QF – 3 RINGS WITH ZERO SINGULAR IDEAL

ROBERT RAY COLBY AND EDGAR ANDREWS RUTTER
Let R be a ring with identity. R is left QF-3 if R has a minimal faithful (left) module, i.e., a faithful (left) module, which is (isomorphic to) a summand of every faithful (left) module. We show that left QF-3 rings are characterized by the existence of a faithful projective-injective left ideal with an essential socle which is a finite sum of simple modules. The main result is a structure theorem for left and right QF-3 rings with zero left singular ideal. This theorem gives several descriptions of this class of rings. Among these is that the above rings are exactly the orders (containing units) with essential left and right socles in semi-simple two-sided (complete) quotient rings.

Let R be a ring with identity. R is left QF-3 if R has a minimal faithful (left) module, i.e., a faithful (left) module which is (isomorphic to) a summand of every faithful (left) module. Finite dimensional algebras with this property were introduced by R. M. Thrall as a generalization of quasi-Frobenius algebras, and other authors have considered Artinian and semi-primary QF-3 rings. For a semi-primary ring, being left QF-3 is equivalent to the existence of a faithful projective-injective left ideal. The first theorem shows that to characterize left QF-3 rings in general one must assume that some faithful projective-injective left ideal has an essential socle which is a finite sum of simple modules. The rest of this paper concerns rings with zero singular ideal which are either QF-3 or have faithful projective-injective one-sided ideals. The main result is a structure theorem for left and right QF-3 rings with zero left singular ideal. This theorem gives several descriptions of this class of rings. Among these is that the above rings are exactly the orders (containing units) with essential left and right socles in semi-simple two-sided (complete) quotient rings. This theorem extends and unifies result of M. Harada [5, 6], J. P. Jans [8], and H. Mochizuki [12].

RESULTS. A submodule N of a module M is essential in M if every nonzero submodule of M meets N nontrivially. The singular submodule $Z(M) = \{x \in M \mid Ix = 0 \text{ for some essential left ideal } I \text{ of } R\}$. $Z(R)$ is an ideal of R called the left singular ideal of R. An R-module M is called uniform if every nonzero submodule of M is essential in M. If M and N are R-modules with M uniform and

1 Throughout this paper, semi-simple means semi-simple Artinian.
$Z(N) = 0$, then every nonzero homomorphism of M into N is a monomorphism (see Goldie [4]). In particular, if M is injective and N is indecomposable, every such homomorphism is an isomorphism.

The structure of a minimal faithful R-module is given by the following theorem. We denote the injective envelope of an R-module M by $E(M)$ (see [1] or [11]).

Theorem 1. The following are equivalent.

1. R is left QF-3.
2. There exist (nonisomorphic) simple (left) R-modules S_1, \cdots, S_n such that $E(\bigoplus_{i=1}^n S_i)$ is a faithful, projective module.
3. There exist (nonisomorphic) minimal left ideals M_1, \cdots, M_k of R such that $E(\bigoplus_{i=1}^k M_i)$ is a faithful left ideal of R.

Proof. It is clear that (3) implies (2). Thus it suffices to show (1) implies (3) and (2) implies (1).

Assume (1). Let M be the minimal faithful module. Since M is faithful, M is isomorphic to a summand of R and so is projective and cyclic. Let $\{S_\alpha : \alpha \in A\}$ be a complete set of representatives for the distinct isomorphic classes of simple left R-modules. Then $E(\bigoplus_{\alpha} E(S_\alpha))$ is faithful (see [14]) and so M is isomorphic to a summand of $\bigoplus_{\alpha} E(S_\alpha)$. Since M is cyclic, its image is contained in a finite number of the $E(S_\alpha)$. Thus M is injective and has an essential socle which is the direct sum of a finite number of simple modules.

Assume (2). Then since $E(\bigoplus_{\alpha} E(S_\alpha)) \cong \bigoplus_{\alpha} E(S_\alpha)$ each $E(S_\alpha)$ is an indecomposable projective-injective module and so is isomorphic to a left ideal L_α of R (see [2]) which must contain a unique minimal left ideal M_α. One now shows that $\bigoplus_{\alpha} L_\alpha$ is a minimal faithful module as in [8].

Lemma 2. Suppose that eR is a faithful projective-injective left ideal of R where $e^2 = e \in R$. If either (a) eR is semi-simple Artinian or (b) $Z(R) = 0$ and R contains no infinite set of orthogonal idempotents, then

1. eRe is the right socle of R and contains only a finite number of isomorphism classes of simple right R-modules.
2. eRe is an essential right ideal of R.
3. the right singular ideal of R is zero.

Proof. Since eRe is injective and eRe is the endomorphism ring of eR, in either case we have $eR = eRe_1 \oplus \cdots \oplus eRe_n$ where the e_i’s are orthogonal idempotents and each Re_i is indecomposable and injective. Hence each e_iRe_i is a local ring. In case (a), the radical of e_iRe_i is
e_i(\text{rad} eRe)e_i = 0 \text{ so } e_iRe_i \text{ is a division ring. This also follows if (b) holds since } Re_i \text{ is uniform and injective and } Z(Re_i) = 0. \text{ Let } J \text{ denote the radical of } R. \text{ If (a) holds then } e_iJ = 0 \text{ for each } i \text{ since } Re_i \text{ is faithful. If (b) holds and } e_\infty \neq 0 \text{ with } x \in J, \text{ then } re_i \rightarrow re_\infty \text{ defines a monomorphism of } Re_i \text{ into } J \text{ whose image is a summand of } R, \text{ a contradiction. Hence } e_iR \text{ contains no nilpotent right ideals, so } e_iR \text{ is simple as in ([7], Prop. 1, p. 65). Hence } Re_iR \text{ is contained in the right socle of } R \text{ and } ReR \text{ is also. Now, if } H \text{ is a right ideal with } ReR \cap H = 0, \text{ then } HRe \subseteq ReR \cap H \text{ so since } ReR \text{ is faithful } H = 0. \text{ Thus } ReR \text{ is an essential submodule of } R, \text{ and so equals the right socle of } R. \text{ Since } ReR \text{ is a faithful left } R\text{-module the right singular ideal of } R \text{ is zero.}

If } R \text{ is a subring of a ring } Q \text{ such that } fR \text{ is essential in } _QQ, \text{ then } Q \text{ is called a ring of left quotients of } R.

Proposition 3. Suppose } R \text{ contains faithful projective-injective left and right ideals } Re \text{ and } fR, \text{ respectively, where } e \text{ and } f \text{ are idempotents. Then } \text{Hom}_{eRe}(Re, fRe) = fR \text{ and } \text{Hom}_{fRf}(fR, fRe) = Re. \text{ Furthermore, } Q = \text{Hom}_{eRe}(Re, Re) \text{ is a two-sided ring of quotients of } R.

Proof. Let } Q = \text{Hom}_{eRe}(Re, Re). \text{ Since the map } \lambda \text{ of } R \text{ into } Q \text{ given by } \lambda(r)(se) = rse \text{ for } r, seR \text{ is a unital ring monomorphism whose restriction to } Re \text{ is a } Q\text{-monomorphism, we may regard } R \text{ as a subring of } Q \text{ such that } Re = Qe \text{ is a faithful left } Q\text{-module. Since } Re \text{ is faithful } fRf \text{ is an essential submodule of } fQ. \text{ Thus, since } fRf \text{ is injective, } fQ = fR. \text{ Since } \text{Hom}_{eRe}(Re, fRe) = fQ \text{ the first assertion holds. Now } qRe \text{ is faithful and since if } q \in Q \text{ and } fRq = 0, \text{ then } qRe = 0, fRq \text{ is faithful. Thus, if } 0 \neq q \in Q, qRe \cap R \not\subseteq qRe \not= 0 \text{ and } Rq \cap R \not\subseteq fRq \not= 0 \text{ so } Q \text{ is a two-sided quotient ring of } R.

Lemma 4. Suppose that } R \text{ contains faithful projective-injective left and right ideals } Re \text{ and } fR \text{ where } e \text{ and } f \text{ are idempotents, and that } fRf \text{ is semi-simple Artinian. Then } Re_{eRe} \text{ is not an infinite direct sum of nonzero submodules.}

Proof. Suppose } Re = \bigoplus I_j \text{ where each } I_j \text{ is a nonzero } eRe \text{ module. Then } \text{Hom}_{eRe}(Re, fRe) = \prod_j \text{Hom}_{eRe}(I_j, fRe) = fR. \text{ Suppose the direct sum is infinite so there exists } f'r \in fR \text{ such that } f'r \in \bigoplus_j \text{Hom}_{eRe}(I_j, fRe). \text{ Since } fRf \text{ is faithful and injective and } fRf \text{ is semi-simple, there exists } se \in Re = \text{Hom}_{fRf}(fR, fRe) \text{ such that } f'rse \not= 0 \text{ and } (\bigoplus_j \text{Hom}_{fRf}(I_j, fRe))se = 0, \text{ a contradiction.}

An } R\text{-module } M \text{ is finite dimensional if } M \text{ contains no infinite direct sum of nonzero submodules (see [3]). The complete ring of left
quotients of R is $\text{Hom}_r(E(\langle R \rangle), E(\langle R \rangle))$ where $I = \text{Hom}_r(E(\langle R \rangle), E(\langle R \rangle))$ (see Lambek [10] or [11]). The complete ring of left quotients of R is semi-simple if and only if $\langle R \rangle$ is finite dimensional and R has zero left singular ideal (Johnson [9]).

If M is an R-module we say that N is a minimal essential submodule of M if N is essential in M and no proper submodule of N is essential in M.

We are now ready for the main theorem.

Theorem 5. The following are equivalent.

1. R has zero left singular ideal and is left and right QF-3.
2. There exist idempotents $e, f \in R$ such that Re and fR are faithful projective-injective left and right ideals and eRe is semi-simple Artinian.
3. R has zero left singular ideal, contains no infinite set of orthogonal idempotents and has a faithful projective-injective left ideal and a faithful projective-injective right ideal.
4. R is a subring of a semi-simple Artinian ring Q and R contains a left ideal I and a right ideal J such that I and J are, respectively, faithful left and faithful right ideals of Q.
5. R has a two-sided semi-simple Artinian complete ring of quotients and both the left socle and the right socle of R are essential.
6. R has a two-sided semi-simple Artinian complete ring of quotients and $\langle R \rangle$ and $R_{\langle R \rangle}$ each contain a minimal essential submodule.

Proof. Conditions (5) and (6) are equivalent since the socle of any module is the intersection of its essential submodules (see Utumi [16]). We complete the proof by showing first that (1) and (2) are equivalent and then that (1) \rightarrow (5) \rightarrow (4) \rightarrow (3) \rightarrow (1).

Assume condition (1). If Re is a minimal faithful left ideal with $e^2 = e$ then Theorem 1 together with $Z(R) = 0$ imply that the endomorphism ring of Re is semi-simple so (2) holds.

Assume condition (2). By Lemma 2 the right singular ideal of R is zero and the right socle ReR of R is essential in $R_{\langle R \rangle}$. Since there are only a finite number of isomorphism classes of simple right ideals of R, fR contains a minimal faithful module by Theorem 1. Hence R is right QF-3 with zero singular ideal and if we take fR to be a minimal faithful, fRf is semi-simple. Thus by an argument symmetric to the above, R is left QF-3 and has zero left singular ideal. Hence (1) holds.

Assume condition (1). Let $Re, e^2 = e$, and $fR, f^2 = f$ be minimal faithful left and right ideals of R, respectively. Then both the left and the right socles of R are essential in R by Lemma 2. By Proposition 3, $Q = \text{Hom}_{Ee}(Re, Re)$ is a two-sided ring of quotients of R. **...**
That Q is semi-simple is plain from Lemma 4 since both eRe and fRf are semi-simple.

Next assume condition (5) holds. Let Q denote the two-sided semi-simple quotient ring of R and let E denote the left socle of R. Then $EQ = E$ since E is the left socle of $_RQ$. Furthermore, since the left singular ideal of R is zero and Q_R is essential over R_R, E is a faithful right Q-module and so we let $J = E$. Similarly, we can let I be the right socle of R. Thus (4) holds.

Assume condition (4). Then Q_R is a right ring of quotients of R since for any $0 \neq q \in Q$, $0 \neq qI \subseteq R$ and hence since Q is semi-simple, it is the complete ring of right quotients of R. Similarly, Q is the complete ring of left quotients of R. Next note that $_RI$ is injective. For, if $f: L \rightarrow I$ where L is a left ideal of R, define $\tilde{f}: QL \rightarrow I = QI$ by

$$\tilde{f}(\sum q_ix_i) = \sum q_if(x_i), \quad q_i \in Q, \quad x_i \in L.$$

\tilde{f} is well defined since if E is the left socle of R, $y \in E$ and $\sum q_ix_i = 0$ then $y \sum q_if(x_i) = f(\sum (yq_ix_i)) = 0$ so $Z(\pi Q) = 0$ implies $\sum q_if(x_i) = 0$. Thus \tilde{f} is a Q-homomorphism and injectivity of $_RI$ follows from the injectivity of qI. Similarly, J is a faithful projective-injective right ideal of R so (3) holds.

Finally, condition (1) follows from condition (3) by Theorem 1 and Lemma 2.

Remark 6. If R satisfies the hypotheses of Theorem 5 and $Re, e^2 = e$, and $fR, f^2 = f$, are faithful projective-injective left and right ideals of R, respectively, then fRe character modules define a duality between finitely generated right eRe-modules and finitely generated fRf-modules in the sense of Morita [13]. The semi-simplicity of eRe and fRf with the faithfulness of $fRfRe$ and $fReeRe$ implies that $fRfRe$ and $fReeRe$ are injective cogenerators. The mapping of fR onto fRe given by right multiplication by e induces an injection of $\text{Hom}_{fRf}(fRe, fRe)$ into $\text{Hom}_{fRf}(fR, fRe) = Re$ which has image eRe.

It is not difficult to show that if R has zero left singular ideal, then R is left QF-3 and finite dimensional if and only if R is left and right QF-3. Thus Theorem 5 extends results of H. Mochizuki [12] for hereditary QF-3 algebras and M. Harada [5, 6] for semiprimary QF-3 and PP rings. This theorem also generalizes results of J. P. Jans [8] for primitive rings with faithful projective-injective minimal one-sided ideals.

A ring is (meet) *irreducible* if the intersection of an two nonzero ideals is nonzero. If R is left QF-3 and the socle of R is homogeneous, then the socle of a minimal faithful left ideal is simple and hence
is contained in every nonzero two-sided ideal. The following corollary to Theorem 5 is easily proved.

Corollary 7. Let R be a ring which satisfies the conditions of Theorem 5 and let Q denote its complete ring of quotients. The following are equivalent.

1. R is the direct sum of ideals R_1, \ldots, R_n and Q is the direct sum of ideals Q_1, \ldots, Q_n where each Q_i is a two-sided simple Artinian complete quotient ring of R_i.

2. R is the direct sum of ideals R_1, \ldots, R_n where each R_i is an irreducible ring.

3. R has a decomposition $R = R_1 \oplus \cdots \oplus R_n$ into indecomposable left ideals R_i such that each R_i has homogeneous socle.

It is not difficult to show that if (3) above holds, any such decomposition has the stated property. In (2) above the intersection of the left and right socles of R_i is the minimal ideal of R_i.

References

Received April 15, 1968.

THE UNIVERSITY OF KANSAS
LAWRENCE, KANSAS
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. R. PHELPS
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Arens and Donald George Babbitt, The geometry of relativistic n-particle interactions</td>
<td>243</td>
</tr>
<tr>
<td>Kirby Alan Baker, Hypotopological spaces and their embeddings in lattices with Birkhoff interval topology</td>
<td>275</td>
</tr>
<tr>
<td>J. Lennart (John) Berggren, Finite groups in which every element is conjugate to its inverse</td>
<td>289</td>
</tr>
<tr>
<td>Beverly L. Brechner, Homeomorphism groups of dendrons</td>
<td>295</td>
</tr>
<tr>
<td>Robert Ray Colby and Edgar Andrews Rutter, QF − 3 rings with zero singular ideal</td>
<td>303</td>
</tr>
<tr>
<td>Stephen Daniel Comer, Classes without the amalgamation property</td>
<td>309</td>
</tr>
<tr>
<td>Stephen D. Fisher, Bounded approximation by rational functions</td>
<td>319</td>
</tr>
<tr>
<td>Robert Gaines, Continuous dependence for two-point boundary value problems</td>
<td>327</td>
</tr>
<tr>
<td>Bernard Russel Gelbaum, Banach algebra bundles</td>
<td>337</td>
</tr>
<tr>
<td>Moses Glasner and Richard Emanuel Katz, Function-theoretic degeneracy criteria for Riemannian manifolds</td>
<td>351</td>
</tr>
<tr>
<td>Fletcher Gross, Fixed-point-free operator groups of order 8</td>
<td>357</td>
</tr>
<tr>
<td>Sav Roman Harasymiv, On approximation by dilations of distributions</td>
<td>363</td>
</tr>
<tr>
<td>Cheong Seng Hoo, Nilpotency class of a map and Stasheff’s criterion</td>
<td>375</td>
</tr>
<tr>
<td>Richard Emanuel Katz, A note on extremal length and modulus</td>
<td>381</td>
</tr>
<tr>
<td>H. L. Krall and I. M. Sheffer, Difference equations for some orthogonal polynomials</td>
<td>383</td>
</tr>
<tr>
<td>Yu-Lee Lee, On the construction of lower radical properties</td>
<td>393</td>
</tr>
<tr>
<td>Robert Phillips, Liouville’s theorem</td>
<td>397</td>
</tr>
<tr>
<td>Yum-Tong Siu, Analytic sheaf cohomology groups of dimension n of n-dimensional noncompact complex manifolds</td>
<td>407</td>
</tr>
<tr>
<td>Michael Samuel Skaff, Vector valued Orlicz spaces. II</td>
<td>413</td>
</tr>
<tr>
<td>James DeWitt Stein, Homomorphisms of B-algebras*</td>
<td>431</td>
</tr>
<tr>
<td>Mark Lawrence Teply, Torsionfree injective modules</td>
<td>441</td>
</tr>
<tr>
<td>Richard R. Tucker, The δ2-process and related topics. II</td>
<td>455</td>
</tr>
<tr>
<td>David William Walkup and Roger Jean-Baptiste Robert Wets, Lifting projections of convex polyhedra</td>
<td>465</td>
</tr>
<tr>
<td>Thomas Paul Whaley, Large sublattices of a lattice</td>
<td>477</td>
</tr>
</tbody>
</table>