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If & is a fibre bundle over a space X with fibre A, a
Banach algebra, and group the group of isometric automor-
phisms of A then the set of sections of the fibre bundle can
be endowed with the structure of a Banach algebra, If the
fibre A is a so-called Q-uniform Banach algebra (e.g., a com-
mutative Banach algebra) then the maximal ideal space of
the Banach algebra of sections can be identified as a fibre
bundle with base X, fibre the set of maximal ideals of the
Banach algebra A and group the group of self-homeomorphisms
of the space of maximal ideals of A, Similar results are ob-
tained for certain epimorphism structures associated with the
algebras described.

In discussing fibre bundles we shall operate in the following con-
text: A fibre bundle & specified up to equivalence [3] by a bundle
space, F, a base space X, a fibre A, a continuous projection p: E— X,
an open covering 7 = {U} of X, homeomorphisms ¢,: U X A — p~(U)
for Ue zz. The ¢, are fibre-preserving in that o,(x x A) = p~(x).
Furthermore there is an effective topological group & of self-homeo-
morphisms (auteomorphisms) of the fibre A. The mappings ¢, and
the fibre A are related as follows: For

xeUNV,U,VeZ , and acA,letos'p,(x, a) = (x, gyv()(@)) .
Then g,.(x) € & and the map g,: UN V— & is continuous. If
yepx),xecUe% ,

we shall write ¢7'(y) = (z, t,(¥)).
In our discussions we assume that .9 is topologized via neighbor-
hoods of which the following is typical:

N(TO) = {T: T(ai) € N(To(ai))y T = la 2, 00, n}

where T, Te.», a;€ A and N(T\a;) is a neighborhood of T,(a;) in
the topology of A. Thus .9 is topologized by pointwise convergence.

Let gyv(x,) = T, and let N(T,) be given as above. Note that
gyy(x)(a) is continuous on (U N V) x A since it is the composition of
p7'ery and the continuous open projection (UN V) x A— A. Thus
there is a neighborhood N(x,) © U V such that, for

z € N(2), gyv(®)(@:) € N(gyv(@o)as), 1 = 1,2, «++, n .
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338 BERNARD R. GELBAUM

Thus ¢,+(N(x,)) < N(T,) and ¢,,: UN V— .87 is continuous.

For our special purposes, A will be a Banach algebra with iden-
tity e, X will be compact Hausdorff and .o will be a group of isome-
triec C-automorphisms of A. We shall then show how to identify I'(¥),
the set of continuous sections v: X — E (pv(x) = z) as a new Banach
algebra D. For a class of Banach algebras (the so-called @-uniform
algebras), among which are the commutative Banach algebras, we
shall relate various structure spaces for 4 and D and show how the
fibre bundle structure of % imposes a structure on the structure
spaces for D",

In consonance with the remarks made earlier, we topologize .o
by neighborhoods of which the following is typical

N(a) = {a:[[a(a)) — afa)|ls <& i=1,2, -+, n}

where «,, «c & and a;c¢ A. Thus the map .o X A3 (a, a) —aa)c A
is continuous.

Other topologies are useful in special situations. However, we
shall confine ourselves to that described above®. Direct calculation
shows that in the given topology .& is a topological group.

1. I'(¥¥). In this section we show I'(%) may be given the
structure of a Banach algebra D that is in fact a bimodule over the
algebra C(X) of C-valued continuous functions on X.

For v, v.eI(¥), fi, ;€ C(X) and xc Ue Z let

Srovdx) = v+ fi(x) =@y, Fi(2)EA(7(2)))
[fi7 + o 7](®) = @u(@, fu(@)te (7)) + fu(@)E:(7:()))
Y1+ 7(®) = @, tu (VX)) (7e(2))) .
The above definitions ostensibly make the results dependent on the

choice of Ue %. However, if xe Ve %, then, e.g., if we use V for
definition,

V12 7X) = (@, Er(71(2))(7:()))
= Pp(@, Gy (@ Eo (7 (2) e (V(2))])
= @y(x, t(7 (X))t (7:(2))) .

Thus v,-7.(x) is well-defined as are f,-7,(x) and [fi-v, + fi-7:](%); clear-
Iy 7%, for, fi*7: + for7. belong to I'(£).
We note the existence of the following special sections:

t All the morphisms of this paper are assumed to be continuous, i.e., in the
category of Banach algebras and continuous homomorphisms among them.

2 The author thanks the referee for numerous constructive comments on this and
on other points.
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e(z) = py(a, e), xelUe%
o(x) = py(z, 0y, relUe% .

Clearly these definitions are U-independent. Furthermore for all
ve (&),

Yeg = @Y =7,0Y =Y0=0,YV+D0=0D+7T=7.

The above definitions endow (%) with an algebraic structure.
If we set |v(x)| = || tu(¥(x)) ||, for x € Ue %, and then

1Rgl =sxupI“/(x)l,

we see that:

(i) since each g,,(x) is an isometry, |v(x)| is independent of
the choice of U3z,

(i) |v(x)| is continuous on X and

(iii) since X is compact, || 7| < eo.

Direct verification shows that || --- || is 2 norm on (&) and that
with respect to this norm I'(¥”) is a Banach algebra D.

In the work below we shall need a lemma whose general character
justifies its inclusion here.

LEMMA 1.1. Let Ue % and let fe C(X, A), the set of A-valued
continuous functions on X, where the support K of f is contained
U. Then

V(@) = @u(w, flw), welU
= o(x) xe U

is in D and t,(v(x)) = f(x).
Proof. For xe U, v(x) is clearly continuous. If x,¢ U, then
7(x) = o(,) .

The (compact) support K of f lies in U whence there is a neighbor-
hood N(x,) not meeting K. Clearly, throughout this neighborhood
v(z) = o(x). The equation pv(x) = x is valid by definition of .

ReEMARk. If {y,} is a C-valued partition of unity subordinate to
Z and ac A let

Yo(2) = py(x, ary(2)) , xelU
= o(x) , xeU.

If Z is finite, let v = 3., v,. Then for U,e %
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br (V@) = 2ot (1e(@))
= ngo[:(w)[tli(ﬂ/rj(x))]
= Zgz:ol;(fc)(a)“uhf(x) .

The last expression is nct necessarily equal to a.

We note also that by the very definition of the structure of D
the mapping 8, :7v—t,(v(x)) for any xe Ue 4 is a C-epimorphism
of D onto A.

The algebra D is clearly an analogy and an extension of the con-
cept of C(X, A). When # is the trivial bundle, then in fact D =
C(X, A). We note in passing that for a suitable tensor product norm,
namely ), the “least cross-norm” [2], we may identify C(X, A) and
C(X) X,;A. In another place, the author proposes to explore this sug-
gestion since it appears to lead to an abstract and useful formulation
of the algebras studied here.

2. Uniform Banach algebras. The Gelfand-Mazur theorem may
be rephrased as follows:

If A is a commutative Barach algebra and +f M 1is a regular
maximal 1deal of A then A/M ts C-isomorphic to C.

We are led to the following definition:

Let @ be a simple Banach algebra with identity ¢, and let A be
a Banach algebra that is a @-bimodule, i.e., for ¢e @, ac A, ga and
aq (possibly different) are defined, belong to A and

¢

lgall = llqllllall, legll = ilaiiiiql;en
= ae, = a, q(ab) = (qa)b, (ab)qg = a(bq), (qa)q’
q(aq’); (g, @) — qa, (g, @) — aq

I

are bilinear. If, for every regular maximal ideal M of A, A/M is C-
isomorphic to Q, we say A is Q-uniform,

Whereas the set _#, of regular maximal ideals is of interest if
A is commutative, the set Epi, (4, Q) of C-epimorphisms 7, of 4 onto
Q, where ||7,4(a)|lo = ||a]],, is of interest when A4 is a not necessarily
commutative @-uniform Banach algebra. Until further notice we as-
sume A is a Q-uniform Banach algebra and that it has an identity
e, as noted earlier. Examples of such (noncommutative) A abound,
e.g., C(X, Q) where X is compact Hausdorff and @ is a simple Banach
algebra, e.g., the set End,(C") of endomorphisms of C*",n > 1. In a
separate paper [1] the author will treat general @-uniform algebras
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in detail.
We note here the surjection %: Epi, (4, @)>n—ker())e #,. If
Epi. (4, Q) is given the weak topology (a typical neighborhood is

N(%) = {77 H ﬁ(ai) - 770(%) H(J < g, 1, 2y e, N, A€ A})

and if ., is then given the strongest topology such that %k is con-
tinuous, then Epi, (4, Q) is a Hausdorff space and the map %k is an
open surjection.

We make one more observation in the form of

LEMMA 2.1. Let A be a Banach algebra that is a bimodule over
a Banach algebre B. Then every vegular ideal I of A is also a B-
1deal.

Proof. If w/I =identity of A/I, let be B, zel. Then wu(bx) —
brxel. However (ub)z e I whence bz el and similarly xbe I,

3. Epi (D, Q). When A is Q-uniform we assume . is the
group of isometric Q-automorphisms of A. We prove first that D is
Q-uniform and then we shall show that Epi, (D, Q) is a new fibre
bundle over X with fibre Epi, (4, @) and where the various maps and
the group of the bundle are quite naturally related to the correspond-
ing entities for . Note that the map 0, :v—t,(v(z)) for xe Ue %
is now a @-epimorphism of D onto A.

LEMMA 3.1, The algebra D is Q-untform.

Proof. We define actions of @ on D by:

q-7(x) = pu(x, gt (7(x))) , velU
7-q(x) = @z, t(v(x))q) , zeU.

Because the g, are @Q-automorphisms the above is a valid definition
and makes D a @Q-bimodule.

Next let M be a maximal ideal in D. We shall show that for
some , ¢ X, every U e % such that z,¢ U and every ve M, t,(7(x,)) = e.
Indeed, otherwise, for each z there is some U,>« and a v,e M such
that ¢, (v.(x)) = e. In consequence [t, (v, (¥))]™* exists for all ¥ in a
neighborhood N, c U,. We may assume there are neighborhoods 7V,
W, satisfying V,cV.,c W,c W,c N,. Let x,i=1,2 +-+,% be
such that U7, V., = X. Let f;e C(X) be such that f;=1on V., fi =0
off W..,0 < fi(x) =1, all . Then let gy) = ﬁ-(x)-[t%(’ngi(x))]"1 for
ze W.,, gi(x) = 0 otherwise. The support of g; is contained in U,
and since inversion is continuous we find g;¢ C(X, A). Thus there is
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a section v; such that by, (V@) = gulx). Then o, (Vi*7.;(%)) = e for

xeV,,. Note that ¥; = v;-v,,€ M. Let {4} be a partition of unity
subordinate to the covering {V, }. Then -7, M (Lemma 2.1) whence
¥ = X\ ¥:7:€ M. However, for any « there is some V, 5« and then

b, (V@) = 3% #5(@)t, (5(@) = S rs()e = e .

(To prove this, we begin with e V,,C U,,

b, (Y@) = 3 $@te, (:(w) -
If ze ij then
te, (V@) = g, v, @, (Ti(z)) = e.
If x¢U,,, then x¢ V., v,(x) = 0 whence
V@)t (Ti(@)) = ¥5(@)e
In all cases then
Vi(@)ty, (V3(€)) = vri@)e)

Thus ¥(x) = e(x) and M cannot be a proper ideal.

Note that the method of proof applies to the simplest case in
which the bundle is trivial and A = C (or even A = R, in which case
A is not a complex but a “real” Banach algebra). The conclusion is
that the identification of points and maximal ideals in function alge-
bras is not completely dependent on their being complex or on their
having an involution.’

We thus choose some x, such that ¢,(v(x,)) # ¢ for all vye M and
all Ue % such that x,e U. Consequently 0Uzo(M ) #+ A, is an ideal and
we show it is maximal. Otherwise there is a maximal ideal I 2 0, (M)
and since 0U% is surjective, 0;;0(]% ) is an ideal in D. However
0;;0(117 ) O M whence, 0[7;0(1171 )y = Mand so I = 8y, (M), a contradiction.
Set 01,%(M) = M, and let 7: A— @ have kernel M,. Define v,: D —
Q by 75(7) = t(to(¥(®))) = 70y, (7). Then 7,eEpi(D,Q) and thus
ker (,) is a maximal ideal. Clearly, M c ker (1,) and so M = ker (1,).
We conclude D/M is C-isomorphic to @ and thus that D is Q-uniform.

In the argument just given we have used the following

LEMMA 3.2, Let xe Ue %, n, € Epig (A4, @). Then
Np = N0, € Epic (D, Q) .
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Proof. Since
0y, € Epi, (D, 4) ¢ Epi; (D, A)

and since 7, € Epi; (4, Q), the result is clear.
Our principal object now is to prove a form of converse to Lemma
3.2, namely

LemMA 3.3. If 1, Epi, (D, Q) there is a untque x,€ X such that
if e Ue % there is an 7, satisfying: 7, = ‘Qﬁmo (n, may depend

on U).

Proof. Let 7,¢Epi, (D, @) be given and let ker (y,) = M,. We
note first that there is an x,€ X such that if 2,e Ue % then M, =
6L.x0(MD) is a maximal ideal in A. The argument for this fact was
given in the proof of Lemma 3.1. If 7,e Epi, (4, Q) is such that
ker (77,) = M, then ker (77_401,%) = ker (1,) and thus 7, = a-%ﬁ% where

a is a C-automorphism of Q. Setting 7, = a7, we conclude
Np = 774401,'20 .

We show now that the z, is unique. Indeed, let ¢, be such that
if ¥, ¢ VeZ there is an 7/, satisfying 0iby, = .00,. We show that
2, = %, by showing that if xz,e¢ W,, x,¢ W,, where W, W, are open,
W,cU,ez, W,cU,e %, then W,N W, = @&. Indeed, we can find
feC(X), 0= f(2) 1, flw)=1and f=0off W,, Then v= f-ec(C(X,A)
is such that ‘9U1x1(7) = e whereas 650%(“/) =0 (Lemma 1.1) and thus
77110[,,”51;#77;10[;0350. Since X is Hausdorff we see x, = x,, i.e., x, is
unique.

We are now in a position to define a projection P: Epi, (D, @) —
X, namely by letting P(n,) = %, in the notation above. Furthermore,
for Ue 7% define @,(U x Epi, (4, Q)) — P~(U) by the formula

@U(xy 771) - 7];1‘91156 .

Finally, for each xe UN V, where U, Ve, define Gy UNV —
Perm (Epi, (4, Q)) = the set of permutations of the set Epi, (4, Q)
according to the following formula

Gur(@)(1n.)(@) = 7.(guv(@)(@))

(“GUV = ngV*”)'

We shall show below that if the weak topologies (§2) are used
for Epi. (D, Q) and Epi, (4, @) then:

(i) P is a continuous surjection.
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(ii) Each @, is a homeomorphism onto P~*(U).

(111) @;l@r(xr ‘%) = (9(:, GI"U(:U)O?A)) ifzeUNV.

(iv) Each G, is a continuous map of U N V into the set Auteo
(Epi, (4, @) in the sense that each G,.(z)¢ Auteo (Epi, (4, Q) and
Gyr: UN V— Auteo (Epi, (4, Q)) is continuous with respect to a sui-
table topology for Auteo (Epi. (4, Q)).

These statements imply

THEOREM 3.1. Epi, (D, Q) is a fibre bundle over X with fibre
Epi; (4, Q), projection P, maps @, and group Auteo (Epi; (4, Q)).
Ad (i). Let
N2 = Mooy P(p:) = T, P(77D0) =T .

If ¢, - 2, let x,€ Ue % and find open V, W, such that W VcU
and such that for a subnet x; ¢ V. Choose fe C(X) so that

0= fle) =1,

f=1on W,f=0off Vand let veD be such that t,(v(v)) = f(zx)e
(Lemma 1.1). (Alternatively, let v = f-e.) Then

00247) = 7 0ol7)
whereas
No2(7) = Parbo, (V) = 0
and
Dur0) = b, (1) = e,

a contradiction. Thus P is continuous. It is clearly surjective.
Ad (ii). We show first that @, is continuous. Let

(x;, 7]42) — (%, 7/,10) .

Assume 7]111653,2 = Npy = Npe = (Xoy Do)
Then there is a neighborhood

N@oo) = 102 17007 = 0¥ [le <&, ¢ =1,2, -+, m}
and a subnet 7,, € N(7,). We know that eventually
Wt (vilwa)) — to(al@)) |1 < &/2,  1=1,2,--+,n
and thus eventually

1 (o (Yi(2))) — 74 (@) llo < €/2
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(Since ” 7]4(“) HQ = “ a “A)5 1= ly 2! RN (2 Hence

H Nar(Ep(vx))) — 77Ao(tv('\/~;(900))) HQ
= 1940 (V@) — Dur (e (Vi) |l
+ 1742 (7(20))) — Dao(Er (V@) [l -
Eventually the first term falls below ¢/2 uniformly in 7,,, 1 =1, 2,
-+, m, and then eventually the second term falls below &/2, whence
eventually »,, € N(n,,), a contradiction.

Next we show @, is a bijection between U x Epi, (4, Q) and
P-Y(U). If (x,7,) # (', 7,) then either x + 2’ or x = 2’ and 7, # 7.
If z = 2’ we may find fe C(X, A), as in earlier arguments, so that
the support of f is inside U, f(z) = e, f(&') = 0 and for some ve D,
ty(v(®)) = f(x). Then 0, (v) = e, 0,,(v) = 0 and so

D, 1) # (@', 1)

If & =o', let n,(a,) = 4(a,), and let 0, (v,) = a,. Again, we see @, (x, 7,) #*
@,(«’, 7). Furthermore we have seen that each 7, may be written
in the form 7,60, . Thus @, is a bijection of U x Epi, (4, @) on P}(U).
Now we show @;' is continuous. Thus let 7, — %5. Since P is
continuous, P(1,,) = x,— %, = P(p). If =7, ;0% and 7,, = vAoﬁUzo
we wish to show %,,—%,. Otherwise, there is a neighborhood
N(UAO) = {7]A: ” 77A(ai) - 77Ao(ai) HQ < g, 1= 17 2; tt n}

and a subnet 7,; ¢ N(,). Furthermore we may assume that for some
open W and V there obtains: ;e Wc W Vc U and that ¢, e W
for all M. Again we find f; € C(X, A) such that fi(x) = a; on W, fi(x) =0
off V. If t,(vix)) = fi(z), let

N®po) = {905 11 0(V) — Noe(¥) [le < &7 =1,2, -+, n}.

Thus || 72(7:) = Doo(¥:) lle = 1] 942:(@:) — Nao@s) [l = €, and we arrive at
a contradiction of: 7,, — 7y, .
Ad (iii).

@(x, 1.4) = Nuby,, P5'(Na0r,) = (2, 7) ,
where
Dby, = Nibv, = Niguy(@)0y, = Goy(@)(14)0y, .
Thus 7, = Guv(®)(74), 74 = Gru(2)(7.), and so
P7'0y(@, 14) = (%, Grp(®)(7.) .

Ad (iv). To discuss the mappings Gy,(x) we first prove
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LEmMmA 3.4, If T is a C-automorphism of a Q-uniform Banach
algebra B, then T*:Epi, (B, Q) — Epis (B, Q) defined by

T*(n)(b) = 17(T(0))

is an automorphism of Epi; (B, Q).

Proof. We note that T* is injective since T*(,) = T*(,) if and
only if 5(Tb) = 1,(Tb), and since T is an automorphism of B, we find
7, = 7N,. Furthermore, if 7 is given, direct calculation shows that 7 =
T*((T~Y)*p), i.e., (T*)™* = (T* Let T(n,) = ¢, and let

N(CO) = {C; “C(bw) - Co(bm) HB < g, ?’ = 1y 27 M n} .
Then let
N@o) = {: I (Th)) — 9T ||z <&,0=1,2,---,m} .

Clearly T(N(7,)) € N(£). The same kind of argument shows (T'*)™' =
(T—* is continuous.

From Lemma 3.4 we see that each Gy (x) € Auteo Epi, (4, Q).

By virtue of (iii) we see, in a manner analogous to that given in
the introduction that G, (x)(,) is continuous on (U N V) x Epi, (4, Q).

For our purposes, the relevant part of Auteo (End,; (4, Q)) consists
of all auteomorphisms of the form T* where T e .. We denote this
relevant part of Auteo (End, (4, @)) by .&7*. Since

2T —T*e ™

is bijective, we see that .o * may be regarded as an anti-isomorphic
copy of &7, (If T,— T}, T,— T} then T.T,— T;Tf.) We topologize
7* by giving it the topology of .7 * i.e., a set S*C . * is open
if and only if the preimage S is open in %7 In this way .97 * becomes
a topological group.

Since the maps ¢,,; UN V— % are continuous we see that the
maps Gy: UNV— .o7* are also continuous.

4. _#,. The spaces _+; and _.7, in the topologies they derive
from Epi, (D, @) and Epi, (4, Q) respectively, are related via a fibre
bundle.

THEOREM 4.1. _/7, is a fibre bundle over X with fibre _#,. The
projection w: _#, — X 1is defined by mw(My,) = P(,) where ker (n,) =
M,. This definition is independent of the choice of 7, and 7 is
continuous. The group is the group of auteomorphisms of _#,. Fur-
thermore, if Ue % then n~'(U) is homeomorphic to U X _#,. The
map ¥,: U X _#Z, — o (U) implements the homeomorphism according
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to the formula:
U, M) = {r:ty(v(x))e M} = Mye 7.
The maps <,p: UNV— Auteo (. 7)) are defined by
Cyr(@) M) = {gp(2)a):ae M} .

The function <y (x)(M,) is continuous in the pair (v, M,) by virtue
of the formula:

Uil (e, My) = (¢, &yp() (M) .

The map <v: UNV— Auteo (_Z,) is continuous in a suitable
topology for Auteo (_7).

We omit the proof of Theorem 4.1 since the arguments and con-
structions of the proof closely parallel those given in § 3.

5. Complements. Some of the foregoing may be carried out in
a more general context where no assumptions about the Banach alge-
bra A are made except that it has an identity. The constructions of
P and 7, of &, and ¥, of G, (x) and <, (x) can be carried out with-
out recourse to hypotheses about @Q-uniformity of A. However, some
of the continuity proofs cannot be repeated in the “natural” topologi-
cal context.

First Epi, (4, Q) and Epi, (D, Q) must be replaced by Epi; (4) and
Epi; (D) (the respective sets of all epimorphisms of A and D onto
simple quotients). Next . .7, and _.Z, should be given their hull-kernel
(hk) topologies and then Epi, (4) and Epi,(D) are given the weakest
topologies that make the mappings 7, — ker (y,) and »,— ker (y,)
continuous. It is of interest to note that P and 7 remain continuous
but that ¥, need not be continuous. We show 7 is continuous and
since Epi, (D) — _#, is continuous, the continuity of P follows.

Indeed, if MpoD Nyyes M, and if w(M,) = z,¢7(S) let m,e W
where WNxn(S) = @. As in earlier proofs, let x,e W,c W,c W.
We may assume also that W< Ue Z. Then if fe C(X, 4) has sup-
port in U and if f(x) =e¢ on W, f(x) = 0 off W, let vye D be such
that ¢,(v(z)) = f(z). Then t,(v(x,) = ¢ and so v ¢ M,, whereas ¢,(v(x)) =
0, x¢ W and so v€ MNy,.s M,. We arrive at a contradiction.

On the other hand the following example shows that ¥, need not
be continuous.

ExAMPLE. Let A be the commutative Banach algebra of functions
Sf(?) analytic for |z| < 1 and continuous for [2| £ 1, z€ C; let X=]0, 1]
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and let & = A x X. Then D = I'(¥°) is the set of all continuous
maps from X to A. The bundle & is trivial and we wish to consider
the singularly covering {X} and to show that ¥, is not continuous. We
shall exhibit a section ve D, a pair (X,, M,) and a set of pairs (x;, M,)
such that

T — M, >N M,
Y@yeM,, vw)eM.

Thus, if M,;, = ¥,(x;, M,), then vye N M,, and ve¢ M, = ¥, (x, M,
whence ¥, {(x;, M))} & ¥ {(x,, M,)}. Specifically, let

flh:)\a,M;‘N—-;;-,ngélo

Let

@t x?

w—2 © @ 2w—2

V(@) = f.(2) = 2° —

Then f£.(1) = 1,

Furthermore

a2 x?
(9‘71 - 2) (xz - 2)

() — (@) || < \

whence ve D. As A — 0, v(x,) — 7(x,) = 7(0) = 2°%. On the other hand,
N: M, ={0yc M= {f: f(1) = 0}. Thus

7w) =20 = fi() =0,

whence Y(x,) e M;. But v(x,) = 2°¢ M. We conclude that ¥, is not
continuous in this example.

The referee has suggested an alternative approach for the more
general situation: For each simple @ and any A, the argument of
§ 3 shows that Epi, (D, Q) has a fibre bundle structure with fibre
Epi, (4, Q), although Epi, (D, @) and Epi, (4, @) may be empty. There
now arises the problem of patching “all” Epi; (D, @) and correspond-
ingly “all” Epi, (4, Q) together and thereafter relating the resulting
structures.
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