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The F'’-spaces studied here, introduced by Leonard Gill-
man and Melvin Henriksen, are by definition completely regular
Hausdorff spaces in which disjoint cozero-sets have disjoint
closures, The principal result of this paper gives a sufficient
condition that a product space be an F'/-space and shows that
the condition is, in a strong sense, best possible, A fortuitous
corollary in the same vein responds to a question posed by
Gillman: When is a product space basically disconnected (in
the sense that each of its cozero-sets has open closure)?

A concept essential to the success of our investigation was sug-
gested to us jointly by Anthony W, Hager and S. Mrowka in response
to our search for a (simultaneous) generalization of the concepts
“Lindelof” and “separable.” Using the Hager-Mrowka terminology,
which differs from that of Frolik in [3], we say that a space is weakly
Lindelof if each of its open covers admits a countable subfamily with
dense union. §1 investigates F'’-spaces which are (locally) weakly
Lindelof; §2 applies standard techniques to achieve a product theorem
less successful than that of §3; §4 contains examples, chiefly elemen-
tary variants of examples from [5] or Kohls’ [8], and some questions.

1. F'’-spaces and their subspaces. Following [5], we say that a
(completely regular Hausdorff) space is an F-space provided that dis-
joint cozero-sets are completely separated (in the sense that some
continuous real-valued function on the space assumes the value 0
on one of the sets and the value 1 on the other). It is clear that
any F-space is an F'-space and (by Urysohn’s Lemma) that the con-
verse is valid for normal spaces. Since each element of the ring
C*(X) of bounded real-valued continuous functions on X extends con-
tinuously to the Stone-Cech compactification SX of X, it follows that
X is an F-space if and only if B8X is an F-space. These and less
elementary properties of F-spaces are discussed at length in [5] and [6],
to which the reader is referred also for definitions of unfamiliar
concepts.

F'-spaces are characterized in 14.25 of |6] as those spaces in which
each cozero-set is C*-embedded. We begin with the analogous charac-
terization of F'-spaces. All hypothesized spaces in this paper are un-
derstood to be completely regular Hausdorff spaces.

THEOREM 1.1. X is an F’-space if and only if each cozero-set in
X is C*-embedded in its own closure.

439
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Proof. To show that coz f (with feC(X) and f =0, say) is
C*-embedded in cly coz f it suffices, according to Theorem 6.4 of [6],
to show that disjoint zero-sets 4 and B in coz f have disjoint closures
in clycoz f. There exists ge C*(coz f) with g >0 on A, g <0 on B.
It is easily checked that the function A, defined on X by the rule

fg on cozf)

h =
0 on Zf

lies in C*(X), and that the (disjoint) cozero-sets pos h, neg h, contain
A and B respectively. Since clyposh Neclynegh = @, we see that
A and B have disjoint closures in X, hence surely in cl, coz f.

The converse is trivial: If U and V are disjoint cozero-sets in X,
then the characteristic function of U, considered as function on U U V,
lies in C*(U U V), and its extension to a function in C*(cl (U U V))
would have the values 0 and 1 simultaneously at any point in
cl,Unecl,V.

The “weakly Lindelof” concept described above allows us to show
that certain subsets of F'-spaces are themselves F’, and that certain
F'-spaces (for example, the separable ones) are in fact F-spaces. We
begin by recording some simple facts about weakly Lindelof spaces.

Recall that a subset S of X is said to be regularly closed if
S = clyint; S.

LEMMA 1.2. (a) A regularly closed subset of a weakly Lindelof
space 18 weakly Lindeldf;

(b) A countable union of weakly Lindelof subspaces of a (fized)
space 1s weakly Lindelof;

(¢) Each cozero-set in a weakly Lindeldf space is weakly Lin-
deldf.

Proof. (a) and (b) follow easily from the definition, and (c) is
obvious since for f ¢ C*(X) the set coz f is the union of the regularly
closed sets cly{wze X :| f(x)] > 1/n}.

Lemma 1.2(c) shows that any point with a weakly Lindelof neigh-
borhood admits a fundamental system of weakly Lindelof neighborhoods.
For later use we formalize the concept with a definition.

DerFINITION 1.3. The space X is locally weakly Lindelof at its
point z if x admits a weakly Lindelof neighborhood in X. A space
locally weakly Lindelof at each of its points is said to be locally
weakly Lindelof.

THEOREM 1.4. Let A and B be weakly Lindelsf subsets of the
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space X, each missing the closure (in X) of the other. Then there
exist disjoint cozero-sets U and V for X for which

Acel,(ANT), Bcel(BnV).

Proof. For each ze A there exists f,eC*(X) with f.(x) =0,
f.=1 on clyB. Similarly, for each ye B there exists g¢,e C*(X)
with ¢g,(y) =0, g,=1 on cl;A. Taking 0 f, <1 and 0¢g, =1
for each x and y, we define

U.= =10, 1/2), vV, =9,10,1/2),
w. = r2'10,1/2], Z, = g;'10,1/2] .
Then, with {z,}7., and {y,}7, sequences chosen in A and B respectively

so that AN (U.U.,) is dense in A and BN (UJ,V,,) is dense in B,
we set

U; - an\ngnZyk v V; = Vyn\Ulcgnka

and, finally, U = U, U;, V=U.Vs.
The theorem just given has several elementary corollaries.

COROLLARY 1.5, Two weakly Lindelof subsets of an F'’-space,
each missing the closure of the other, have disjoint closures (which
are weakly Lindeldf).

COROLLARY 1.6. Any weakly Lindelof subspace of an F'-space
is itself an F'-space.

Proof. If A and B are disjoint cozero-sets in the weakly Lindelof
subset Y of the F'’-space X, we have from 1.2(c) that A and B are
themselves weakly Lindelof, and that

Anecy,B=ANncly,B=@ and Bnecl;A=Bnec,d=0.
From 1.5 it follows that
o =cl;Anecl,Bocl,Ancl,B.

COROLLARY 1.7. Fach weakly Lindelof subspace of an F'-space
18 C*-embedded in its own closure.

Proof. Disjoint zero-sets of the weakly Lindelof subspace Y of
the F'’-space X are contained in disjoint cozero subsets of Y, which
by 1.2(¢) and 1.5 have disjoint closures in X.

Corollaries 1.6 and 1.7 furnish us with a sufficient condition that
an F'-space be an F-space.
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THEOREM 1.8. FEach F'-space with a dense Lindeldf subspace is
an F-space.

Proof. If Y is a dense Lindelof subspace of the F’-space X, then
Y is F’ by 1.6, hence (being normal) is an F-space. But by 1.7 Y is
C*-embedded in X, hence in AX, so that 8Y = 8X. Now Y is an
F-space, hence BY, hence SX, hence X.

CoROLLARY 1.9. A separable F'-space is an F-space.

The following simple result improves 3B.4 of [6]. Its proof, very
similar to that of 1.4, is omitted.

THEOREM 1.10. Any two Lindelof subsets of a (fixed) space,
neither meeting the closure of the other, are contained in disjoint
cozero-sets.

An example given in [5] shows that there exists a (nonnormal)
F'-space which is not an F-space. For each such space X the space
BX, since it is normal, cannot be an F'-space; for (as we have observed
earlier) X is an F-space if and only if X is an F-space. Thus not
every space in which an F’-space is dense and C*-embedded need be
an F'’-space. The next result shows that passage to C*-embedded
subspaces is better behaved.

THEOREM 1.11. If Y 4s a C*-embedded subset of the F'-space X,
then Y s an F'-space.

Proof. Disjoint cozero-sets in Y are contained in disjoint cozero-sets
in X, whose closures (in X, even) are disjoint.

We shall show in Theorem 4.2 that the F’ property is inherited
not only by C*-embedded subsets, but by open subsets as well.

2. On the product of a (locally) weakly Lindelof space and
a P-space. A P-point in the space X is a point x with the property
that each continuous real-valued function on X is constant throughout
some neighborhood of %. If each point of X is a P-point, then X is
said to be a P-space. The P-spaces are precisely those spaces in which
each G; subset is open.

The following diagram, a sub-graph of one found in |5] and in
[8], is convenient for reference.

P

/!
discrete N basically disconnected — F'— F .

extremally disconnected /
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In the interest of making this paper self-contained, we now include
from [2] a proof of the fact that if a product space X x Y is an F"-
space, then both X and Y are F'’-spaces and either X or Y is a P-
space. Indeed, the first conclusion is obvious. For the second, let z,
and y, be points in X and Y respectively belonging to the boundary of
the sets coz f and coz g respectively (with f e C(X) and ge C(Y) and
f =0 and g = 0). Then the function %, defined on X x Y by the rule
h(z,y) = f(x) — g(y), assumes both positive and negative values on each
neighborhood in X x Y of (x, ¥,). Thus pos . and neg h are disjoint
cozero-sets in X x Y each of whose closure contains (x,, ¥,).

We are going to derive, in 2.4, a simple condition sufficient that
a product space be an F'’-space.

THEOREM 2.1. Let X be a P-space, let Y be weakly Lindelof,
and let feC*(X x Y). Then the real-valued function F', defined on
X by the rule

F(x) = sup{f(z,y) :ye Y},
lies in C*(X).

Proof. To check the continuity of F' at x,¢ X, let € > 0 and first
find y,e Y such that f(x, ¥, > F(x,) — €. There is a neighborhood
UxV of (x,%¥, throughout which f > F(x,) — ¢, and for x¢ V we
have F(») = f(x, y)) > Fl(x,) — e.

To find a neighborhood U’ of z, throughout which F < F(w,) -+ ¢,
first select for each y € ¥ a neighborhood U, x V, of (x,, y) throughout
which f < F(x,) + ¢/2. Because Y is weakly Lindelof there is a se-
quence {y,}i_, in ¥ with U,V,, dense in Y. With U’ = N,U,, we
check easily that U’ is a neighborhood of z, for which Fi(x) < F(x,) + ¢
whenever z ¢ U’.

COROLLARY 2.2. Let X be a P-space and Y a weakly Lindeldf
space, and let T denote the projection from X X Y onto X. Then for
each cozero-set A in X x Y, the set A is open-and-closed in X.

Proof. If A =rcozf with feC*(X x Y) and f =0, then 74 is
the cozero-set of the function F defined as in 2.1, hence is closed
(since X is a P-space).

The following lemma asserts, in effect, that for suitably restricted
spaces X and Y, the closure in X x Y of each cozero-set may be
computed by taking closures of vertical slices. When AC X X Y we
denote cl,,,A by the symbol A, and AN ({z} x Y) by A,.
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LemMmaA 2.3, Let X be a P-space and let Y be locally weakly
Lindelof at each of its mon-P-points. Then A = {,..A, for each
cozero-set A im X x Y.

Proof. The inclusion O is obvious, so we choose (z,y)c A. We
must show that {x} x V meets A, for each neighborhood V in Y of
y. If y is a P-point of Y then (z, y) is a P-point of X x Y, so that
indeed

(@ vy el x V)N A, .

If y is not a P-point of Y and V, is a weakly Lindelof neighborhood
of yin Y with V,c V, then (X x V)N A4 is a cozero-set in X x V,
and 2.2 applies to yield: z[(X x V) N A] is open-and-closed in X. Since
(%, y) e clyyp [(X X Vo) N A], we have

x = 7(x, y) €7 el [(X X Vo) N Al Celyn[(X x Vo) N Al
=a[(X x Vo) N A},

so that ({2} x V)N A, D ({a} x V)N A, # @ as desired.
The elementary argument just given yields the following result,
which we shall improve upon in 3.2.

THEOREM 2.4. Let Y be an F'’-space which 1is locally weakly
Lindelof at each of its mon-P-points. Then X X Y is an F’-space
for each P-space X.

Proof. If A and B are disjoint cozero-sets in X x Y, then from
2.3 we have

A N B = (UmeX/Tx) N (UxeXB_a,) - UzeX(sz N B—z) = UxeX@ =g .

The theorem just given furnishes a proof for 2.5(b) below, an-
nounced earlier in [2]. (In a letter of December 27, 1966, Professor
Curtis has asserted his agreement with the authors’ beliefs that (a)
the argument given in [2] contains a gap and (b) this error does not
in any way affect the other interesting results of [2].)

COROLLARY 2.5. Let X be a P-space and let Y be an F'-space
such that either

(@) Y is locally Lindelof; or

(b) Y is locally separable.
Then X x Y is an F'-space.

Note added September 16, 1968. The reader may have observed
already a fact noticed only lately by the authors: Each F’-space in
which each open subset is weakly Lindelof is extremally disconnected
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(in the sense that disjoint open subsets have disjoint closures). [For
the proof, let U and V be disjoint open sets in such a space Y,
suppose that pecl UNecl V, and for each point v in U find a cozero-
set U, of Y with ye U, U. The cover {U,: y € U} admits a countable
subfamily % whose union is dense in U. If ¥~ is constructed simi-
larly for V, then U% and U~ are disjoint cozero-sets in X whose
closures contain p.] It follows that each separable F’-space, and hence
each locally separable F'-space, is extremally disconnected, and hence
basically disconnected. Thus the conclusion to Corollary 2.5(b) is un-
necessarily weak, In view of 3.4 we have in fact: If X is a P-space
and Y is a locally separable F’-space, then X x Y is basically dis-
connected.

3. When the product of spaces is F’. It is clear that for each
collection { 9%#.},.. of open covers of a locally weakly Lindelof space
Y and for each y in Y one can find a neighborhood U of y and for
each « a countable subfamily <, of <7, such that Ucecl,(U 2).
(Indeed, the neighborhood U may be chosen independent of the collec-
tion { 7} ac.s0)

When, in contrast to this strong condition, such a neighborhood
U is hypothesized to exist for each countable collection of covers of
Y, we shall say that Y is countably locally weakly Lindelof (abbrevia-
tion: CLWL). The formal definition reads as follows:

DerFiINITION 3.1. The space Y is CLWL if for each countable col-
lection { 9#,} of open covers of Y and for each y in Y there exist a
neighborhood U of y and (for each ) a countable subfamily <. of
7, with Uccel,(U 7,).

A crucial property of CLWL spaces is disclosed by the following
lemma, upon which the results of this section depend.

For f in C(X x Y), we denote by f, that (continuous) function
on Y defined by the rule f.(y) = f(z, y).

LEMMA 3.2, Let feC*(X X Y), where X is ¢ P-space and Y s
CLWL. If (%, y)eX x Y, then there is a netghborhood U x V of
(%o, Yo) such that f, = f,, on V whenever xe U.

Proof. For each v in Y and each positive integer » there is a
neighborhood U,(y) x V,(y) of (w, y) for which

| f@', o) — fxo, )] < 1/n whenever (', 4)e U,(y) < V,.(v) .

Since for each » the family {V,(y):y < Y) is an open cover of Y,
there exist a neighborhood V of y, and (for each n) a countable subset
Y, of Y for which Vcel(U{V,.(¥):yeY.,}).
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We define the neighborhood U of x, by the rule

U=N.(N{U.(y):yeY.}).

To check that neighborhood U x V of (x, v,) is as desired, suppose
that there is a point (2/, ¥') in U x V with f(«’, ¥') = f(%, ¥’). Choos-
ing an integer n and a neighborhood U’ x V'’ of (a/,%’) such that
| f(®, y) — f(2, ¥')| > 1/n whenever (z,y)e U’ X V', we see that since
yeVcel (U{Va(y):ye YY) and V' N V,,(¥') is a neighborhood of
y’ there exist points ¥ in Y,, and ¥ in [V' N V,..()] N V.. (%).

Since (¢', %) e U’ x V’, we have

| f@,y) — [, ¥)| > 1/n .

But since (2", §) € U X Vi, (§) € Us(§) X V3u(¥), and (2o, ¥) € Us(7) X Viu(¥),
and (%, ¥) € Us.(¥') X Vi(y'), we have

Lf@0) — f@ )| = | FE@,0) — f@, 9]
+ [ f (@, ) — f (@0, )| + [ f (@0, ) — [ (20, %)
<1/3n +1/3n + 1/3n = 1/n .

We have seen in § 2 that if the product space X x Y is an F'’-space
then both X and Y are F'-spaces and either X or Y is a P-space.
It is clear that every discrete space is a P-space, and that the product
of any F''-space with a discrete space is an F'-space; the example given
by Gillman in [4], however, shows that the product of a P-space with
an F'’-space may fail to be an F’-space. Thus it appears natural to
ask the question: Which F"-spaces have the property that their product
with each P-space is an F'’-space? We now answer this question.

THEOREM 3.3. In order that X X Y be an F’'-space for each P-

space X, it is mecessary and sufficient that Y be an F'’-space which
s CLWL.

Proof. Sufficiency. Let feC*(X x Y), and let (x,, y,)e X x Y.
We may suppose without loss of generality that there is a neighborhood
V'’ of y, in Y for which

V'nposf.,, =@ .
But then, choosing U x V as in Lemma 3.2, we see that
Ux(VnV)Nnpos f =0,

so that (x,, ¥,) € cl pos f.
Necessity. (A preliminary version of the construction below—in
the context of weakly Lindelof spaces, not of CLWL spaces—was



F/-SPACES AND THEIR PRODUCT WITH P-SPACES 497

communicated to us by Anthony W. Hager in connection with a project
not closely related to that of the present paper. We appreciate pro-

fessor Hager’s helpful letter, which itself profited from his collabora-
tion with S. Mrowka.)

We have already seen that Y must be an F’-space. If Y is not
CLWL then there are a sequence { %/,} of open covers of Y and a
point %, in Y with the property that for each neighborhood U of v,
there is an integer n(U) for which the relation

Ucel,(U¥)

fails for each countable subfamily #° of %7 .,.

Let 2 denote the collection of neighborhoods of %,. With each
U e Z we associate the family 3(U) of countable intersections of sets
of the form Y\W with We %7, .,, and we write

«(U) = {(4, U): Ae S(U)} .

From the definition of n(U) it follows that (inty4) N U # @ whenever
AcZ(U). The space X is the set {oo} U Uype.7(U), topologized as
follows: Each of the points (4, U), for Ae X(U), constitutes an open
set, so that X is discrete at each of its points except for «; and a
set containing the point o is a neighborhood of < if and only if it
contains, for each Ue %, some point (4, U) e t(U) and each point of
the form (B, U) with BC A and (B, U)ez(U). Since Ni.A,c3(U)
whenever each A,e X(U), it follows that each countable intersection
of neighborhoods of o is a neighborhood of <, so that X is a P-space.
Like every Hausdorff space with a basis of open-and-closed sets, X is
completely regular. It remains to show that X x Y is not an F'-space.

Since for Ue % there is no countable subfamily 22~ of <%,
for which Ucel,(U%"), the set (int,4) N U is uncountable whenever
Ue%Z and Aec3(U). Thus whenever (4, U) e t(U) we choose distinct
points p 4, and g4, in (inty4) N U and disjoint neighborhoods F',, ;, and
G, of D,y and g, 1) Tespectively, with F, , U G, C (int;4) N U.
Because Y is completely regular there exist continuous functions f ¢,
and ¢4, mapping Y into [0, 1] such that

fo,o®@u,m) =1, Fum=00of Fyp,
Iu, (@, 0) = 1, Jaom =0 off Gy .

Now for each positive integer k& we define functions f, and g, on
X x Y by the rules fi(z, %) = g,(x,y) =0 if x = o or if © = (4, U)
with k& = n(U); fi((4, U),y) = fu,n®) if k=nU); 9.((4, U),y) =
9, (y) if k= n(U). Each function f, is continuous at each point
(A4, U),y) = (x,y)e X x Y (with x # <), since f, agrees either with
the function 0 or with the continuous function f,, . o7, on the open
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subset {(4, U)} x Y of X x Y. Similarly, each function g, is con-
tinuous at each point (x,y)e X X Y with 2 # . To check the con-
tinuity (of f,, say) at the point (wo,y)e X x Y, find We 9%; for
which ye W and write

V= {co} UUiznitnT(U) U UmniwA(B, U) : BC Y\W} .

Then V x W is a neighborhood of (<o, %) on which £ is identically 0: For
if (4, U)et(U) with k == n(U) we have f.((4, U),y) = 0, and if A X(U)
with Ac Y\W and k = n(U), then (since ye Wc Y\int,AcC Y\F,, )
we have

(A, 0),9) = fu,o) =0.

We notice next that if ¥ and m are positive integers then
coz f,Ncozg, = @: Indeed, if f.((4, U),y) = 0 and ¢,.((4, U), y) # 0,
then &k = »(U) and m = n(U), so that ye F',,,, N G, 1, & contradic-
tion. Thus, defining

f= kE:ll fi/2¥F and g = gll /2

we have feC*(X x Y)and ge C*(X x Y)and coz fNcozg = @. Nev-
ertheless for each neighborhood V x U, of (<=, %,) we have (4,, U)e V
for some A,e X(U,), so that

f((AOy Uo)y p\AO, UO)) 2 f.,L(Uo)((AO, Uo), puo’ UO))/27»(U0)
= fiag vyp(Piay UO;)/2"<U0)
— 1/2"(170) > 0

and (V x U)nNecoz f +# . Likewise (V x U)Ncozg = @&, and it
follows that (oo, y)eclecoz f Nelcozg. Thus X x Y is not an F'-
space.

The proof of Theorem 3.3 being now complete, we turn to the
corollary which we believe responds adequately to Gillman’s request
in [4] for a theorem characterizing those pairs of spaces (X, Y) for
which X x Y is basically disconnected.

COROLLARY 3.4. Im order that X X Y be basically disconnected
for each P-space X, it 1s necessary and sufficient that Y be a basi-
cally disconnected space which 1s CLWL.

Proof. Sufficiency. Let (x,, %) cclcoz f, where feC*X x Y),
and let V' be a neighborhood of y, in Y for which V’'cclcozf,,.
Choosing U xV as in Lemma 3.2, we see that U x (VN V') is a
neighborhood in X X Y of (v, y,) for which

Ux(VnV')celecoz f .
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Necessity. That Y must be basically disconnected is clear. That
Y must be CLWL follows from 3.3 and the fact that each basically
disconnected space is an F’-space.

4. Some examples and questions. If the point z of the topo-
logical space X admits a neighborhood (X itself, say) which is an
F-space, then each neighborhood U of x in X contains a neighborhood
V which is an F-space: Indeed, if fe C(X) with xecoz f C U and
we set V = coz f, then each pair (A, B) of disjoint cozero-sets of V'
is a pair of disjoint cozero-sets in X, which accordingly may be com-
pletely separated in X, hence in V.

The paragraph above shows that any point with a neighborhood
which is an F-space admits a fundamental system of F-space neighbor-
hoods. The statement with “F”’ replaced throughout by “F"” follows
from the implication (b) = (d) of Theorem 4.2 below. The following
definitions are natural.

DerINITION 4.1. The space X is locally F' (resp. locally F”) at
the point x e X if 2 admits a neighborhood in X which is an F-space
(resp. an F'-space).

Clearly each F-space is locally F, and each locally F space is
locally F”’. Gillman and Henriksen produce in 8.14 of [5] an F'-space
which is not an F-space, and their space is easily checked to be locally
F. In the same spirit we shall present in 4.3 an F"-space which is
not locally F. We want first to make precise the assertion that the
F" property, unlike the F' property, is a local property.

THEOREM 4.2. For each space X, the following properties are
equivalent:

(a) X s an F'-space;

(b) X s locally F;

(c) each cozero-set in X is an F'-space;

(d) each open subset of X is an F'-space.

Proof. That (a) = (b) is clear. To see that (b)=(c), let U be
a cozero-set in X and let 4 and B be disjoint (relative) cozero subsets
of U. Then A and B are disjoint cozero subsets of X. Suppose
peecl,ANcl,B. Then, if V is the hypothesized F’-space neighbor-
hood of p, we have pecl,(AN V)Nnel,(BN V). This contradicts the
fact that V is an F'-space.

If (c) holds and A and B are disjoint (relative) cozero-sets of an
open subset U of X, then for any point p in cl,4 N cl,B there exists
a cozero-set V in X for which pe Vc U. It follows that

pe CIV(A N V) n Clv(B N V) ’
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contradicting the fact that V is an F'’-space. This contradiction shows
that (d) holds.
The implication (d) = (a) is trivial.

EXAMPLE 4.3. An F’-space not locally F. Let X be any F'-
space which is not an F-space, let D be the discrete space with
ID| =%, and let ¥ = (X x D) U {e}, where < is any point not in
X x D and Y is topologized as follows: A subset of X x D is open
in Y if it is open in the usual product topology on X x D, and <
has an open neighborhood basis consisting of all sets of the form
{c}U(X x E) with |[D\E| < W,. Then co admits no neighborhood
which is an F-space, since each neighborhood of < contains (for some
d e D) the set X x {d}, which is homeomorphic to X itself, as an open-
and-closed subset. Yet Y is an F’-space since o is a P-point of Y
and each other point of Y belongs to an F’-space, X x D, which is
dense in Y,

We have observed already that a Lindelof F’-space, being normal,
is an F-space. We show next that the Lindelof condition cannot be
replaced by the locally Lindelof property.

ExamMPLE 4.4. A locally Lindelof F'’-space which is not F. The
space X = L' X L\{w,, ®,)} U Uasco, D, defined in 8.14 of [5] does not
fill the bill here because the space L’ of ordinals <w, (with each
v < w, isolated and with neighborhoods of @, as in the order topology)
is not Lindelof. When the space is modified by the replacement of L’
by BL’, the resulting space (X’ say) fails to be an F-space just as in
[5]. Yet L’ is a P-space, so that 8L’ is a compact F-space, and
therefore (by Theorem 3.3 above, or by Theorem 6.1 of [9]) BL' x L
is a Lindelof F'’-space. Thus X’ is a locally Lindelof space which is
locally F", hence is a locally Lindelof F'’-space.

The condition that a space be locally weakly Lindelof at each of
its non-P-points is more easily worked with then the condition that
it be CLWL. A converse to Theorem 2.4 would, therefore, be a wel-
come replacement for the “necessity” part of Theorem 3.3. The fol-
lowing example shows that the converse to Theorem 2.4 is invalid.

ExampLE 4.5. A CLWL F’-space with a non-P-point at which it is
not locally weakly Lindelof. Let Y be the space D x D {c} with D the
discrete space for which |D| = W, and (after the fashion of 8.5 of [5])
adjoin to Y a copy of the integers N so that <o becomes a point in SN\N.
The resulting space Y’ = YU N is topologized so that each point
y # oo contitutes by itself an open set, while a set containing oo is
a neighborhood of o if it contains both a set drawn from the ultra-
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filter on N corresponding to o and a set of the form D x E with
|ID\E| < W,. Then oo is not a P-point of Y’, since the function whose
value at the integer ne Nc Y’ is 1/n and whose value at each other
point of Y’ is 0 is constant on no neighborhood of <; and Y’ is not
locally weakly Lindelof at <o since each neighborhood of o contains
as an open-and-closed subset a homeomorph of the uncountable discrete
space D. The only nonisolated point of Y’, -, can belong to a set
of the form (clcoz f)\coz f only when <o ecl(coz f N N), so that Y’ is
an F'-space. If, finally, 97, is a sequence of open covers of Y’ and
a neighborhood U of < in Y is chosen so that for each n we have
Uc W, for some W,ec 9%, (as is possible, since Y is a P-space),
then evidently U U N is a neighborhood of <« in Y’ contained in
cly. (U ;) for a suitable countable subfamily <, of 9%,.. Thus Y’
is CLWL.

Theorem 1.8 does not provide an answer to the following problem,
which we have been unable to solve.

QUESTION 4.6. Is each weakly Lindelof F’-space an F-space?

On the basis of Theorem 3.3 and Corollary 3.4 and the fact that
the class of F-spaces is nestled properly between the classes of F'-
and of basically disconnected spaces, one wonders whether the obvious
F-space analogue of 3.3 and 3.4 is true. We have not been able to
settle this question, though one of us hopes to pursue it in a later
communication. We close with a formal statement of this question,
and of a related problem.

QUESTION 4.7. In order that X x Y be an F-space for each P-
space X, is it sufficient that Y be an F-space which is CLWL?

QUESTION 4.8. Do there exist a P-space X and an F-space Y
such that X x Y is an F’-space but not an F-space?

This paper has benefited, both mathematically and grammatically,
from an unusually thoughtful and instructive referee’s report. It is
a pleasure to thank the referee for his helpful criticism.
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