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This paper considers three transforms of a complex series
Σan: namely, (1) Aitken's ^-transform Σbn, (2) Lubkin's W-
transform Σcn, and (3) a closely related transform Σdn which
the author calls the PΓl-transform and for which ^ ? dk —
Y_^+lck. If a,n-i Φ 0, set rn = dnldn-L If, moreover, Σan

converges, define Tn — (an + an+i + ')/an-ι and let MR(Σan)
be the class of all series converging more rapidly to the sum
S = Σan than Σan. Some of the results proven in this paper
are as follows:

(1) If bnlan -> 0, then the three conditions (i) Σbn e MR(Σan),
(ii) ΣcneMR(Σan), and (iii) ΣdneMR(Σan) are equivalent.

(2) Σbn e MR(Σan) if and only if ΔTn -> 0.
(3) If I rw I ̂  |0 < 1 for all sufficiently large n, then the

three conditions (i) Σbn e MR(Σan), (ii) Δrn —> 0, and (iii) bJan->
0 are equivalent.

Samuel Lubkin has given several sufficient conditions for
Σbn e MR(Σan) in case Σan is a real series. The third result above
contains a generalization of one of his results to the complex plane
while relaxing some of his hypothesis.

The following results on complex products are also proven:
(4) If the sequence {l/an — l/an^} is bounded, then the product

ΠΓ (1 + αn) diverges.
(5) Suppose that | rn | ^ p < 1 for all sufficiently large n and

an Φ — 1 for all n. Then a necessary and sufficient condition for the
^-transform to accelerate the convergence of the infinite product
Πo°° (1 + an) is that Δrn -> 0.

The notations and definitions set forth in Tucker [2] will be used
in this paper. In particular, Sn = a0 + aι + + αΛ, J α w = Σ Γ αn>
and S = I'α^ if I'α,, is convergent. Given a second series Σa'n we use
the notation S« = αj + + < , r'n = a'Ja'n^ for < _ ! ^ 0, S'^lα',, and
Γ; = (S' - SLO/αLi for <_ x ^ 0. Likewise, given a "transform se-
quence" {an}, an complex, we set San = Sn + an+1an+ί for w ^ 0, aa0 =
Sa0 = tt0 + α ^ , and αα% = iSΛn - Sa(w_D for n ^ 1.

The transform sequences associated with the δ2, W, and Wl trans-
forms are defined respectively as follows:

( i ) αΛ = 1/(1 - r n), n ^ 1,
( i i ) aλ= -ao/aλ; an = (1 - rn^)/(l - 2rn + rn^rn), n ^ 2,
(iii) α n = (1 - r Λ + 1 )/(l - 2r w + 1 + r n r Λ + 1 ) , w ^ 1.
Whenever division by zero occurs in ( i ) , we set an = 0. We do

likewise for (ii) and (iii). As in Tucker [2], we retain the notation
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{δn} for the <52-transform sequence, and if " * " denotes any relation,
the notation "*." means that * holds for all sufficiently large n and
"*:" means that * holds for infinitely many positive integers n.

In what follows, the author is generally interested in the interrela-
tionships between the conditions (1) Σbn e MR(Σan), (2) Σcn e MR(Σan),
(3) ΣdneMR(Σan), (4) 5 , / o ^ 0 , (5) JTn->0, (6) Jrn->0, (7)\rn\^.
B for some B, and (8) 0 < B ^ . 11 — rn | for some B. Also, the no-
tation Σbn1 Σcn and Σdn specified in the first paragraph for the respec-
tive <52, W and Wl transforms will not be used in what follows.
Instead, the appropriate Σaδn or Σaan notation will be employed.

The following two theorems, the second in particular, are helpful
when investigating acceleration.

THEOREM 1. Suppose that Σan is a complex series, {bn} is a
complex sequence, and Σa'n is a series with partial sums S'n =. Sn +
bn+ι. Then Σa'n e MR(Σan) if and only if bn+1 ~ S - Sn —> 0.

Proof. If either condition holds, then

s - sn=.s- s; + bn+ί^.o,

so that bn+J(S-Sn) + (S-S'%)/(S-Sn) = . 1. Thus (S-S'n)/(S-Snh+0
and S - Sn-+ 0, if and only if, bn+1/(S - Sn)->1 and S - Sn-+0; but
this is equivalent to bn+1 — S — Sn —»• 0.

From Theorem 1, we see that the class of all sequences {cn} such
that Σa'n e MR(Σan)y where S'n — Sn + cw+1, is completely determined
by one such sequence {bn}; the required condition being that cn — bn.
Similarly, we now show that if Σaan e MR{Σan), then Σaβn e MR(Σan),
if and only if βn ~ ocn.

THEOREM 2. Suppose that ΣaaneMR(Σan). Then ΣaβneMR(Σan)
if and only if βn ~ ocn.

Proof. From Theorem 1, an+1an+1 — S — Sn —> 0. Hence, from
Theorem 1, Σaβn e MR(Σan) if and only if an+ιβn+ί ~ S — Sn, and this
is equivalent to an+1βn+1 ~ an+1an+ί, that is, βn+ι — an+ί.

LEMMA 3. // (1 - rn)(l - rn+1) Φ 0, then ajan = 1/(1 - rn+1) -
1/(1 - rn) - r n + ι /(l - rw+1) - rj(l - r j = (r n + 1 - r j

Proof. Since rΛ ^ 1 and r n + 1 ^ 1, we have δn = 1/(1 — r j and
δw + 1=1/(1 - rn+ί). Thus, ajan = (αn + αw + 1δ% + 1 - an8n)/an = 1 + rn+ίdn+i -δn =

- 0 = rn+j(l-rn+ι) -rj(l - rn) = [Tn+1(l-rn)-
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r j ( l - r w + 1 ) - ( r . + 1 - r j / ( l - r j ( l - r . + 1 ) - 1/(1 - r.+1) -
1/(1 ~ rn).

We now establish a relationship between the 32-transform and
the TFl-transform.

THEOREM 4. Suppose that aδjan—*θ. Then ΣaδneMR(Σan) if
and only if Σaan e MR(Σan), where an =. (l-rw + 1)/(l - 2rn+1 + rnrn+1).

Proof. Suppose that ΣaδneMR(Σan). From Lemma 3,

1 - 2rn+1 + rnrn+1 =. (1 - r J ( l - rw+1) - (rn+1 - rn)

=. (1 - rΛ)(l - r%+1) [1 - (rn+1 - r J / ( l - rn)(l - r n + 1 )]

= . (1 - r.)(l - rn+1)(l - α . jα j = .̂ 0 .

Hence, α j δ , = . (l-r w )(l-r % + 1 )/(l-2r % + 1 + r Λ + 1 ) =.1/(1 - aδn/an) -+ 1.
From Theorem 2, Σαα% e ilίβ(Σα%).

Suppose that ΣaaneMR(Σan). Then rnφ.\, so that

and, from Theorem 2, Σα^ e Mff(Σαn).

The same type of relationship is now established between the δ2-
transform and the TF-transform.

THEOREM 5. Suppose that aδn/an-+0. Then ΣaδneMR(Σan) if
and only if Σaan€MR(Σan), where an = . (1 — rn_j)/(l — 2rn + rn^jTn)m

Proof. Suppose that Σaδn e MR(Σan). As in the proof of Theorem 4,

1 - 2rn + r ^ r , =. (1 - rn^)(l - rn)[l - a^Ja^] Φ. 0 .

Hence,

ajδn =.(1- rn^)(l - rJ/(l - 2rw + r ^ ^ . ) = . 1/(1 - aδ{n^/an^) — 1.

From Theorem 2, i;ααw e MR(Σan).

Suppose that ΣaaneMR(Σan). Then rw ^ . 1 , and thus

ajδn =. 1/(1 - a^-Ja^) -> 1 .

From Theorem 2, Jα ί n e MR(Σan).
The next theorem helps to establish the significance of the quan-

tities ΓΛ when dealing with acceleration in general.

THEOREM 6. ΣaaneMR(Σan), an~ TJrn, and αΛ ~ 1 + Tn+1 are
equivalent.
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Proof. From Theorem 1, Σaan e MR(Σan) if and only if an+1an+ί ~
S - Sn -> 0; and this is equivalent to an+1 ~ (S - Sn)/an+1 = Tn+1/rn+1.
Moreover, an ~ TJrH is equivalent to an ~ 1 + Tn+1, since TJrn =

We now establish a useful algebraic expression for (S — Si(n-i)/
(S - S w ) in terms of ΔTn.

LEMMA 7. If Σan is a convergent series and n is a positive in-
teger such that Tn+1 — Tn Φ — 1, then

(S - Sδ{n^)/(S - SU) - (Tn+1 - Tn)/a + Tn+1 - Tn) .

Proof. From (1 - rn)(l + Tn+1) = 1+ Tn+1 - Tn Φ 0, ΓTO+1 Φ - 1

and rΛ ^ 1. Thus S - Sn^ = α%(l + ΓΛ+1) ̂  0. We then have

— lnlyL -\r ln+1) l n

We now establish necessary and sufficient conditions for the δ2-
process to accelerate the convergence of a convergent series Σan.

THEOREM 8. Σaδn e MR(Σan) if and only if Tn+1 - Tn —> 0.

1st Proof. From Theorem 6, Σaδn e MR(Σan) if and only if δn ~
1 + Tn+ί, and this is equivalent to (1 + Tn+1)(l — rn) —> 1, since δTO = .
1/(1 - rn). Finally, (1 + ΓΛ+1)(1 - r j ~ > l if and only if Tn+1 - Tn-+0,
since ΓΛ + 1 - T% = . (1 + Γ%+1)(1 - rn) - 1.

2raZ Proo/. If ΓΛ+1 - Tn~+0, then Γw + 1 - ΓΛ Φ. - 1. Thus, from
Lemma 7, (S - S^^KS - Sn^) = . (ΓΛ + 1 - ΓΛ)/(1 + TM+1 - Γ J ~ > 0 .
Conversely, suppose that (S - Sδ{n^v)/(S — Sn^) -+ 0. Then an Φ. 0 and
rΛ ^ . 1, since δn Φ. 0. We must have 1 + T n + 1 — Tn Φ. 0, since other-
wise (1 - r J i i y r . ) = . 1 + Tn+1 -Tn=: 0, and S - S U = : 0; a con-
tradiction. From Lemma 7, (Tn+1 - TH)/(1 + Γw+1 - Tn)=.(S~ Sδin^)/
(S - Sn^) -> 0, and thus ΓH+1 - Tn -> 0.

The preceding theorem immediately yields the corollary, also proven
in Tucker [2], that the convergence of {Tn} imples ΣaδneMR(Σan).
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LEMMA 9. // Σan is a convergent series and n is a positive in-
teger such that α ^ ^ α ^ ! Φ 0, then

rn+1 - rΛ = (Tn+2 - Tn+1)(l - rn)(l - rn + 1)

- (Γ n + 2 - Γn + 1)(l - r j + (Γ n + 1 - Γn)(l - rn + 1) .

Proof. We have

(1 - rn)(l + Γn+1) = 1 - rn + Γn + 1 - rnTn+1

= 1 + Γn + 1 - rn(l + Γn+1) = 1 + Tn+1 - Tn ,

so that

Tn+1 - Γw = (1 ~ rw)(l + ΓΛ+1) - 1 .

Similarly,

Tn+2 - Tn+1 - (1 - r n + 1)(l + Γ%+2) - 1 .

Thus,

(-L n + 2 -ί *+l) ( l ^w)(l ^u + l) (J- n + 2 J- w + l ) ( l ^*Λ)

+ (Γ n + 1 - Γ.)(l - rκ + 1) = (ΓM+2 - Γπ + 1)(l - r n )(l - rn + 1)

- rH)(l + Γn+1) - 1]

+2 J- w + l ) ( l ^ » ) ( 1 *̂w + l) + ( 1 ~ ^ n

- r n )(l ~ r n + 1)(l + Tn+2) - (1 - rw

- rn)(l - r n + 1)(l + Γn+1) = (1 - rn)(l - rw

- (1 + Tn+2) + (1 + ΓΛ+1)] + r n + 1 - rΛ = rw + 1 - r n .

LEMMA 10. // J?αw is a convergent series and n is a positive
integer such that (1 - rn)(l - rn+1)an+1=£θ, then aδn/an = (Tn+2—Tn+1) —
(Tn+2 - Γn+1)/(1 ~ rw+1) + (Γw + 1 - Γn)/(1 - rn).

Proof. We have an_1anan+1 Φ 0, and

αδ»/αn = (rn+ί - rΛ)/(l - r n )(l - rΛ+1)

according to Lemma 3. We now apply Lemma 9.

LEMMA 11. // aδn e MR(Σan) and 0 < B ^ . 11 - rn \ for some
number B, then aδn/an—+Q.

Poof. From Theorem 8, Tn+1 — Tn~>0. Using Lemma 10 and
0 < B <£. 11 — rn I, it is obvious that aδn/an —> 0.

THEOREM 12. Suppose that ΣaδneMR(Σan) and 0<B ^ . | 1 — r n | .
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Then Σaan e MR(Σan), where an =. (1 - rΛ + 1)/(l - 2rn+ι + rnrn+ί) or
an = . (1 - rw_0/(l - 2rw + r , . . ^ ) .

Proof. From Lemma 11, aδn/an—>0. We now apply Theorem 4,
if # n = . (1 - r Λ + 1 ) / ( l - 2 r w + 1 + r n r n + 1 ) ; or Theorem 5, if α n = . ( l - r ^ ) /

THEOREM 13. // Σaδn e MR{Σan) and \ rn | ^ . B for some number
B, then rn+1 - rn — 0.

Proof. From Theorem 8, Lemma 9, and \rn\ < .̂ B, it is obvious
that rw + 1 - rΛ -> 0.

The following theorem gives simple necessary and sufficient con-
ditions for the <52-transform to accelerate convergence in the complex
plane under the fairly general condition that \rn\ ^ . p < 1. In addition,
it generalizes the result on acceleration contained in Theorem 2 of
Lubkin [1].

THEOREM 14. Suppose that \rn\ ^. p < 1 for some number p.
Then a necessary and sufficient condition that Σaδn e MR(Σan) is that
rn+1 - r Λ - > 0 .

Proof. Since \rn\ ^.p < 1, Σan converges. The necessity follows
from Theorem 13. For the sufficiency, let ε > 0. Since rn+ί—rn~»0,
I rn+1 — rn I ̂ . ε. Consequently,

I Tn+ι - Tn I = . I ( r w + i - rn) + rn+ι(rn+2 - rn) + rn+1rn+2(rn+3 - rn)

+ . . . + (rn+ι rn+k^)(r%+k - rn) + | g . | r Λ + 1 - r π |
+ I rn+11 I rw + 2 - rΛ I + + I r n + 1 r ^ ^ | | rw+fc - rn \
+ . . . ^ . ε + 2ε I r n + 1 1 + + Λe | r Λ + 1 rΛ + f c - 11
+ ^ . ε[l + 2p + Sp2 + + kp1*-1 + . •] - ε/(l - p2) .

Hence Γw + 1 - Tn -> 0, and thus, from Theorem 8, 2 ^ e MR(Σan).

The preceding theorem yields a simple proof of acceleration in a
punctured disk in the complex place for certain power series as is
now seen.

COROLLARY 15. Suppose that \rn\ <L.ρ < 1 for some number p,
Σaδn e MR(Σan) and a'n = anz* for every n. Then Σa'9n e MR{Σa'n), for
each complex number z satisfying 0 < | z \ < 1/p.

Proof. From Theorem 14, rn+1 — rn —> 0. Let z be any complex
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number such that 0 < | z | < 1/ρ. Then | r'% \ = . | rnz | <;. p \ z | < 1 and
r; + 1 - r i = . rn+1z -rnz=. z(rn+1 - rn) — 0. Thus Σa'δn e MR(Σa'n), ac-
cording to Theorem 14.

COROLLARY 16. Suppose that \rn\ ^.p < 1 for some number p,

rn+ι — rn—+0 and a'n = anz
n for every n. Then Σaδn e MR{Σar

n)1 for

each complex number z satisfying 0 < | z | < 1/ρ.

Proof. From Theorem 14, Σaδn e MR(Σan). We now apply Corol-
lary 15.

LEMMA 17. If 0 < A ^ . 11 - rn\ ^ . B, then ajan = . (rn+1 - rn)j
(1 - rn)(l - rn+1), and ajan ->0 i/ and only if rn+1 - rn —>0.

Proof. Since 0 < A ^ . 1 1 - rn\ £. B, 0 < A2 ^. | ( l - r » ) ( l - r n + 1 ) | ^ .
JS2. Hence from Lemma 3, aδn/an = . (rw + 1 - r j / ( l - r n )(l - r Λ + 1 ) . Thus
from 0 < A2 ^ . | (1 - r j ( l - rn+1) \^.B\ ajan-+ 0 if and only if

LEMMA 18. If \ rn \ ^ . p < 1,

αίnK = . (rn+i - rn)/(l - rw)(l - rw+1) ,

aδn/an —>0 if and only if rn+1 — rn —• 0.

Proo/. From | rn \ ̂ . ^ < 1, 0 < 1 - p ^ . 11 - rn \ ̂ . 2. We now
apply Lemma 17.

THEOREM 19. Suppose that \ rn \ ̂ . p < 1. Then aδn e MR(Σan) if
and only if aδn/an —> 0.

Proof. From Lemma 18, aδn/an —* 0 if and only if rn+1 — rn —> 0.
From Theorem 14, Σaδn e MR(Σan) if and only if rw + 1 — rn —> 0. Con-
sequently, ΣaδneMR(Σan) if and only if αίn/αw—•().

THEOREM 20. // | r w | ^ . j o < l <md aδn/an—*0, then ΣaaneMR(Σan),
where an=.(l-rn+1)/(l-2rw+1+rwrw+1) or α n = .(1 - r n - 1 ) / ( l - 2 r w + r , - ^ ) .

Proo/. From Theorem 19, Σaδne MR(Σan). From Theorem 4,
Σaan e MR(Σan) if α, = . (1 - rw+1)/(l - 2r%+1 + r . r n + 1 ) . If

an =. (1 - r n β l )/(l - 2r% + n ^ r j ,

we may apply Theorem 5 to obtain Σaan e MR(Σan).

THEOREM 21. If

I rn I ̂ . p < 1 and r n + 1 - rΛ -> 0 ,
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then Σaan e MR(Σan), where an = . (1 - rΛ+1)/(l - 2rn+1 + rnrn+1) or
an = . (1 - r^J/fl - 2rw + n _ 2 r j .

Proof. From Lemma 18, aδn/an —> 0. We now apply Theorem 20.

In Tucker [2] it was proven in Theorem 3.7 that if a'Jan —> 0,
I rn I ̂ . ft < 1/2 and | r'n j <Ξ. ft < 1, then Σa'n converges more rapidly
than Σan. Furthermore, it was shown there in Counterexample 3.8
that the replacement of "1/2" by any larger number produced in in-
valid result. We now turn to our next theorem which shows that
"1/2" may be replaced by " 1 " under the additional hypothesis that
Δrn — 0.

THEOREM 22. If

a'Jan -> 0, I rn\ ^ . ft < 1, | r'H\ £. ft < 1

and Δrn —> 0, then Σa'n converges more rapidly than Σan.

Proof. From Theorems 8 and 14, JΓ Λ — 0. Also | l + T'n+1\ ^ .
1/(1 - ft). Thus,

\S-Sn^\ \an\ \TJrn\ \an\ | (1 + ΔTn)/(l - rn) |

Our final two theorems are on infinite products.

THEOREM 23. // the sequence {l/an — l/αw-i} is bounded, then the
complex product Π~ (1 + an) diverges.

Proof. Assume that ΠΓ (1 + an) converges. Then an —> 0 and
there is an m ̂  0 such that for k Ξ> 0, the quantities

Si = (1 + α j ( l + αw+1) •••(! + am+k)

satisfy the limiting relation S'k —> S' for some Sf Φ 0. We may assume
that, m = 0 so that S« = ΠJ (1 + ^0 for π ^ 0. Since the sequence
{(1 — rn)/an} — {l/an — l/an^} is bounded and an-+0, we have rn—>1.

Let αj = So = (1 + α0) and α'Λ = Sή - >S;_! = Π? (1 + a{) - ΠJ"1 (1 + ̂ ) =
[ΠΓ1 (1 + α,)][(l + αft) - 1] = αn Π?"1 (1 + α,) for % ̂  1. Then l/α'w+1 ~
I K - [l/K + i( l + αw)] - 1/αJ/Πo-1 (1 + α,) = [(l/an+1 - I/aJ - l/[rΛ+1(l + αj]/
ΠJ""1^ + α4). Hence, since rn—>1, an—>0, {l/αΛ — l / α ^ is bounded
and ΠΓ (1 + an) = S' Φ 0, we see that {l/α«+1 — l/<} is bounded. From
Tucker [2], 2K diverges, i.e., Πo°° (1 + an) diverges.

THEOREM 24. Suppose that \ rn \ ̂ . p < 1 ami aw ^ — 1 for all n.
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Then a necessary and sufficient condition for the δ2-transform to

accelerate the convergence of the infinite product ΠΓ (1 + an) is that

Δrn -» 0.

Proof. Set S'% = Πo* (1 + α4) for n^0,ai = Sί and a'n = S'n- Sf

n^

for n ^ l . Since | rn | <^. p < 1, we successively obtain the convergence

of Σ\an I, Πo~ (1 + | α<1) and Πo~ (1 + α<) = S' = 2 K =* 0. Also, an -> 0

and < = . rw + an yield | < | ^. p' = (p + l)/2 < 1 and the equivalence

of the conditions Δr%—>0 and Jri—>0. From Tucker [2], J α ^ e MR(Σa'n)

if and only if J < - * 0. Hence, Σa'i% e MR{Σa'n) if and only if 4rn-+0.
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