to other conditions. We consider two other
conditions, each of which is sufficient for the implication (1).

DEFINITION 5. Z(e€ &7%1l))) together with n( e I,) satisfy condition
(S) if for any decomposition of » into a sum of (not necessarily distinct)
primes,

+ Compare with Tarski’s proof in [4, p. 138].

5 This is half of [4, Theorem VIII].

¢ This is [6, p. 101, Theorem 3]; it will be extended in [11].

7 (iv)e and (iv), follow by the sufficiency of condition (M) (Theorem IX of [4]).

8 This includes most of the cases of Theorem IX of [4], augmented by one of H.
Rubin’s cases (see [9, §4]).

9 See [9, §4].

0 C({3,7)H —» C©); C{2,7,11}) —» C14); C({2,11,18}) » C{6); C({11,12,17,19}) —»
C(24); C({2, 3,7,18, 17, 19, 31, 37}) — C(42).

11 Temmas 13, 14, and 15 also yield the last implication of footnote 10.
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n:p1+p2+”'+psy

there is some r ¢ I, and some p;, ¢ €J,, such that rp, e Z.

DEFINITION 6. Z(¢.9°%(1,)) together with n( < I,) satisfy condition
(SS) if for any decomposition of n into a sum of (not necessarily dis-
tinet) primes,

n=p ot Pt D,

there is some p;, 1€ J,, which is in Z.2

Each of the conditions (M), (Z), (S), and (SS) induces a relation
in ?¥1I)) x 7%, defined by Z R,Z, if and only if for each ne Z,, Z,
and n satisfy condition (X) (X being M, Z, S, or SS). (Again, we
omit the classifier in case Z, or Z, is a unit set.)

THEOREM 2. R, C R;C R,C R,.

Proof. We first note that any Z e (<#%(1,)) together with 1 satisfy
all four conditions (SS), (S), (%), and (M).

It follows from example (v), above, that in order to show that
(M) is a stronger condition than (Z), we need only show that (M) is
a consequence of (Z). Suppose Z(e .7¥1)) and n(el,) satisfy (Z).
Let

(5) N=P+ D+ o+ Du

be any decomposition of n into primes; we must find », »,, -+-, 7, €
such that »p, + rp. + «++ + r, D, € Z.

If nell, then n is a Z-number (Lemma 1) and consequently Z
contains kn for some kel, Let r=7r=:--=7r,=Fk in (5); it
follows that Z and n satisfy (M).

For composite n assume that for all j <n and all Ze g741),
whenever Z and j satisfy (Z), they also satisfy (M). If = is a Z-
number, then since n is composite, m must be = 2 in (5), and by (),
of Definition 3, there exists s, and s, in I, such that

31p1+32(p2+ v —]—pm)GZ.

Letr, =s,and r, = --- = »r, = s,. Finally, if Z and »n properly satisfy
(Z), then either Z and p, or else Z and %' = p, + --- + p, must satisfy
(Z). In the former case k'p, € Z for some k' ¢ I,, and we let r, = ¥/,

12 This is [4, Definition 4]; it is the same as condition (S’) of [6], and it is equiva-
lent to condition (X) of [1]. Different proofs of the sufficiency of (S) for (1) are
given in (1), Theorem 8, in (4), Theorem II, and (7), Theorem 2.

13 ¢f, [7, Theorem 1].
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ry,=+-+ =17, =0. In the latter case by the inductive hypothesis, Z
and »' satisfy (M). Now p, + --+ + p, is already a prime decompo-
gition of #’. Thus there are t,, - - -,t, € I, such that t,p,+ -+« +¢,p. € Z;
let r,=0,7, =%, «++, T = tp.

If Z and n satisfy (S), then whenever (5) holds, there isa k" € I,
such that k"p,e Z for some ieJ,. In particular, if » =Ip,lel,
there is a prime decomposition of 7 consisting solely of p’s. Thus
for some kel k"'pe Z and (K"'p,n) > 1. If n is prime, as above,
n must be a Z-number. Otherwise, n = 4; we assume that for all
j’" < m, whenever Z(c g°%(l,)) and j' satisfy (S), they also satisfy (Z).
Assume Z and n satisfy (S), and let n = n, + %, n, n.€ I,. Let n, =
P, +p,+ -+ +p, and n, =¢q, + ¢, + +-+ + g, be any prime decompo-
sitions of n, and n,; thennw =9, + 0, + «+- 4+ 0, + ¢, + ¢+ --- + @,
is a prime decomposition of n. By (S), there is a k* € I, such that either
k*p;,1ed,, or k*q;,j€dJ,, is in Z; hence either Z and =, or else Z
and n, satisfy (S), and consequently (Z), by the inductive hypothesis.
This proves that Z and = satisfy (Z).

{12], (1.15) and the examples following it guarantee the inclusion
R, Cc R,; the second example also serves to assure the proper inclusion
R,C R,.

We note the following additional properties of the relations R,:

(1) If ZRyZ, and if Y, (e 9”%1)) is any superset of Z, and Y,
is any subset of Z,, then YR, Y, X =M, Z, S, or SS.

(ii) Ry, and R, are reflexive; R; and R, are not (by [9], (30)).

(ili) None of the R, are symmetric; for X =M, Z, or S, R, is
also not anti-symmetric (2R;4 and 4R,2).

(iv) For k,nel, and Zec o°*l), ZRykn — ZRyn. For X =M, S
or SS, this is immediate. For X = Z, this will be shown in Lemma 4.

(v) Each of the Ry is transitive. For X =S or SS this is im-
mediate; for X = M this is seen as follows: Suppose Z, R, Z, and Z,R, Y.
Then for any n € Y and any prime decomposition, n=p, 4+ p,+ ++- + ,,
there are k, k., ---, k, € I, such that k,p, + kp, + -« + kp, = 2,¢€ Z,.
Since Z, and z, satisfy (M) and since

p1+"'+p1+p2+"'+p2+°"+ps+“'+ps
A T P ]

is a prime decomposition of z, there are I,1l,, «--, 1, c1,4...c2, € I, Such
that

o+ Lo+ o0 + lklpl + lk,+1pz + lk14»2p2 F oo + lk1+k2p2
+ e + lk1+k2+--~+ks_1+1ps =+ lk1+k2+--~+ks_1+2ps + e+ lkl+k2+~-+ksps
=+t + lkl)ﬂ + (lk1+1 + lyge + 00+ lk1+k2)p2 + oo
+ (Ciyrrgren iyt + lk1+k2+---+ks_1+2 + oo+ byrrgren,)0 €4,
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Thus Z, and n satisfy (M), and, consequently, Z,R,Y. The transi-
tivity of R, will follow from Theorem 3.

Lemma 3. If Z and n satisfy (Z) and if p is a prime factor
of n, then Z contains a multiple of p.

Proof. Assume that the hypothesis of the lemma holds.

First, suppose that » is a Z-number. If Z contains a multiple of
n, it contains a multiple of p. Otherwise, % is composite, by (i), of
Definition 3, and by (i),, there are s, s, e I,, at least one of which is
in I, such that s,p + s,(Ip) e Z for some lel,. Thus kpeZ for k =
s, + sl

Suppose that for all m <% and for all Ze &”%1,), whenever Z
and m satisfy (Z) and ¢ is a prime factor of m, then Z contains a
multiple of q.

Let Z and » properly satisfy (Z); by Lemma 1, »n is composite.
Again, n = p + lp for some le I, and by (ii), of Definition 4, Z to-
gether with either p or Ip satisfy (Z). The result follows from the
inductive hypothesis.

COROLLARY. If YR,Z and ZR,n, then Y contains a multiple of
each prime factor of n.

Proof. Under this hypothesis, if p is a prime factor of =, then,
by Lemma 3, kpe Z for some k<. Since p is a prime factor of an
element of Z, again k'pe Y for some k' e I,.

LEMMA 4. (Vk,nel)VZe F¥I))ZR kn — ZR,m). Moreover, if
kn is a Z-number, so is n.

Proof. This is trivial for n =1 and k, Z arbitrary, and, also,
for k =1 and n, Z arbitrary. Let » > 1 and k¥ > 1 and assume that
for all ¥’ < k and all Ze o741, that ZR,k'n — ZR,n. Now, if kn is
a Z-number, then for l,,l,e I, l,n + l,(k — 1)ne Z. Hence

m,Im + Lk —m) =n>1,
and if n = n, + n,, n, N, € I, then
G +LE =D+ 0+ (k=) =1lm + L(k—1meZ.

It follows that » is a Z-number. If Z and kn properly satisfy (Z),
then either ZR,n or ZR,(k — 1)n; by the inductive hypothesis, we
are finished.

THEOREM 3. (Vne L)VY, Ze 1)) (YR,Z & ZR,m) — YR n).
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Proof. For mel and Y, Ze Z%l,) assume that
(6) YR,Z & ZRm .

For n = 1, by (ii) of Definition 3, we have YR,1. For nc II, by the
corollary to Lemma 3, Y contains a multiple of #; hence n is a Y-
number.

For composite 7, assume that for all kt < n and all Ze o”¥1),
(YR,Z & ZR k) — YR, k. (6) together with the corollary to Lemma 3,
yield the existence of a y € Y such that (n,y) > 1. Suppose that

(7) n =N + Ny Ny, Nyl .

Case 1. = is a Z-number.

There are s,, s, ¢ I, for which sn, + sym,€ Z. If either s, or s, =0,
then s;n;e Z for © = 1 or 2; hence n; is a Z-number and, by the in-
ductive hypothesis, YR, n,. It follows that YR,n. If neither s, nor
s, = 0, then either

(8) tism, + s, e Y for ¢, t,e I, ,
or else
(9) either Y and s, or Y and s.m, satisly (Z) .

In case (9) holds, Lemma 4 assures that Y and », or Y and =, satisfy
(Z); in either instance, (8) or (9), YR, n.

Case 2. Z and n properly satisfy (Z):

Then, by (7) and (ii), of Definition 4, ZR,n, or ZR,n,; by the in-
ductive hypothesis, YR,n, or YR,n,. Therefore YR, n.

We remark that if » is a Z-number and if each zeZ is a Y-
number, it does not follow that = is a Y-number. A counter-example
is afforded by the case in which » =8, 7 = {8, 4}, and Y = {2, 3}.
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