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In this paper various triples of operator-valued functions
acting in a Hilbert space are characterized, and the members are
shown to be connected by a one-to-one-to-one correspondence. The
elements of the triples are operator measures, generalized resol-
vents, and positive definite sequences which are related to the
unit circle, The relationships between operator measures and
positive definite sequences were first obtained by M. A, Naimark
and B,.Sz.-Nagy in their dilation and moment theorems, The
main contribution of this paper is a characterization of the
interrelated resolvent classes. By exploiting the correspondence
between the various classes, a unified development of the
theory is obtained,

R. McKelvey [8] developed the interrelations among three classes
of operator-valued functions {E,, R, V,} related to operators with
spectrum in a half-plane. In the prototype for the general situation
these functions were associated with a self-adjoint operator T, and E,
was its spectral function, R, its resolvent, and V, the unitary group
¢ 7, In more general cases, the three classes were associated with
dissipative and symmetric operators.

In this study we investigate the interrelations between three
analogous classes of operator-valued functions {E,, R,, T®} related to
operators with spectrum in the unit circle. In the prototype these
functions are associated with a unitary operator T, and E, is its spectral
function, R, its resolvent, and T* the cyclic group of its integral
powers. Generalizations here include the triples associated with con-
traction, isometric, and partially unitary operators. In our most general
case, the triple {E,, R,, T} belongs to .&¥ = {&, &, 7}, where the
classes in the triple .7 are called operator distribution functions, gener-
alized resolvents, and positive definite operator-valued sequences
respectively. In saying that the triple of operator-valued functions
{E,, R,, T*} belongs to the triple of classes & = {&, &#, 7} we
shall mean E,¢ &, R,c¢.s#, and T*® ¢ 7, i.e., a triple of classes is
to be understood in the dual sense of a triple and as the Cartesian
product of the classes &, #, 7.

The classes &, &, and .7~ of bounded linear operators on the
complex Hilbert space 57 to 57 are defined as follows:

(a) E,(0 <6 < 2rn) belongs to the class & = ¥ (%) whenever
(a) 0= (Eyw,2) = (B, 2) < (x,» for 0=0,<0,<2r and
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xeZ
(b) Eﬂ :E€+OELig¥FlE’W 06 < 2rm.
Q—-’
(¢) E,=0.

(B) R,(lz] # 1) belongs to the class .&#Z = #(5#) whenever
(a) R, is a holomorphic function of z for |z| = 1.

(b) HRtzg 2Re(szy x) - (Roﬂ), x)
T 1—[zF !

|2l -1, xe 2,

i.e., (Ryx, x) is real and this inequality holds.
(¢) R,,=R,— R} 0<|z]<1lor|z|>1, where z* = 1/z.

(v) T®(xk=0,1,2, --.)belongs to the class .9 = 7 (5#°) whenever
(a) TO<ZI.
(b) The sequence {T**} is positive definite, i.e.,

33 (T, 0,) = 0

Jrk=-—n

for n = 1,2, --., and arbitrary sequences {x,}", of vectors in 7.

In § 2 a functional calculus will be presented wich is based on a
mapping from a class of functions bounded and measurable with respect
to the operator distribution function E,c & to a class of bounded
operators. It is similar to the functional calculus previously developed
by M. Schreiber [12, 13], and to that known for the unitary operator
[10, §109]. We then prove the main theorem of this paper which is
the following:

THEOREM A. FEach function E,c¢ &, R, e %, or T'® € 7 belongs
to a unique triple of functions {E,, R, T*} in & ={&, F#, 7},
such that the members of the triple are interrelated by formulas

(D)-(6).

Formulas (1)-(6) are the following representations which will be
seen in § 2.1 to make sense in either the strong or weak topology.

_r 1 .
(1) Rz—godeo (z]=+1).
(2) T = SedE (£k=0,1,2,--+).
0
(3) R =3 #T% (z/<1)
k=0

- kﬁ; TR (2] > 1) .
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1. (%
— Lim S Re Rrexp(—i@)da
0,

T r—17

0, — 0
2
(6,, 0, points of continuity of E)) .

G—0)p

{l

(4) Ey, — K,

1 = ikl . gikd

5 E, — B, = —
(5) % "o 2 ik
(6,, 6, points of continuity of E,) .
k
(6) o = LE (k=0,1,2, )
1 .. d'R
(k) — Bl d V28 = e
To=-gghin—g G=h2e).

DEFINITION. A triple of functions {¥,, R,, T®} ¢ .5, whose members
are related as in Theorem A, will be called a matched triple of
Sumnctions.

The new parts of Theorem A are the characterization (8) of the
class <%, and the inversion formulas (4) and (5). The relationship
between & and & is essentially a generalization of Naimarks moment
theorem obtained by S. K. Berberian in |3, Ths. 3,4]. In Theorem B
it is shown that those generalized resolvents R,c.©Z which satisfy
the additional condition R, = I can be represented as the ordinary
resolvent of a variable contraction operator 7, on ~2° which is a
holomorphic function of z for |z| < 1.

DEFINITION. A triple of classes & = {#/, &', 7'} will be called
a matched triple of classes if and only if

(i) "= Fle., &', F' S92 and 'S 7.

(ii) When {E,, R,, T**} is a matched triple of functions in .57,
then any one of the relations E,e¢ &', R, e &#’, T% ¢ 7' implies all
three, i.e., implies that the triple is in &',

A characterization of the matched triple of classes &7, = {&,, F, .7 o}
associated with a unitary operator is given in §4. Also, we shall
develop the matched triple of classes & = {&, .22, .7} related to a
partially unitary operator (an operator which can be written as the
direct sum of a unitary operator and the zero operator). It will be
shown that every matched triple of funetions in .&7 (%) is a projection
of a matched triple of functions in $4(2#°*), where 2+ is a Hilbert
space extension of 7.

In §5 we prove a characterization of the matched triple of classes
S =&, A, 7} associated with a contraction operator on 7, and
show that a multiplicative functional calculus may be obtained in this
case. The relationship between the classes &, and _&; was first
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established by Sz.-Nagy [17] and M. Schreiber [12]. The characteri-
zation of the interrelated class &%, appears to be new.

The isometric operator case is discussed in § 6. Equivalent character-
izations of the class of generalized resolvents of an isometric operator
are obtained, and Theorem B is used to obtain a new characterization
which leads to a simple and direct proof of a formula for the form
of all generalized resolvents of a closed isometric operator.

2. The general theory of the triple &7,

2.1. A study of the relationships between the classes %, .<#, and
.7 depends in large part upon the exploitation of a functional calculus
analogous to that for a unitary operator [10, § 109]. We begin by
showing that we may integrate a class of complex-valued functions
with respect to operator distribution funections F,.

Suppose E, ¢ &' (2¥), i.e., E, satisfies the conditions (a) of § 1. If
4 is the left-open-right-closed interval (4, 6,] [0, 2z], define

E(4) = E, — E,_ .

Since (E,x, x) is real valued, nondecreasing, and continuous on the right,
there exists a unique Borel measure z, (fixed z) such that

/‘ta:(d) = (Eezxy x) - (Eglm, x)

[11, p. 227]. If y(o; 0) is the characteristic function of the Borel set
o =0, 2r], then the Borel measure p, may be obtained from the
cumulative distribution function (E,x, ) by the formula

o) = | 1to; 0)(Eww, )

We now consider f:(c) as a functional in 2 with ¢ fixed, and
uniquely define another functional dependent on a pair of vectors
x, Y, € &7 by the polarization formula

,(0) = H o1 (0) = 1124(0) + Ufte13y(0) — itta—i(0)] .

As the bilinear form (E,x, y) and the quadradic form (E,xz, «) are also
related by the polarization formula [20, p. 322], it follows that

o) = | 205 0)(E 2, )

It is easy to see that p, (o) is a symmetric bilinear functional of
z and y such that |z .(0)| < | 2| Therefore, y, (o) = (Eo)z,y),
where FE(o) is a uniquely determined linear operator with domain 27
and || E(o)|| =1 [1,821]. Also E(s) is countable additive in the
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strong or weak operator topology, and E([0, 27]) = E,. < I (cf. [12,
p. 580]). E(0) is called an operator measure. M. Schreiber considered
the case E,. = I[12,13], and S. K. Berberian [3] considered nonnormal-
ized operator measures.

Operator measures are a generalization of the concept of spectral
measures or resolutions of the identity associated with normal operators
to the case where the orthogonality condition E(o)* = E(0) is not required.
Since E,c ¥ is the cumulative distribution for the operator measure
E(0), and one determines the other, we call the class % the class of
operator distribution functions. The support of E(o), denoted A(E), is
the complement of the union of all open sets where E(o) vanishes.

Denote by f(e¥), 0 < 6 < 2m, a complex-valued function which is
defined on the unit circle in the complex plane, and denote by B(dE)
the class of functions f(¢*’) which, when considered as a function of
0, are bounded and Borel measurable on A(K). It has been shown by
M. Schreiber [12, p.580] that if f(e*’) € B(dE), then one may define
the operator F' by the integral

(7) F = | f(edE,

and this integral is well-defined in either the strong or weak topology.
We shall indicate the functional correspondence (7) of functions f(e%)
in the class B(dE) to operators F' on 5#° by the notation f ~ F.

2.2. We define the class &, of bounded linear operators on ¥
as follows:

() E,(0 < 60 < 2n) belongs to the class &, = &(22") whenever

(a) E,=Ef, 06 <2rm,

(b) EyEy, = Eue,0,, 0., 0.€]0,2r].

(¢) Ey,=FE, 06 < 2r.

(d) E,=0.

Note that (a) and (b) imply E,. < I. If we also require K, = I,
then we obtain a subelass &, of &, which is the usual orthogonal
spectral family or resolution of the identity for a wunitary operator
given by the spectral theorem (cf. [10, p. 281] or [20, p. 357)).
Likewise, we note that (aa) implies E,. < I for E,c¢ &, and if E,. = I,
then & is the class of functions called a generalized spectral family
[16, p. 6] or a generalized resolution of the identity [2, p. 121].

A theorem due to Naimark [16, p. 6] asserts that every generalized
spectral family, can be represented as the projection of an orthogonal
spectral family. Naimark’s theorem has been extended to nonnormalized
cases by McKelvey [8] and Berberian [3, Th. 1]. For our classes &
and ¥, it may be stated:

THEOREM 1. (Naimark). Let E,e & (5#). There exists a Hilbert
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space ST 2 57 and o projector valued E; € £(S#*) such that
(i) Eyx = PE;x, for all xe 57, where P is the orthogonal
projector onto the subspace 57 of S#°*.
(i) &£+ is spanned by o7 U{Ejx:xec 57, 0 <0 < 2xn}, and
(iii) E*(0) =0 ¢f and only if E(c) =0, where o is any Borel
set on [0, 27] and E(o) is the operator measure related to E,. Also,
Eir =1 f and only if E,. = L.

If E;f e &, is the minimal dilation of E,e &, then (iii) of the
Naimark dilation theorem implies that A(E+) = A(E), and hence

B(dE+) = B(E) .
For f ~ F we define F'* by

(7% F = |fe")aB; .
The Naimark theorem and equation (7) then give
(8) Fx = szzf(e"”)dE;“x ~ PFz,

for x ¢ 5%, and
(9) (Fz,y) = (F*z,y) ,

for z, ye 7.

2.3. The functional correspondence (7) has the following properties
(cf. [8): £ f~F, g~G, f,~F, and g, ~G,, then

(1) Linear: ¢ f + cg~ cF + ¢,G, where ¢,c, are scalar
constants.

(ii ) Preserves conjugates: f ~ F*.

(iii) Posttive: f(€) = 0 on A(E) implies F = 0.

(iv) When E, is projector-valued (E, = E;f = Ej), then the corre-
spondence is multicative: fg ~ FG.

(V) 1P < |17 P dEm, o)

for x e 577, with equality when E, is projector-valued.

(vi) Norm-decreasing: || F|| < esssup|f(e’)| on A(E).

(vil) Strong convergence: When f,(¢")— f(e*) boundedly a.e.
(dE), i.e., when |f,(e”)| < M and f,(¢) — f(¢') as n— « a.e. (dE),
then F, — F strongly, i.e., ||F,x — Fa||— 0 for all xe 5.

(vill) Uwmiform convergence: When f,(¢"') — f(¢*’) uniformly on
A(E) as n— oo, then F, — F uniformly, i.e., ||F, — F| —0.

(ix) 1~ E,..
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2.4. Suppose that an E,c % is given. Define B, and T by
means of formulas (1) and (2), i.e., in terms of the functional corre-
spondence (7)

1 __ ~ R, and & ~ T®
1 — ¢'%
LemMA 1. The operators R, and T defined above belong to the
classes 7 and 7 respectively. Furthermore, the functions K, R,,
and T® aqre interrelated by formulas (1)-(6).

Proof. (i) To show R,e.<# we verify conditions (a)-(c) of (5).

(a) Since the integrand in formula (1) is holomorphic in 2z and
continuous in € on a bounded contour, R,z is holomorphic for |z| = 1,
xe 7. Then R, is holomorphic for |z| = 1 (cf. [20, p. 206]).

(b) Note that

1 :_1_+i1+e“’z:l+_1_1+2i1me”z—{z]2
1—¢%%2 2 21—¢% 2 2 [1— ez '
SO
. 2
Re_ 1 1.1 1-jz

1—e%2 2 2 |1—eézp "

Integrating this identity with respect to d(E,x,x), 0 < 6 < 27, and
using the linearity, one obtains

Re (R, o) = 3, d(Bw, ) + 40 — |20 Ly e, o) .
0 |

2z
o |1 — ¢'2

Now the first integral on the right is (R, ) by formula (1) for z = 0.
Then

2Re B, 0) ~ B @) _ (" Lo (B, 0 z | Rl
1—[zp o 11— e"z]° =

for (2| = 1, x € 27, by property (v) of §2.3.
(c¢) Suppose that 2=+ 0, |2| = 1, and z, y e 2~°. By equation (1)
2= 1

Ry d(Eg.’l), y) ’
ez

(R, ) = SO“ T

where z* = 1/Z. Then using properties (i) and (ii) of § 2.3

N _ 2?’—1—‘_]— _ Sz: 1
Rew, ) = || = o, ) = | B, w)
2T 2z
e R )
0 o 1 — ez

= (Roxy y) — (Rz*xy y) - ([Ro - Rz*]xy y) ’
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ie., R.= R, — R}.

(ii) Twe 7.

By (2) for £ = 0 and (ix) of § 2.3 we have T = E,. < I. That
formula (2) satisfies (vb) is not new (cf. [3, Th. 4]).

(iii) Related by formulas (1)-(6):

(a) Since the function 1/(1 — ¢*z) is holomorphic for |z| = 1, it
has Laurent series expansions for |z| < 1and |z| > 1. Using properties
(i) and (viii) of § 2.3 and formulas (1) and (2) on these Laurent ex-
pansions, we obtain formula (3). Clearly, formula (6) is an inversion
of formula (3).

(b) To prove (4), let 0 <@ =2r, 0 =<7 <1, and let 4, 4, be
points of continuity of E,. Define

P | ng 1 (0, — 0)
H=—| R do —
Fr, e) 7T Jo 1= e(re~") o2n
- LgozRe{_L _ 1}010
2 Jo, 1 — preite—®
1 S”? 1+ rete=? 1 S”Z
=—\ Re———df = —\ P.(p — 0)do,
27 Jo, 1 — preie—" 27 Jo, ( )

where P, is Poisson’s kernel [7, p. 30]. Then |f(r,e*)| £ 1, and by
Fatou’s theorem (cf. [7, p. 34])
Lim f(r, %) = 1 if pe(0,, 6,)

=0if p¢lb, b,],
i.e., f approaches yx(4;p) a.e., 0 <@ < 2m, where y(d4;p) is the
characteristic function of the interval 4 = (4,, 6,].
Define
F(r) Erf(r, ¢dE, |
0
Then by property (vii) of §2.3
Lim F(r) = Szzxu; P)IE, = E, — B, .
r—17 0

But for 0 r <1

_ 2= 1 [0 2
F(r) = S _S Re {____ — 1}dz9dE¢,
o 2 Jo, 1 — rette=?
_ LS”S Re {m_z _ 1}qu,¢0
27 Jodo 1 — re~ietv
= _LS”Z(Z Re Rrexp(—iﬁ) - Ro)dﬁ
2m Jo,



TRIPLES OF OPERATOR-VALUED FUNCTIONS 511

which implies (4). The interchanging of the order of integration is
justified because the integrand is continuous with respect to 6, ¢.
(¢) Similarly, (5) may be seen to be an inversion of (2) by showing
o —ik0y __ p—ik0 . 2z (02
1 e e P = _l_leS X P.(p — 6)d0dE,
AT ko—eo 1k 2w r—1— Jo Jo,

- Egz - E”l .

2.5 THEOREM A. FEach function E,e ¥, R,e &, or T*e o
belongs to a wunique triple of functions {E,, R,, T'"®} in & =
(&, 2, 7}, such that the members of the triple are interrelated by
formulas (1)-(6).

Proof. Due to Lemma 1 we need only show that each R,c .. %
can be expressed by equation (1), and each T e .9~ by equation (2),
in terms of some unique E,e & . This is done in (i) and (ii) below.

(i) Suppose R,c.#, i.e., R, satisfies the conditions (8). Then
R, satisfies the following “weak” properties:

(B*) (a) (R.x,x) is a holomorphic function of z for |z2| = 1, x € 2.
(b) Re(Rux,2)= §(Rw, %), 2| =1,xe27.
(c) (Rw,2) = (w,2), veZ.
(d) (R, — R,Jz,x) = (R, x), 2% 0, |z #1, xe 7.
(a), (b), and (d) are immediate from (8) and the fact that
1 — |z |Re|f=0 for |z|]=1, xeoF .
By (Bb) with 2 =10
HRz|" = (B, 2) = [(Bw, 2)| < |[Bwll[la] .

Hence ||Ra || = |2, and (R, 2) = [[ 2]
Define

gz;(z) = ‘—(Roxy CC) + 2(sz7 x) ’ for |Z| = 1.

Since (R,x, x) is holomorphic in |z| s 1, and (R,x, ) is a constant with
respect to z, it is clear that ¢(z) is holomorphic in |z| = 1. Now

Rep(z) = ~ (R, x) + 2Re (Rz, x) ,

so by (8%b), Re p(z) = 0 for |z| < 1, and Re p(z) < 0 for |z| > 1. Also,
using (8%c), (0) = (Rw, ) = (v, x); and by (8*d)

P(z*) = —(Rw, ©) + 2R.w, v) = R, v) — 2R, 2) = —p() ,

for 2z = 0 and |z| = 1. Thus if R,c &2, then ¢(z) satisfies
(8) (a) () is holomorphic in |z| = 1.
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(b) Reg(z) =0 for |[z]|= 1.
(e) @(0) < (x, ) (i.e., p(0) is real and p(0) = (z, )).
(d) @(z*) = —@(2), 2#0, 2|+ 1.
Now the conditions (8’) are sufficient to apply a theorem due to
Herglotz [5] (see also [9, pp. 58-60], or [2, p. 5] with ¢ replaced by
27 — #) which says that @(z) is of the form

(10) P(z) = S 1+ €°2 156) + i Im (0) ,
o 1 — é'%
|z| < 1, where o(d), 0 £ 6 < 2r, is a real nondecreasing function of

bounded variation, and Im p(0) = 0, since @(0) is real.
If |2] <1, then by (10) and (5'd)

*_~_:—2nl+e~i0§d 025251+ewz*d 0
#e) = ~p@ = —| 1T ECEdo0) = | T do00).
If |z] <1, then |z*| > 1. Therefore, formula (10) is wvalid for all
lz] = 1.
From the definition of ¢(z)

(R, &) = 3(R, ®) + 3p(2) = 3p(0) + ip(2) , 2] =1,
SO

1 o),
eiz

(R, ) = 3] do(0) + 1] 102 do0) = |

o 1 —e
for |z| =1, e %,
Under the normalization conditions

a(0) = 0

(11)
o) =00 +0), 0=0 <2,

where o(d + 0) = Lim o(p) as ¢ — 6+, the real nondecreasing function
0(8) = 0(0; x) in (10) is uniquely determined by ¢(z) or (R,z, x) (cf.
[2, pp. 3-T]).

Defining the function o(8; x, y) for z, y € 5~ by the polarization
formula

o0;x,y) = to(b;x +y) —o0;x — y)
+ 10(0; © + 1y) — 10(0; ¢ — y)],

and using the analogous formula for the bilinear form (R,x, y), one
obtains

(12) (R, y) = Sk——l.——da(ﬂ; %, Y) , 2zl =1, z,ye sz .
o 1 — e
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The complex-valued functions ¢(@; z, y) also satisfy the normali-
zation conditions (11) and are uniquely determined by equation (12).
In particular, one has ¢(f; x, x) = (6; ). It follows by an elementary
argument (cf. [2, § 65]) that o(¢; z, ¥) is a symmetric bilinear functional
of z, ¥y and

|0(6; ¢, %) | < 0(27; @, T) = S“do(a; 2, %) = (R, @) < (2, ) .

By the theorem on the general form of a symmetric bilinear
functional [1, §21], there exists a uniquely determined family of
bounded self-adjoint linear operators E, which depend on the parameter
00 <6< 2r) such that o(4;x,y) = (Bye,y) for all x,yeorr. It
remains to show E,c¢ &, i.e., F, satisfies conditions (a)-(c) of (o). But
since (Ejx, ) = 0(; z, ®) = o(d), this follows from the normalization
conditions (11) and a simple argument showing that if (E,z, x) is weakly
continuous from the right, then it is strongly continuous from the right.

Equation (12) becomes equation (1) in the weak sense, hence in
the strong sense, since both interpretations of the integral make sense
and define the same operator R,. Then E, is completely defined by the
operator R,, and in turn E, completely defines R, by (1). This proves (i).

Since the construction of E, only depends upon the “weak” proper-
ties (B8*), we obtain as a byproduct of the proof the result:

THEOREM 2. The class G2 may be characterized by the properties
of (8*) as well as those of (B).

(il) Suppose T* ¢ .7, i.e., T™ satisfies the conditions (v). Then
by a generalization of Naimarks moment theorem [3, Ths. 3 and 4],
or by an argument similar to [2, § 62] we obtain

T(k) = SzzeikodEé (ik = Oy 1y 27 . ') ’
0
where Eje & .
It remains to show E, = Ej. But this follows from formulas (1)-
(6). For example, by substituting (1) and (2) into (3) and using the
normalization conditions. This proves Theorem A.

3. The generalized resolvent.

3.1 REMARKS. If {E,, R,, T} is a matched triple of functions in
&, then

(1) Ry=T"=E,_ <L

(ii) T° =[T®]*, £k=0,1,2,---.

(iil) [(T%z, x)| < (T2, x), xe o, £k =0,1,2, ---..,
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(IV) “T(k)” é”T‘O)Hél, -_'—_-k:oy 1’ 27 ttt .

Proof. (i) and (iii) follow from equations (1) and (2). (ii) follows
by the functional calculus from e~/ = ¢, (iv) is proved in [3, corol-
lary to Th. 2].

3.2 THEOREM 3. Let {E,, R,, T} be a matched triple of functions
n &7, and let N = N(E,;) be the null-space of E,.. Then

(i) N(E,) 2 NE;,) 2 N and E,57 < E,o7 S E,.or = N*,
Jor 050, < 0, < 2rm.

(ii) N(T*")y 2 N(T")Y=N and TP < TVWor = N, +k=
0,1---.
(iili) NR,.) 2 NR,) ={z:(Rx,z) =0} = Nand R,.507 S R,57 =
N*, for |z] < 1.

In particular, the decomposition 5= = N* + N is reducing for
all values of the functions E, R, T, and these functions vanish
identically on N.

Proof. (i) Since E, is nonnegative, the Cauchy-Schwartz ine-
quality,

l (Eﬁxy y) 12 é (ng, x)(Eﬁy; y) ’

is valid and shows that N(E,) = {z: (Esx, ) = 0}. Also, E,5~ =
N(E,)*. The assertions then follow from («a).

(ii) If Tx =0, then E,x = 0 by remark (i) of §3.1. Hence
E,x =0, 0<6 < 2m, by (i) above. Then equation (2) gives T = 0,
+k=0,1,2,-.-. Also,

THZ7 = N(T#W**t = N(T") € N(T®)* = TVz¢ .

(iii) Suppose |z| < 1. By (8b) Re (R.x, ) = 3(R.x, ). Therefore,
if (R, x, #) = 0 for some z,, |2, < 1, then Re (R, &, ) = 0, and (B2, %) =
(B¢, 2) =0. Thus E,x =0, and E,x =0, 0 < 6 < 2, by (i) above.
But then equation (1) gives R,x = 0, |z] < 1. Clearly R,z = 0 implies
(R,x, x) = 0, It follows that N(R,) = {z: (R, x) =0} = N, [z] < 1.

Since Re (R;z, 2) = Re (R,x, ), the above argument shows that if
(Rix,x) = 0 for some z,, |2, | < 1, then Bz = 0, 0 < ¢ < 2r. But then
the adjoint of formula (1) gives Rfx =0, |z| < 1. Hence N(R}) =
N, |z] < 1.

By (Be) Rx =0, |z] <1, implies R,.x =0, |z] < 1, i.e., N(R,.,) =
N(R,) |z| < 1. It ispossible for N(R.) D N(R,), |2] <1l. For example,

R.=R,, |z|<1
=0, |z]>1
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belongs to the class <&, and N(R,.) = 57 D N(R,), |z| <1, if B, = 0.
Finally, for |z2] <1
R.2 = N(R})* = N(R, — R)* S N(R)* = N(R})* = R,57 = N*.
By (i)-(iii) N* and N and invariant subspaces for E,, R,, T'®, and,
consequently, the decomposition is reducing.

DEFINITION. A matched triple of functions {&,, R,, T*} is said to
be proper whenever N = {0}.

REMARKS. 1. Any matched triple generates a proper triple on

the reducing subspace.
2. For E,e &, the corresponding matched triple is proper if and
only if E,. = I,

3.3 DerFINITION. The linear operator T of the Hilbert space o7
is said to be a contraction operator if ||Tx| < ||z|| for all x¢ D,,
where D, = domain of T = 57, i.e., ||T]|| £ 1.

DEFINITION. The linear operator 7T is said to be an <sometric
operator if (Tx, Ty) = (z, y) forall z, y e D,. If, in addition, D, = 4, =
range of T = 57, then T is said to be unitary.

Suppose T is a contraction operator on the Hilbert space S#°.
Then the resolvent operator

7A(Z)E(I_ZT)H1y Izi<17

exists as a bounded operator with domain 4,(2) = range (I — 2T) =
(I —z2T)D, = 57,

LEmmA 2. (a) If||T| =1, D, = 27, then T has resolvent r(z)
which satisfies

(13) Re (r(z)e, ) = @[’ + 31 = 12[) [[r@@)2 |]*,

2| <1, xe 57, or the equivalent

(13) Hr@) — Izl = [zl [[r@ll, jz] <1, wesr.
Furthermore, r(z) satisfies

(14) I —fzDllr@@ - I =lz], |z]<1.

(b) If T has resolvent r(z) which satisfies equation (13)
(or (13')) for a single z, in 0 < |2,| <1 and xe 27, then ||T| <1,
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DT = g/.

Proof. (a) For yeD, =257
18)  ([[I—-2Tly[*=2Re(y,[I - 2Ty + |z [[ Tyl - llvlF.
If T is a contraction operator, then
HI—2T]y|*=2Re(y, [I—2T)y) + (2" =Dyl

for |z] < 1. Letting « =[I —2T]y, y = () in this equation, we
obtain (13). Now

|r@e — Iz | = |[r@@)x [ — 2Re (r(z)z, x) + [[2]],

so (13) is equivalent to (13’).
Nothing that || T|| <1, D, = 27, implies

HI—2Twll= @ —l2Dlivll,

and letting « =[I — 2Ty, v = r()x in this inequality, we obtain
1 —z])]]r@=z) = ||z for all xe 57 = 4,(z), i.e.,

(16) I —-lzDlr@l=1.

Using (16) in (18’), we have (14).
(b) Suppose an operator T has resolvent »(z) which satisfies (13')
(or (13)) for some z, in 0 < |2,] < 1. Now

l|7r(z)e — Ix|| = || rz)e — (I — 2, T)r@@)x|| = |2 || Trz)z ||,
so (13') gives
|20 [ 1] Tr(zo)w || = [20] || (o) ||

for 0 < |z| <1, xe 2. Hence || T|| = 1.

3.4 THEOREM B. R,e # and R, = I if and only if
Rz:(I_ZTz)_l! lz|<1
=I—-I—-=z"TH", |z|>1,

where
(1) ITI=1, 2] <1, D(T,) =2
(ii) T, is a holomorphic function of z for |z] < 1.

Proof. Suppose

Rz:(I_ZTz)_l7 lz|<1
=I-I-27"TH", [|z[>1,
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where T, satisfies (i) and (ii). Then clearly, D(R,) = 5, and R, =
It =1
(a) By (@)
I —2T.Jzll = |||l — |2 T.|]
=@ —[zDllzll, |z2l<1,

so0 R, not only exists but is bounded for |2| < 1. Then R, = (I — zT,)"*
is holomorphic for |z| < 1, x € 5%, because T, is holomorphic by (ii).

Now || Tx|l=T.[l =1, [2] <1, D(T.) = &, so
I =27 Talell = [l2]] — [27| || Taz ||
=@ —=[=z7Dliell, [ez[>1.

Thus [I — 27'T%]™ exists and is bounded for |z| > 1 with domain 57,
Also, it follows from (ii) that 7% is holomorphic for |[z| > 1. Then
R,=1— (I—z'T%™" is holomorphic for |z| > 1, x¢c 5. We have
shown that R, is a holomorphic function of z for |z]| == 1.

(b) Since R} =[(I —zT)"1*=U — 2T}, |#| <1, we have

I-R:=1I—-(UI-Z2T)"=R.., lz|] <1, 2z+0.
Similarily, for |z| > 1
Rf = [I—(I- 2T =T~ (I - 2" Ty,
S0
I—-Rf=(I—-2T.)"'=R., fz]| >1.

We have proved that B,.=1— R}, |z]| #1, z+ 0.

(e) By (i) and Lemma 2(a), T, has resolvent R, satisfying (13)
and (13) for all |z| <1, #e2#. Now |[[T¥|i<1, |2/<1, and
D(T¥) = 27, so that Lemma 2(a) also applies to T¥. Then (I — zT¥)*
satisfies (13') for [z| < 1, i.e.,

[ = 2T = Ilzf| = [2][| (L —2T¥) 72|, [2]<1.
Replacing z by z~* in this relation and nothing that (I — z~'T%)~* = R%,
{z] > 1, we obtain

[R: — Ie|| S [z || REzl], [2[>1.

Thus RX satisfies (13') (and (13)) for all |z| > 1. But Ri=1-— R,
|z] > 1, by (b) above. Hence (13’) becomes

U = R) — Ilef] = |27 |I[I - RBJel|, |2]>1,
or

(13”) IR, — Ilel| = [z][| Bl , 2] > 1,
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which is equivalent to
Re (R, ) < 3ljz|f* + s — [z || R=|*, [2[>1.

We have shown that R, satisfies (8b) for all |z| == 1.
Combining (a)-(c) above, we have R,¢.<Z and R, = I.
Conversely, suppose R,e.<# and R,= 1. By Theorem 3 (iii),
N(R,) = N(R,) = {0}, so R, is proper, and R;* exists, |z| < 1. In ad-
dition N(R}) = N(R,) = {0}, so (R)™ exists, |z| < 1. By (8b) for
|z] <1 we have

izl =Re(BRz,2) = |(Bx,2) | < || Rl ||z,
so that
IR, || =3%]lxll, for all xe o7, (2] < 1.

This implies that R;* exists and is bounded for |z]| < 1. Therefore,
(I — BY) = (R, — I)R;* is holomorphic in z for |z| < 1 because R, is.
Also,

Lim(R, - DR;*=0.

2—0
Then the function 2z (R, — I)R;* is holomorphic in 2z for |z| <1,
because the apparent singularity at z = 0 is removable by making it

continuous at z = 0. Consequently, one may define T, to be the
following function holomorphic for |z| < 1:

T.=L1(T—-R* for 0<|z/<1
V4

To=LimT,.
Then
R, =I-=2T)", lz| <1.
Since (R})™ exists we have
Tr=I- @)1, |z]<1.
Hence
Ry = —-zTH", [z <1
:I_Rz*y iz|<1y
by (Bc), and
R.=1—({I-2T})", lz] <1,

ie.,
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R, =1—(I—#'T%", |z|>1.

Since (Bb) with R, = I and |z] <1 is (13), we see that T, has
resolvent R, which satisfies (13) for all |z| <1 and 2e 7. Then
Lemma 2(b) implies || T,|| <1, |2| <1, D(T,) = &#°, which is (i). This
proves Theorem B.

COROLLARY. R, #, R, =1, and N(R,) = {0} for |z| > 1if and
only if

Rz:(I_ZTz)—ly ]zl#_—ly

where
(ii) T, 2s a holomorphic function of z for |z| < 1.
(iii) T, exists and T = TF, 0<|z|<1.

Proof. If N(R, = {0}, |#| > 1, then one may define

T,= 11— R
V4

for all 0 < |z| <1 and |2| > 1. Then
T.=2(I— R:) =%R,. — )R

exists for 0 < |z| < 1. Also, since N(R,. — I) = N(R}) = N(R,) = {0}
for 0 < |2] <1, (R — I)™" exists. Then T3' exists and

T3 = 2*R.(R,. — I)™' = 2*(R} — I)(R})™
=z [I—-(RH]=T, 0<|z|<1,.
Hence for |z] >1
R=1I—-(I—-z'"Tf)'=1—(1-z'T "

=1+[(I—2T) T =1+ 2T,(I — 2T,

=TI+ @T,—I+0)I—2T)"'=I—1+{—2T)"

= —2T)".

Conversely, if T,. exists and R, = (I — 2T,)"", |z| # 1, then
R = (I —=2T))

exists for |z| == 1. Therefore, N(R,) = {0} for all |z]| + 1.

4. Triples related to unitary and partially unitary operators.

4.1. Consider the triple of classes .55 = {&£,, FZ,, .7 ,} defined as
follows:
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() E, (0 =0 < 27) belongs to the class &, = £«(5#) whenever it
is an orthogonal resolution of the identity, i.e., satisfies
(a) E,=Ef, 05021,
(b) E, E;, = Epin0,0,, 0, 0,€[0, 27].
(c) Ey,=FE, 00 <2r,
(d) E, =0, E,, =1.

(By) R, (|z| # 1) belongs to the class &, = “Z (%) whenever
(a) 2R, —7ZR, =(—2)R,R,, |2|+1, |2|+#1.
(b) If Rx=0, then x =0. (|z] %1, xeF).
(¢) Rf=I—R,, z+0 and |[z]| # 1.

(v) T® (£k=0,1,2, -.-) belongs to the class 7, = 7(5) when-
ever T™ = T is a unitary operator, and 7% = T*, +k=10,1,2, -- -,

LEMMA 3. Let T be a unitary operator acting in 5. Then T
has associated with it a unique triple {E,;, R,, T} of fumnctions in
classes &, P, T , respectively, determined as follows:

(o)) E, is the spectral function of T, i.e.,
T = Shei”dEg :
0

(B) R, 1s the resolvent of T, i.e.,
R,=I~-zT)", lz| = 1.

o) T 4s the cyclic group of powers of T, t.e.,
T = T, +k=0,1,2,....

Conversely, each function of class &, F#, or 7, is associated with
precisely one unitary T in the manner just described.

Proof. These characterizations are elementary facts and their
proofs will be omitted.

4,2. The functional correspondence (7) is multiplicative when Ej,
is projector-valued, i.e., E; = E,. In the most general case E,, is also
a projector, but not necessarily the identity, i.e., F,. < I. We have
defined this class &, in §2.2, Now define the triple of classes .4 =
{#,, A, 7} of bounded linear operators as follows:

() E, (0 <6 < 2rm) belongs to the class &, = & ,(5#) whenever
(a) E,=Ef, 060 <2,
(b) EyE,, = Euino,0,, 0, 0.€]0,27].
(¢) Epw=Ey 060 <2rm,
(d) E,=0.
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(8) R, (2] # 1) belongs to the class <% = Z.(57) whenever
(a) 2R, —72R, =(z—2)R.R,, |2]#1, |#|=+1.
(b) R¥=R,—R,, 2+ 0 and |z| = 1.

(v) T® (+k=0,1,2, -.-) belongs to the class ., = 9 (5#°) when-
ever TW = T is a partially unitary operator, and T = T%,
+k=0,1,2.--; i.e,,

TH = TF = UDO, +k=0,1,2,---,

where 57 = 27, @ &7, U is a unitary operator on 5, and 0 is
the zero operator on 57~,.

REMARKS. (i) The class .7 is similar to the class of pseudo-
resolvents discussed by Hille and Phillips [6, §5.8-5.10].
(ii) T*®e 7, satisfies
(a) TH* =T +=0,1,2 +--.
(b)y T®T™ = T%m™ 4k +m=20,1,2, ...

LEMMA 4. “c K .7,

Proof. The only new part of this lemma is <& C .. Suppose
R,e <. (B,a) implies that R, is a holomorphic function of 2z for
2] £ 1. Note that Re(R,z,z) = i (R.x,2) + (Rfz,x)]. If 0<|z| <
1, or |z| > 1, then successively substituting (8,b) for R} and (8,a) for
R, in this equality, and simplifying, we obtain

Re (R.z, %) = %(Rox, @) + %(1 — |z | Rl .

Furthermore, this equality shows that (R, «) is real, hence R, = R}.
Also, (B,a) for 2z’ = ¢ and the continuity of R, at z = 0 implies R, = R2.
Then || R || = (Bsx, ) = (R, x), thus the inequality in (8b) is an
equality for all |z2]| = 1. Hence R, € Z.

4.3 THEOREM A,. The triple of classes &4 = { &, FBoy T o} 18 @
matched triple of classes.

Proof. We need to show that .&4 satisfies the requirements (i)
and (ii) of the definition of a matched triple of classes given in § 1.
But (i) was proved in Lemma 4, and (ii) follows from Lemma 3.

THEOREM A,. The triple of classes & ={¥, R, 7. 18 a
matched triple of classes.

Proof. By Lemma 4 .&% C.<“. In Theorem 3 of § 3.2 it was shown
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that N = N(E,.) = N(T®) = N(R,) for |z| < 1, and that the decom-
position &7 = N+ @ N is reducing for all values of E,, B,, and T,
By Theorem A,, .&(N*) is a matched triple of classes, and trivially,
S(N) is a matched triple of classes. It follows that 4(5#) is a
matched triple of classes.

4.4. The following theorem asserts the existence of a type .&%
minimal dilation of an arbitrary matched triple of functions.

THEOREM C. Let {E,, R, T®}e P (5#) be a matched triple of
Sunctions. There exists a Hilbert space 57+ 2 57 and a matched
triple of functions {E;, RS, T%*}e &7 (") such that

(i) for xezoZ”

By =PEjfx, Rx=PRx, T%®x=PT" g,

where P 1is the orthogonal projector onto the subspace 57 of #+.
(ii) &7+ = span (&7, 57,), where

S, =span {Ejfx:ve o7, 0 <0 < 2r}
= span{Rjx:x e 27, |z| + 1}
=span {T®+x:xe 2~, =k =0,1,2, -..}.

(iii) E+(0) = 0 if and only if E(c) = 0, where ¢ is any Borel
set on [0, 2n] and E(o) is the operator measure related to E,. Also,
B =1 4f and only if KE,. = 1.

Proof. The assertions involving E, are contained in the Naimark
diation theorem. The other two relations in (i) follow immediately
from Theorems A and A,. The equivalence of the spans in (ii) follows
from formulas (1)-(6).

Note that in the special case of T = T* for k=0 and T® =
(T*)'* for k < 0, Theorem C contains the fundamental Sz.-Nagy Unitary
Dilation Theorem [17, Th. 1} and [16, Th. III]. Also, for arbitrary
{E,, R, T®}e.&”, the minimal dilation {E,", B}, T*®*}e.s”, will be
proper if and only if E,. = I. In particular, a proper triple need not
have a proper minimal dilation.

5. Triples related to contraction operators.

5.1 THEOREM 4. The following conditions on a bounded operator-
valued function R, acting on 57 are equivalent:

(1) R =321 (z<D

= -3 (2>
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where T is a fixed contraction operator on Sz°.

(ii) R, =I—-=:T)" (z2) <1
=I—I—z'T*" (lz] > 1)

where T is a fixed contraction operator on S#°.
(iii) R,=(I—z2T)" (#] < 1)

=1—I—z"T""  (2z]>1),
and

A—=lzDIIR. —Ill=|z] (<1,

where T is some fixed operator with D, = 5.
(iv) (a) 2R, —(R;= (2 — OR.R; for |z|, |{] <1.

(b) A —[zD[R.— Il =z, [2]<L
(¢) R,.=1-— R}, 0<|z| <1,

Under these conditions R,e & and R, = I.
Proof. (i) (ii): This follows by showing that the series in
(i) are the expansions of the resolvents in (ii) (cf. [20, p. 261]).

(ii) = (iii): That (ii) implies (iii) follows from Lemma 2 (a).
Assume (iii). The inequality for z = 0 gives R, = I. Define

T(z)z%(Rz—I), 0<lzl<1,

and
T(0) = Lim T(z) .

z—0

Then for xze 57.
T(2)e = %(sz —In) = %[sz — R(I - 2T)s] ='R. T .

Hence
T(0)x = Lim R, Tw =R, Tx =iTx .

z—0

Using the inequality in (iii) we obtain

I T@z | = -1 R, — Ie|| £ —L |2,

|2] 1—z|
for |2| <1, xe 2#. In particular,
| Tell = [ TOx|| < [[«]],

for all xe 57, i.e.,, T is a contraction operator on 57
(iii) = (iv): It is easy to show that R, = (I —zT)", |z| <1,
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satisfies the resolvent equation (iva). Conversely, (iva) implies R;!
exists for all |z| < 1. Therefore, one may define T = (I — R;%)/z,
0 < |2z| <1, where (iva) implies that 7T is independent of z. Then
R,=(I-2T)", |z] <1. By taking adjoints we obtain the equivalence
of (iva) and the form of R, in (iii) for |z] > 1.

Condition (ii) and Theorem B imply R,c .<# and R, = 1.

CorOLLARY. If T is a contraction operator on 57, and T* 1s
defined by T* =T for k=0,1,2,---, and T% = (T*)* for k =
—1, -2, -+, then T®¢c 7.

Proof. If T™ is defined as in the statement of the corollary,
then the corresponding R, defined by formula (3) satisfies condition (i)
of the theorem. Therefore, R,c¢ ., and T** ¢ .9 by Theorem A,

REMARKS. 1. A direct proof of the above corollary has been
given previously by 8z.-Nagy [16, § 9].

2. Under the conditions of Theorem 4, R, also satisfies the re-
solvent equation (iva) for |z|,|{|> 1. Then N(R,) is constant for
|z] > 1, but in general, we do not have N(R,) = {0} for |z| > 1.

3. If the resolvent equation (iva) is satisfied for z and ¢ on
opposite sides of the unit circle, i.e., for all |z, [{]| = 1, then N(R,) =
{0} for all [z]| # 1, and R,e ... In this case R, = (I — 27T)~" for all
|z] = 1, where T is necessarily unitary by Lemma 3 of §4.1,

5.2. Using the terminology of M. Schreiber [12,13], we make
the following:

DEFINITION. An operator distribution function E,c £ is called
strong (or Nagy) if

27 . 2z X k
S M E, = U e”dEg] C E=0,1,2 -

0

REMARK. Necessarily FE, . = I for strong operator distribution
functions.
We consider the classes &7, <7,, and &, defined as follows:

() E, (06 < 2m) belongs to the class &, = & ,(57°) whenever
E,ec & is a strong operator distribution function.

(B, R, (Jz] = 1) belongs to the class &7, = .52 ,(5#) whenever
(a) 2R, —CR; = (z— QR.R; for |z|,|{| <1.
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(b) A—1[2zDIIR, —1I|l=]z],[2]<1.
(¢) R.=I—-R! 0<|z|<]1.

(v2) T® (£k=0,1,2, .-.) belongs to the class .7, = .7,(5#) when-
ever T = T is a contraction operator on 5% and

T® =T k=012,

=T*0, k= -1,-2 ...

THEOREM D. Thetripleofclasses &, ={%,, F,, T o} 1S a matched
triple of classes.

Proof. (i) &7,C.%: Suppose{FE,; R, T*}e.&”,. By(a,) E,e & .
Theorem 4 implies R, ¢ <2 and its corollary implies T'* ¢ . &~. Therefore,
{Es, R,, T"}e 5. It is clear that &7, + &7, s0 &, ..

(ii) If {E,, R,, T®}e.»”, then any one of the relations E,e &,
R,ec &2, T™* c 7, implies all three, i.e., implies that {H,, R,, T®} e .

E,e %,=T"e¢ 7, is established by Sz.-Nagy in [17, p. 90, (3)-
(5)]. See also [12, Th. 2.2] and [3, Th. 4].

If T e 7, then the corresponding R, defined by formula (3)
satisfies condition (i) of Theorem 4, which is equivalent to the conditions
of (B;). Hence R,c.<#,. Conversely, if R, .<#,, then equating coef-
ficients in the series of formula (8) and Theorem 4(i), we see that
T® is of the necessary form for T e _,. This proves Theorem D.

We remark that the new part of Theorem D is the characteri-
zation (8,) of the interrelated resolvent class .27,. We also note that
HKCT KT A

5.3. In general, the functional correspondence (7) is not multipli-
cative for fe B(dE). However, if we require E, ¢ &, then for certain
subclasses of B(dE) the functional calculus is multiplicative.

DEerINITION. The Hardy H.. class of fumnctions is the algebra of
bounded holomorphic functions in the unit dise [7].

By Fatou’s theorem [7, p. 34] the limit f(¢*) of f(re*) as r — 1—
exists almost everywhere with respect to 6, i.e., everywhere except on
a set C; of Lebesgue measure zero.

DEFINITION. By H.(dE) we mean the subalgebra of H. such that

27
B(C)) = | #(Cy )4E, = 0,

where C; is that set of Lebesgue measure zero given in Fatou’s theorem,
%(C;; 0) is the characteristic function of C;, and E,c &,.
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Note that H.(dE)cC B(dE) since the above definition implies that
the set C, does not belong to A(E).

Assuming E, e &,, the functional correspondence given in § 2.3 has
the following additional properties (cf. [19]):

(x) If f,g are polynomials in ¢ (or in ¢~%%), then fg ~ FG.

(xi) f.—f and g,— ¢ boundedly a.e. (dE) and f,9,~ F.G,
implies fg ~ FG.

(xii) When f, ge H.(dE), then fg ~ FG.

(xiii) If fe H.(dE), then f ~ F' = F(T), T a contraction operator,
and

IF(D)|| < sup |f(2)| -

It follows that the mapping f— F given by (7) is a homomorphism
from the algebra H.(dF) into the algebra of bounded linear transfor-
mations of the Hilbert space 5#°. Further properties of this mapping
have been studied by Schreiber [13] and Sz.-Nagy [18, 19].

6. The isometric operator case.

6.1. Let R,c.<# and suppose that for a certain operator T the
relation

an R(I—z2T)x =« (xe D;)

holds for some z such that |z| = 1.

ReEMARKS. (i) Formula (17) is equivalent to the statement that
(I — 2T) has a bounded inverse satisfying (I — z7)"* S R,.

(ii) If Ry=1I and (17) is valid for any point 2z, such that
0<|z|<1,then || Tx| <|/«| forall e D,, ie., || T|| = 1. Further-
more, if R, = I and (17) is valid for any point 2, such that |z,| > 1,
then || Tz || = ||« || for all z € D,.

(iii) If R, = I and (17) holds for any two points z, 2z, such that
0<]%|<1and |z]|>1, then T is isometric.

(iv) If R,e.<# and R, = 1, then relation (17) is equivalent to
TS T, |z|<1l;and T& TE |2] > 1, where T, and T% are the
operators introduced in Theorem B.

(v) If R,e&?, R,=1, and N(R,) = {0} for |z| > 1, then relation
(17) is equivalent to T & T,, |2| = 1, where T, is as in the corollary
of Theorem B.

(vi) If relation (17) holds in an open set contained in [z| < 1 (or
|z| > 1), then by analytical continuation it holds throughout [z| <1
(or |z] > 1).

(vii) If relation (17) holds for |z| < 1, then E,.x = x for x ¢ D,.
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In particular, if D, = 57, then E,, = I.

Proof. (i) is clear. (ii) follows by substituting (17) into formulas
(18’) and (13"). (iii) follows from (ii) since an operator T is isometric
if and only if ||Tz|| = ||« || for all xe D, [14, Th. 2.46]. Property
(iv) follows from the resolvent representations in Theorem B. For
|z] <1 we may substitute B, = (I — 2T,)~" into (17) and obtain the
equivalent equation Tx = T,x, x€ D,. For |z| > 1, we may substitute
R,=1— (I—2z'T%™" into (17) and obtain the equivalent equation
Ix = T;:Tx, x € D,, which is equivalent to T having an inverse satis-
fying T-* = T%. Property (v) is obtained from (iv) and the corollary
to Theorem B. (vi) is clear. (vii) follows by letting 2z = 0 in (17) and
using Remark (i) of §3.1.

THEOREM E 6.2. Suppose that {E,, R,, T'*} is a maiched triple
of functions wn S with E,. = I, that R, is represented by T,, and
that E; 1s the minimal dilation of E,. Let T be a certain operator
with D, S 7. Then these conditions are equivalent:

(i) T is an isometric operator such that T = T.

(if) TSTw = Sz"’eiﬁdE; .
0

(i) R,(I —2T)x = =z, for |z|+ 1 and x¢€ D,.
(iv) TES T, for |z] <1, T exists, and T~ = T4 for |z| > 1.

Proof. (i) (ii): Assume (i). Then Tx = T®x = PTW+y for
xeD,. But for xeD,
[Tl =|e] = [ T ]|,
since T is isometric, and 7'™* is unitary by Lemma 3. Therefore,
Tx = TW+g for all xe D,, ie., TS T+,
Suppose (i), T < T+ implies Tx = T™+x for all x € D,. Then
by property (v) of §2.3 and equation (9)
2% 27
T =Tl = e dB w0 = | A, ) = (B, o)
0 0
= (Eyx,2) = |2’ for all ze D,
i.e., T is an isometric operator. Also, T < T+ implies

Tae = TW+y = PTWHy = TWy

for xe D,, ie., TS TV,
(ii) = (iii): Since E;" € &,, Lemma 3 implies that 7+ is unitary
and R, = (I — 2T"W+)™, |z2]| = 1. Therefore,
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R(I — 279y =2

for all vxe 27, and in particular, for all e D,. But for xecD,,
T® + o = Tz by (ii), hence this becomes (iii).

(iii) = (ii): For xe D,, set y = (I — 2T)x. Using (iii) and an
argument similar to [8, §5.2] one may show successively that R,
satisfies the resolvent equation, R,.R,y = PR:R}y, and R,y = R}y for
all ye 4,(2). Then Tx = TW+x for all xe D,, i.e., T & TW+,

(iii) = (iv): This follows from Remark (iv) of §6.1.

REMARKS. 1. When 4, = 57, condition (iv) of Theorem E takes
the form

(iv') T~ exists, and TS T, = (TY)*, for |z| < 1.

2. When D, = 57, condition (iv) of Theorem E takes the form

(iv"’) T~ exists, and TS TF = T*, for 2| < 1.

3. By Remark (vii) of §6.1, the condition E,. = I in Theorem E
may be omitted in (iv”’), and weakened in parts (iii) and (iv) to E,.x = &
for all xe 57 © D,.

Condition (iii) (or (iv)) of Theorem E characterizes those R, e <2
with R, = I which are generalized resolvents of a given isometric
operator T. Using Remark 8, we obtain the following:

COROLLARY. In order that a set of bounded linear operators R,
n o7 (with D(R,) = &7 and |z| = 1) be a generalized resolvent of
the isometric opzrator T im SF, it 1s necessary and sufficient that
the following conditions be satisfied:

(a) R,e® = Z2(), |2|#1

(b) R, —zT)x =w, for all xe D, and |z|#1

(¢) Ra =2 for all xe 57 © D;.

We remark that for T a closed isometric operator, this corollary
is equivalent to Theorem 2 of [4]. The generalized resolvent of a
closed isometric operator 7' was defined in [4] as a set R, (jz| # 1) of

~

operators in o7 satisfying
R, =PI —zT*) "z, xesr,

where T+ is a unitary extension of 7T in a Hilbert space S#+ 2 277,
and P is the orthogonal projection of £#+ onto 5#2. We note that
Theorem C implies that this definition is equivalent to the conditions
given in the corollary.

6.3 Condition (iv) of Theorem E leads to a simple and direct proof
of a formula for all generalized resolvents of a closed isometric operator



TRIPLES OF OPERATOR-VALUED FUNCTIONS 529

which is analogous to Straus’s formula for symmetric operators [15,
Th. 7]. The formula was announced by M. E. Cumakin, a student of
Straus, in 1964 [4, Th. 3]

We shall need the following definitions and lemma which were
originally introduced by McKelvey in [8].

DEFINITION. A pair of operators L,, L, acting in 5% are said to
be formal adjoints whenever

(L, y) = (x, Ly)
for x e D(L,), y e D(L,).
DEFINITION. A pair of formally adjoint contraction operators B., B_

will be called a *-pair between closed subspaces 5#,, 5% _ of 57
whenever

D(B,) = 24, B.2o7 & 275 .
DEFINITION. A *-pair B., B_ will be called a maximal *-extension
of the *-pair B,, B_ whenever
B.2B. and D(B.) = 57 .
LEMMA 5. Let B., B_ be a given *-pair between the subspaces

S, 7., and let B.,B. be any *-pair between the subspaces
oL O, D572, Then

B, = B. @ B.
s a maximal *-extension of B., B_. Conversely, every maximal

*-extension of B., B_ has this form.

Suppose that T is a closed isometric operator acting in 5#. Then
D,=D,< 5. Set 54 = D,and 97 = 4,. Then 57~ = TS7, and
& = T27.

THEOREM 5. (éumakin). If T is a closed isometric operator,
then a mecessary and sufficient condition that the operator-valued
Sfunctions T,, |2| < 1, and Tix, |z| > 1, shall represent a generalized
resolvent R, of T in the sense of Theorem E(iv) is that

T.=TD0:(2) 2] <1
and

T =T7Po-(»), IlzI<1,
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where

(a) @.(2) ts a formally adjoint pair of linear operators mapping
F O S, into SF O SF 5.

(b) [12.(2)] = 1.

(¢) @.(2) is a holomorphic operator-valued function of z for
|z2] <1, and ®_(z*) is a holomorphic operator-valued function of z
Jor |z| > 1.

Proof. Note that T, 7T form a *-pair between the closed
subspaces 57, 57 _.

Suppose T,, |z| <1, and T%, |z|> 1, represent a generalized
resolvent of T, ie., TE T,, |2| <1, and T & T%, |z| > 1. Recall
that the second condition is equivalent to T'< TF, |z| <1l. Now
T, and its adjoint T}, |z| < 1, form a maximal *-extension of T, T,

z

By Lemma 5, T, and T7 have the form
. =T@D0.(:) and T; =T'Po(),

where @,(z), @_(z) is a *-pair between the subspaces &% © 57 ., and
& © 27 _. Then (a) and (b) are satisfied. Now @.(2) is holomorphic
for |z| <1 because T, is, and @_(z*) is holomorphic for |z| > 1
because T% is, i.e., (¢) is also fulfilled.

Conversely, suppose

T,=T®0.(2) and T* =T D P_(2),

for |z| < 1, where @.(z) satisfy (a)-(c). By Lemma 5, T,, T/ form a
maximal *-extension of T,T-'. Then TE T, and T*< T/, for
|2] < 1; hence T < T%, |z| > 1. Also, (¢) implies T, is holomorphic
for |z| < 1, and T% is holomorphic for |z| > 1. Therefore, T, |2| <1,
and T%, |z| > 1, represent a generalized resolvent R, of T. This proves

Theorem 5.
The author wishes to express his sincere appreciation to Professor
R. W. McKelvey for his guidance and encouragement in this work.
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