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FREE CURVES IN E?

DaAviD S. GILLMAN

A 2-sphere in Euclidean 3-dimensional space E® is called
free if it can be pushed into either complementary domain by
a map moving no point more than ¢, for arbitrary . Such
2-spheres have been the object of much recent attention, al-
though the basic problem of whether they must be tame or
not remains unsolved. The purpose of this paper is to take
a different direction in this study. We introduce a natural
generalization of the term free so that it can be used to
describe a k-sphere in E”, then direct our attention to free
1-spheres and 2-spheres in E'3,

Our main tool is Theorem 1, which, roughly speaking,
should be viewed as follows: It is well known that if D and
E are both polyhedral disks in E'® intersecting only in their
interiors (in general position), then £ may be altered via a
disk replacement process to miss D)., Theorem 1 states that
even if D were a singular disk in E?3, this process would
remain valid to an extent.

This fact is proven through a proof of Dehn’s lemma given by
Shapiro and Whitehead [12].

Theorem 1 is then used to prove a theorem of Hempel [8], which
asserts that free 2-spheres in E° are tame under an additional as-
sumption. This assumption is defined in § 4. Moreover, an analogous
theorem is then established for free 1-spheres in E°. Suprisingly
enough, the version for free 1l-spheres then can be used to deduce
another theorem about free 2-spheres; they can be pierced at every
point by a tame arc. This fact was recently shown by McMillan,
using other methods [10].

In § 5 we deal with free 1-spheres whose wild points form a 0-
dimensional set. If such a l-sphere bounds a disk, then it must be
tame.

The paper is concluded with a section of conjectures.

2. Preliminaries. We assume throughout that all polyhedral
sets and maps are placed in general position. By a loop L in the
space X is meant a map L: S'— X, where S! denotes the 1-dimensional
sphere; we set | L | = L(S"). Similarly, a disk Din XisamapD: 4— X,
where 4 is a 2-cell. The disk D is singular or nonsingular according
as D is not or is one-to-one. We set | D| = D(4) and oD = D(34), if
D is singular ; a nonsingular disk will be identified with its image and
this notation therefore is unnecessary.
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If J is a simple closed curve in a nonsingular disk E, then by
Int, J we denote the domain of E — J disjoint from o0E. Similarly,
if L is a polyhedral loop in E, then Int, L(Ext, L) denotes all points
p in E — L such that a polyhedral arc from p to 0F intersects | L |
an odd (even) number of times.

The term ‘‘regular neighborhood’’ is to be understood in the
sense of Whitehead [14].

3. Simplifying the intersections of disks. All sets in this sec-
tion are polyhedral.

THEOREM 1. Let M be a 3-manifold, D a singular disk in M,
E a nonsingular disk im M, with | D |-0E = 0D-E = ¢. Let J be a
stmple closed curve in Int, (| D |-E), and R a regular neighborhood
of | D|. Then there exists a nonstngular disk E' such that 0E’" = oK
and E'CExt,J + R.

Proof. The set D7*(]| D |-E) consists of a finite number of disjoint
simple closed curves K, ---, K, in 4; the restriction of D to K; may
be viewed as a loop L; in E. We may assume that JcC Int; L,
JC Exty L;, for 1 =2,8,---,k, and K, = 04, by astute selection of
a subdisk of 4. As in [12], we new cut down M to a 3-manifold-
with-boundary V, by selection of a regular neighborhood of | D | + E,
taking care near 0F to ensure that 0E CoV,.

A tower of 2-sheeted coverings is constructed as in [11] and [12].
The 0™ story is given by the disks D = D, and E = E|,, the curve
J = J,, and the regular neighborhood V,. The %" story will consist
of a connected 3-manifold M,, a nonsingular disk £, and a singular
disk D, in M, with oD, c E, and 0E,coM,, a curve J,C E,, and a
regular neighborhood V, of | D| + E, in M,. Connecting the n™ and
(n + 1) story is a map p,.,: M,.,— V, which is a double covering,
with D,,, covering D,, E,,, covering E, and .J,,, covering J,. If
one views D, and E, as a single map of the set 4 + 4 into M,, the
singularity of this map can be used to prove that the tower is finite,
as in Lemma 3 of [13]. Call the top story M,. Then V, has a
boundary consisting of a finite number of 2-spheres.

We will establish the conclusion of the lemma first in the m™
story. That is, there exists a disk E), such that 0F) = 0FE, and

E, c (Extg, J.) + R,

where R, is a regular neighborhood of D,. Note that E, separates
V. into two components W and X, because the first homology group
of V, with Z, coefficients is trivial [9, pp. 461-462]. Let W be the
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component containing | D,, | near to 0D,. If @ is the 2-sphere in oV,
which contains 0F,, then oF, divides @ into two disks A and B. Call
A the disk in W ; this is the disk we seek, modulo a minor modification.

We regard V, as composed of a regular neighborhood Y, of E,
and Z, of | D, |, and assume that Z, lies strictly in the interior of
R,. The set Y, — Z, may be viewed as a collar on an open subset
Y of E,, that is, ¥, — Z, =Y x [—1,1] with Y x (0,1]c W. We
now project the set Y x 1 onto Y x 0; this projection carries A onto
a new disk £, in V,, which we verify to satisfy all desired pro-
perties. It should be noted that a bit of care must be taken to modify
this projection near the edges of Y so that we have continuity of
this map when viewed in V,. This can be done in Z,, so that the
goal of this modification of A, that of pulling A into E, + R,, re-
mains valid.

It would be disastrous if this projection carried A onto J,. The
key property of V, that prevents this from occurring is the trivial
first homology with Z, coefficients. This implies that a polyhedral 1-
cycle and 2-cycle will intersect in an even number of points. Thus,
if J is a simple closed curve in V, and J-E, = ¢, then J-|D,, | con-
tains an even number of points. If E.-J, # ¢, then we can find an
arc « in Int A joining a point of 0E, x 1 to a point of J, X 1. Select
an arc B in E, x 1 connecting these same two points. Then A in-
tersects D, an odd number of times. To see this, we use induction
on m. If m = 0, then it is certainly true. If m = 1, then the loop
L, in E, is covered by an identical loop in FE,, making an odd contri-
bution. The loops L; 7 =2, ---,k are either covered by identical
loops in E,, or have totally disappeared ; in either case, their contri-
bution is zero, mod 2. The argument proceeds similarly. Then a + 8
forms a curve v in V,, with v-E, = ¢ and 7| D,, | containing an odd
number of points, which gives the desired contradiction.

We now assume that there exists a point

pek,-Int;y, J,

and reason to a contradiction. Let P denote the 2-sphere in 0V, which
contains J, X 1. By the previous paragraph, P is not the same 2-
sphere as . Select an arc » in A joining » x 1 to dA4, an arc s in
E, which completes » + (» x [0, 1]) to a simple closed curve. Now
construct a 2-sphere by selecting a subdisk of P bounded by J, x 1,
combined with

Again we have a 2-cycle and a l-cycle whose intersection is s-J,, an
odd number of points, which can not happen. Thus, the disk E!, has
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all desired properties.

The proof is completed by projecting E, down the tower, story
by story, and removing the double simple closed curves as they appear,
by the standard method. By requiring that P,.,(R,.,) C R,, we guar-
antee that

Pm-l((EXtE,,H Jur) + R,i)) C (EXtE,, J.) + R, .
4. TFree spheres in E°. The key to this section is the following :

DEFINITION. A k-sphere J* embedded in E™ is free if, given
e > 0, there exists a map f: J* x S***!'— E» — J* such that

(i) For peJ*, flp x S**') lies in an e-neighborhood of 7p.

(i) For peJ*, f(p x S***) links J* (homologically with Z, coef-
ficients).

For 2-spheres in E®, this definition corresponds to the standard
one, which was stated in the introduction.

NoteE. In the above definition, if ¢ is sufficiently small, then a
ray R from J* to < in general position intersects f(J* + S**7') in
an odd number of points. To see this, let D be a singular, polyhedral
(n — k)-disk in E™ in general position such that oD links J*. Such a
disk is easily built by using condition (ii) to select 0D, then taking
the cone over oD. If ¢ is small, then the (# — k — 1)-cycle

C = D-f(J* x S

is homologous to a meridian f(p x S*~*-'), Thus C links J*. We now
may find J* a polyhedral, (singular) close approximation to J*, and
place it in general position. Thus C links J*, which implies that J*.
D is odd, and that a general positioned subarc of D from J* to 6D
hits C in an odd number of points. This subarc yields the ray R.

We now establish a result of Hempel [8]. His definition of Con-
dition (A) for 2-spheres in E°® generalizes to: A Fk-sphere J*c E*
satisfies Condition (A) provided that whenever D is a polyhedral (2-
dimensional) disk in £* with 6D c E* — J* and V is any neighborhood
of D, there is a disk D’ (not necessarily tame) such that

(i) oD’ =4oD

(ii) D'cV, and

(iii) if C is the component of D’ — S which contains 0D’, then
D' — C has finitely many components.

THEOREM 2. (Hempel). Let S be a 2-sphere in E*. If S is free
and satisfies Condition (A), then S is tame.
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Proof. We wish to show that the complement of S is 1 — ULC
so that we may apply [1]. Given ¢ > 0, there exists 6 > 0 such that
a 0-set (meaning a set of diameter less than 4) in S lies in an ¢/6-disk
in S. Let E be a polyhedral é-disk in E® with 0E contained in one
complementary domain U of S. We wish to modify E on its interior,
forming a singular disk in U which still has diameter less than e.
Although seemingly weaker than being 1 — ULC, this property is strong
enough so that tameness of S will follow from [1].

We now invoke Condition (A); let E’ denote the d-disk replacing
E, and A, ---, A, the finite set of components of E’' — C. Select
disjoint subdisks E,, ---, B, of E' with A,cInt E;,. Select a map
f:S— E*— S such that any polyhedral arc from 6E; to S hits £(S)
in an odd number of points, for ¢+ =1,2, ---, k. We now modify E,
to miss S: There exists a simple closed curve Jc E, such that

A, Clnty J and JCIntg f(S)-E,.

We may require that there is a singular disk D, obtained by restrict-
ing the map f, such that f(S)-E, =|D|-E, and | D| is an ¢/6-set, by
choosing f to move points a small distance. Applying Theorem 1 to
singular disk D, nonsingular disk E,, and curve J, we find an ¢/3-disk
F', which is disjoint from S. The same argument is used to modify
E, -, E.

COROLLARY 2.1. (Hempel). If S is a free 2-sphere tn E°, and
the wild points of S form a tame 0-dimensional set, then S is tame.

In order to prove a similar theorem for a free l-sphere K in £,
we need the extra hypothesis that K bounds a disk, because otherwise
knotted counterexamples can be found. Although the following theorem
parallels Theorem 2 in its statement, the proof turns out to be sur-
prisingly different.

THEOREM 8. Let K be a l-sphere in E®. If K is free, satisfies
Condition (A), and bounds a disk in E°, then J is tame.

Proof. Note first that if the hypothesized map f: K x S'— E*
were always taken to be one-to-one, then Lemma 3.5 would follow as
a corollary of Theorem 1 of [4]. Our approach is, in fact, to mimic
the proof of Theorem 1 of [4], so closely that we number the steps
in this proof to correspond precisely with those of Theorem 1 of [4].
Thus, we omit justification of all steps where the argument is to be
found in detail in [4]. We assume K lies in a 2-sphere S which is
locally polyhedral, mod K [2]. Given a point pe K, and ¢ > 0, we
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wish to find a 6 > 0 such that: if B is a disk in a d-neighborhood
of p with 0B-S = ¢, then B may be modified on its interior to form
an e-disk in E®* — S. To make notation correspond, select a map
f;: K x St— E?® moving points less than 1/¢, for 1 =1,2, ..., and let
T; = fK x §). ‘

(1) There exists an integer N, and a positive number v such
that if « is any subset of T,,n > N,, and if « lies in a neighborhood
of p of radius v (which we abbreviate o,(p)), then either a N S = ¢,
or « lies in a singular subdisk of 7, (which means formally that

failay)cdc K x S,

where 4 is a nonsingular disk. The singular disk is then f, | 4).

(2) We assume that diameter K > ¢/3. There exists a d, > 0
such that any 3d,-subset of S lies in a ¢/3-disk on S. There exists a
0, > 0 and integer N, such that any d,-subset of T,, n > N,, which
lies in a singular subdisk of T, also must lie in a singular subdisk D
of T, with diameter | D| < 6,/3. Such a §, and N, may be found
thus : Select §, so that any 26,-subset of K lies in a §,/6-subarc A of
K. For N, sufficiently large, and n > N,, any 0,-subset of T, lies in
f(A x S, where diameter A < §,/6, so diameter f,(4A x S') < d,/3.
We may select D to be a further restriction of the map f,/A x S,
since the given d,-subset does lie already in a singular subdisk of T,,
by hypothesis.

(38) Select an annulus U in S containing K on its interior such
that: If W is any open set containing K, and X is an open set con-
taining S, then there exists a homeomorphism H of E*® onto itself
such that H(S) = S, H = identity on (E* — X) + K, H(U)c W, and
H moves no point of E?® more than the minimum of the two numbers
0,/3 and /2.

(4) Letdbechosensothato < d,/6,0 < v/2,and o,(p)+-(S — U) = 4.
We now begin modification of the given é-disk B. By Condition (A),
we may assume that B-K has finitely many components. We select all
components X, of B-S such that B-K-X, + ¢. There are only finitely
many such components, which we number X, ---, X,. Select subdisks
E,---,E, of Bwith X,cIntE; andoE;-S = ¢. We may assume that
o0E;-0E; = ¢, for i #= j.

(5) In this step, we show that 6B bounds a 30-disk B’ such
that B’-K = ¢. We do this by modifying Int E;, for ¢ =1, .-, k.
We describe this process for the disk E, only: Let m be an integer,
m > N, m > N,, so that 0FE, lies in the unbounded component of
E*—T,, and so that a ray R from K to o hits T, an odd number
of times. Thus, an arc from K to 0F, hits T, an odd number of
times.
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Next we construct, by Step 3, a homeomorphism H so that
H/oFE, = identity, H(E) is a d,-disk, and H(E)-S-T, = ¢. Thus,
H(E)-T, lies in a singular subdisk of T,, by step 1; in fact, by step
2, this set lies in a §,/3-singular subdisk D.

Since an arc from H(X, to 0E, must intersect 7, in an odd
number of points, and 4E, = d(H(E))), it follows that

H(X,)cC IntH(El) [D-H(E)] .

This enables us to apply Theorem 1 to singular disk D, nonsingular
disk H(E)), and a small curve J in H(E)) about H(X,). The resulting
0,-disk F, is disjoint from K. We use it in place of E,. We repeat
this argument % times, thus constructing the 36,-disk B’. (Actually,
this is a singular disk, but by requiring that T,-0B = ¢, we may
deduce that B’ has no singularities near the boundary, so a nonsingular
disk is obtained by an application of Dehn’s Lemma.)

(6) The disk B’ is pulled off of S — K by the usual disk re-
placement process to yield an e-disk in E° — S. This completes the
proof.

THEOREM 4. If K ts a 1l-sphere in a free 2-sphere S in E°,
then K s free in E°.

Proof. Given ¢ > 0, select an annular neighborhood 4 of K in
S, with a homeomorphism % : K x [0, 1]— A such that the distance
from p to i(p x q) is less than ¢/2, for all (p,q) in K x [0,1]. We
select maps f;: A— E®*— S, for 4 = 1,2. If S' is viewed as a square,
then we begin the definition of

g:Kx S'*—E*— K
on the top and bottom of the square by the maps
fich: K x[0,1]—E°* - §,

for + = 1,2, On the two remaining sides of S,, g is extended linearly.
It is not difficult to show that if f; were selected with care, then this
linear extension does not intersect K, and that g(p x S') links K.

Actually, this proof could be set in a wider context, to show that
if K is a flat k-sphere in S™, and S™ is free in E", then K is free in
E*,

COROLLARY 4.1. If K is a l-sphere in a free 2-sphere S in E3,
and the set of wild points of K form a tame 0-dimensional set, then
K s tame.
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Proof. By Theorem 4, K is free. The result now follows from
Theorem 3. Note that this corollary may be viewed as a strengthening
of Corollary 2.1.

COROLLARY 4.2. (McMillan [10]). A free 2-sphere in E*® can be
pierced at every point by a tame arc.

Proof. Given a point p e S, there exists a simple closed curve K
with pe K S, such that J — p is locally tame [5]. By Corollary
4.1, K is tame. Thus, S can be pierced by a tame arc at p [5].

5. Wild Cantor sets. If one is not interested in theorems
dealing with Condition (A), but only in proving Corollary 4.1, then a
more direct argument is available. In fact, the following theorem
implies Corollary 4.1 with the word ‘‘tame’’ stricken from the
hypothesis.

THEOREM 5. If K ts a free 1-sphere in E* which bounds a disk
and the wild points of K form an 0-dimensional set, then K 1is tame.

Proof. Given ¢ > 0, and x e K, we outline an argument to show
that there exists a 2-sphere S of diameter less than ¢, such that
xeInt S, and S-K consists of two points. The result will then follow
from [6]. We select a small subarc A of K with end points v and
2, and interior points w and y at which A pierces the disks W and
Y respectively, so that v, w, z, v, z lie on A in that order. A map
f:Ax St— E® — A is given via the hypothesis, with

w e Int, {W-f(4 x S}

and
yelnt, {Y-f(A x SH}.

We may enlarge f to a map from a disk into E® by extending rays
from f(z x SY) to z. Thus, f becomes a singular disk in E? W a
nonsingular disk, and letting J be a small curve in W around the
point w, we may apply Theorem 1. This yields a disk D with 0D = oW,
One builds the 2-sphere S from the three nonsingular disks D, W and
Y by standard techniques. See Theorem 2 of [4] for details.

COROLLARY 5.1, (Hempel [8]). If S is a free 2-sphere in E°*
where wild points form a 0-dimensional set, than S is tame.

Proof. Let K be a simple closed curve in S containing the wild
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points of S. By Theorem 4, K is free. By Theorem 5, K is tame.
Thus S is tame.

6. Some problems. We begin with two variations of Theorem
1, each of which would imply that free 2-spheres in E° are tame.
This paper, in fact, began as an attempt to prove Conjecture 2.

Conjecture 1. Let M, D, E and R be as in Theorem 1. Then
there exists a nonsingular disk E’ such that 0E’ = 0F and

E'c(Ext,|D|-E) + R.

Conjecture 2. Let M, D, E, R and J be as in Theorem 1. Then
there exists a nonsingular disk £’ and subset X of Int £’, consisting
of a finite number of disjoint disks, such that 0FE’ = 0F, £’ — X C Ext, J
and XCR.

The next conjecture would also imply that free 2-spheres in E?
are tame : it would in fact, be a very useful tool in many problems
in E°. It is, so to speak, a Dehn’s Lemma with epsilonics.

Congecture 3. If D is a nonsingular disk in E® (wildly embedded),
then for any ¢, there exists a 6 such that if f is a map of D into
E® moving no point more than 4, with no singularities near f(0D),
then there exists a homeomorphism % of D into E* moving no point
more than ¢ with or(D) = of(D).

Hempel has shown that deformation free 2-spheres in E® are
tame [7]. The definition of deformation free easily generalizes to k-
spheres in E® as did the definition of free: an embedding f: S* — E*
is deformation free if, considering f to be a map from S* x q into
E", where q is the center point of the (n — k)-disk D"~*, then f ex-
tends to a map F': S* x D" *— E™ with

F(S* x (D"* — q)) C E™ — f(S)
and for pe S¥,
F(p x oD *) links f(S*) .
Then deformation free spheres are clearly free.

Conjecture 4. Deformation free k-spheres in E* are tame, for
all £ and n.

A step toward establishing Conjecture 4 for 1-spheres in E°® is
the following.
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Conjecture 5. If D is a singular disk in E? and J is a simple
closed curve piercing D at p, (i.e., J-| D| = p and J links 0D, mod 2),
then J pierces a nonsingular disk at p.

Congecture 6. If m — k = 2, then a free k-sphere in E™ which
satisfies Condition (A) is tame.

Perhaps the results of Bryant and Seebeck [3] offer some hope
of proving Conjecture 6 for n =5, n — k = 3. One would need to
prove a generalized Theorem 1 for D a singular (» — 1)-disk and E a
nonsingular 2-disk in E™.

Conjecture 7. An (m — 2)-sphere in E™ which is free, satisfies
Condition (A), and bounds an (n — 1)-disk is tame.

Conjecture 8. If * free’ were defined using linking with Z coef-
ficients instead of Z,, then Theorem 5 would still be valid.
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