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We shall establish in this paper some congruence relations
with respect to the modulus 3 for some restricted partition
functions, The difference between the unrestricted partition
function, p(n), and these restricted partition functions which
we shall denote by

Tp(n) with r =3,6,12,

merely lies in the restriction that no number of the forms
27n, or 27n =+ r, shall be a part of the partitions which are
of relevance in the restricted case, Thus to determine the
value of ¥p(n) one should count all the unrestricted partitions
of n excepting those which contain a number of any of the
above forms as a part. We shall assume p(n) and 7p(n) to be
unity when 7 is zero, and vanishing when the argument is
negative, We can now state our theorems,

TuaeoreMm 1, For almost all values of »n
Tp(n) = p(n) =Apn) =0  (mod 3) .
THEOREM 2. For all values of n

Tp3n) = Tp@3n + 1) = —EpBn +2)  (mod 3) .

2. Definitions and notations. We shall use m to denote an
integer positive zero or negative, but » will stand for a positive or
nonnegative integer only.

We define u, by

(1) %=1 and wu, = f‘, na,xr". i p(nyx”,r >0,
n=0 n=0

where q, is defined by the well-known ¢ pentagonal number’ theorem
of Euler,

(2)  f@) =110 -0 =3 (~Drabeen = Saer,

and p(n) is the number of unrestricted partitions of n given by the
expansion,

(3) = [T @ =] = 3 e

We shall use v to denote the pentagonal numbers,
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(4) ’U:%m(?)m—!—l),m:(),il,izy...;

and with each » there corresponds an ‘associated’ sign, viz., (—1)".
We shall come across sums of the type

PERCO)

where it is understood that the sign to be prefixed is the ‘ associated’
one, which would thus be (a) negative if v is 1, 2, 12, 15, 35, ..., that
is, when it is of the form (2m + 1) (3m + 1), and (b) positive if v is
0,5,7,22,26 ..., that is, when it is of the form m(6m + 1). With
the above summation notation we can write,

(5) u, = 3 (F v'e)/f@),
(6) S (F @)/f@) = 1.

We shall also require the functions U;, ¢ = 0,1, 2 which are cer-
tain linear functions of u,’s, » = 0,1, 2 as given below.

Uy=_— u, + u,,
(7) {Ulz—ug_ul,
U= —uy +u,.

We also need the quadratics P;(v) in v,% = 0,1, 2 which are obtained
by writing P,(v) for U,;, and v" for u,. Thus

P(w)= —v*+1,
(8) {Pl(v)z — v =,
P(w)= —v*+wv.

3. Some lemmas. The truth of the following lemma can be
easily verified from the expressions for P,(v) given in (8).

LEMMmA 1.
P(v) =1 (mod3), if v=1 (mod3)
=0 (mod3), if v =1 (mod3).

If we replace the w,’s appearing in the expressions for U; in (7)
by the right hand expressions in (5) we get

(9) Ui = SUIF P} lif(@) ;

and then the use of Lemma 1 leads to the next lemma.
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LEMMA 2. U; = 3.=:(F #°)/f(x) (mod 3), the summation being ex-
tended over all pentagonal numbers v = ¢ (mod 3).

The truth of the following lemma can be verified without much
difficulty by writing 3m -+ 7, with 5 = 0; —1; and 1 respectively, in
place of m in the expression im(3m -+ 1) for the pentagonal numbers,
and in (—1)" its associated sign. It is also to be remembered that
3(3m — 1) 9m — 2) and 3(3m + 1) (9m + 2) represent the same set of
numbers.

LemMA 3. The solutions of
v=1 (mod3), 71=0,12
are as noted below, (the associated signs are also shown).

solutions sign
32Tm? + 3m) (=)~
£#2™m* + 16m) +1 (-1
3@2Tm? + 21m) + 2 (—=1)™+,

(TSN

The identities given in the next lemma are simple applications of
a special case of a famous identity of Jacobi [3, p. 283] viz.,

oo

(10) H [(1 — pRkntk— l)(l 2kn+k+l)(1 2Icn+2k)] _ Z( l)m Em2+im .

In establishing this lemma k& and [ are given values which are in
conformity with the quadratic expressions in m given in Lemma 3.
As an illustration we have

(11) S (F )= g‘: (ml)m+1x%(27m2+21m)+z
v=2 =

— ____xZ n]‘j;) l(l — 27n+3)(1 27n+24)(1 27’n+27)] .

LEMMA 4., Writing v = © simply for v = ¢ (mod 3)
Z (¢xv) — ﬁ [(1 . 27n+12)(1 27n+15)(1 27n+27)]
=0 n=0

é(?x”) = - [(1 — @m0yl — oyl — g2n+m)]

n

8
g Lt

;E:%(_—va) = — 2 [(L — a2+ (1 — a¥re2)(l — )],

n=0

Lemma 5, given below is derived from Lemma 2 after the sub-
stitution in it of the product expressions for >,_.(F2°) as given in
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the above lemma. The following fact also is to be taken into
consideration.

(12) g (1 _ m27n+*r)(1 . x27n+27—7‘)(1 . x27n+27)]/f(x)

= nljo [ — &)1 — 2"+ )(1 — N[ — 2)(L — &)1 — 2°)- -]
- ;371)(%)97” .
LEMMA 5.
U, = 3. fip()z* (mod 3)
U = — 2 “p(n — 1)z (mod 3)
U, = — 2 p(n — 2z (mod 3) .

We require another set of congruences which are obtained from
the classical result, due to Catalan [1, p. 290].

(13) pn —1) + 2p(n — 2) — dp(n — 5) — Tp(n — 1) + --- = a(n),
and another result due to Glaisher [1, p. 312]
(14) p(n — 1) + 2°p(n — 2) — 5°p(n — 5) — Tp(n — T) + ---

- %[503(7@) — (18% — 1)o(n)] .

These results can be rewritten according to our notation asg
(15) S [F vpln — )] = — o) ,
(16) S v'p(n — 0)] = <= [50.(n) — (18n — Do(m)] .
Now from (5) we have
ur = 2 (F va)/f(@)
7 =3 (F o). 3 p(e
= g{zv‘, [Fvpr —v)]ja”, r>0.

It is now easy to establish the validity of the following lemma from
the above three relations (15), (16) and (17).
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LEMMA 6.

—_ 2 o(n)z®

H

I-“H

jj; [504(n) — (18n — 1)a(n)]z"

The next lemma can be easily obtained by the substitution of the
above values of %, and u, in (7).

LEMMA 7.
U —1=— % 2 [50,(n) — (18n — L)o(m)|z"
U, = — _115 S\ [50(n) — (180 + 10)o(m)]a"
U, = — %2_ 3, 150,(n) — (182 — 13)o(m)]a"

The congruences given in L.emma 8 are elementary and can be
readily proved.

LEMMA 8.

oBn —1)=0 (mod 3) .
o(3*n) o(n) (mod3), Ax>0.

il

4. Proof of the theorems. By comparing the coefficients of
like powers of  in the expressions (modulo 3) for U, given in Lemmas
5 and 7 we obtain the following congruences for n > 0.

(18) Ep(n) = — - [50,n) — (18n — Do(w)] (mod 3)
19) T — 1) = — _115 [56,(1) — (18 + 11)a(n)] (mod 3)
(20) —tpn — 2) = — _12_ [50,(n) — (18% — 13)6(n)] (mod 3) .

Remembering the well-known congruence, [4; 2, p. 167],
(21) o,(n) =0 (mod M) for almost all »

for arbitrarily fixed M and odd %, it is a straightforward matter to
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deduce Theorem 1 from the above congruences.
To establish Theorem 2 we obtain by a process of addition or
subtraction of (18), (19) and (20) in pairs the following.

(22) — up(n) — %p(n — 1) = Ep(n) + p(n — 2)
=Tp(n — 1) — %p(n — 2) = o(n) (mod 3) .

Now writing 3n + 2 for # in (22) and making use of the first rela-
tion of Lemma 8 we obtain the theorem immediately.

To derive a generalization from (22) we write 3*n for % in it and
make use of the last congruence of Lemma 8 to obtain,

(23) — Ep(3*n) — p'n — 1) = p(3*n) + %p@'n — 2)
= p@'n — 1) — p(@n — 2)
= o(n) (mod 3) .

We need write 3w — 1 for n in (23) and use the first congruence of
Lemma 8 to arrive at the more general Theorem 3.

THEOREM 3. With respect to the modulus 3
— Ip(8* ' — 3% = Tp(3**n — 3 — 1) = Ip(3tin — 3 — 2) .,

Finally, it might be of interest to note that the three restricted
partition functions ¥p(n), » = 3, 6 and 12, are connected by the iden-
tical relation,

(24) ip(n) =%p(n — 1) + %p(n —2) , n>0.
This is seen to be true by a joint consideration of (6), Lemma 4, and
(12). The first relation gives

(25) S (F @)/flx) =1.

2

1=0 v=14
We substitute the values of >,_.(F «*) in the product form as given
in Lemma 4, and then make use of (12) in order to express the left
hand side of (25) as a power series in % whose coefficients are simple
linear functions of the restricted partition functions. Now (24) is
obtained directly by equating to zero the coefficient of x", n > 0.
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