A NOTE ON RECURSIVELY DEFINED ORTHOGONAL POLYNOMIALS

DANIEL PAUL MAKI
A NOTE ON RECURSIVELY DEFINED ORTHOGONAL POLYNOMIALS

DANIEL P. MAKI

Let \(\{a_i\}_{i=0}^{\infty} \) and \(\{b_i\}_{i=0}^{\infty} \) be real sequences and suppose the \(b_i \)s are all positive. Define a sequence of polynomials \(\{P_i(x)\}_{i=0}^{\infty} \) as follows:

\[
P_0(x) = 1, \quad P_i(x) = (x - a_0)/b_0, \quad \text{and for } n \geq 1
\]

\[
b_n P_{n+1}(x) = (x - a_n)P_n(x) - b_{n-1}P_{n-1}(x).
\]

Favard showed that the polynomials \(\{P_i(x)\} \) are orthonormal with respect to a bounded increasing function \(\psi \) defined on \((-\infty, +\infty) \). This note generalizes recent constructive results which deal with connections between the two sequences \(\{a_i\} \) and \(\{b_i\} \) and the spectrum of \(\psi \). (The spectrum of \(\psi \) is the set \(\Sigma(\psi) = \{\lambda: \psi(\lambda + \epsilon) - \psi(\lambda - \epsilon) > 0 \text{ for all } \epsilon > 0\}. \) It is shown that if \(b_i \to 0 \) then every limit point of the sequence \(\{a_i\} \) is in \(\Sigma(\psi) \).

2. Preliminaries. In order to use theorems from functional analysis, consider the space \(L^2(\psi) = \{f: \int_{-\infty}^{\infty} f^2 d\psi < \infty\} \). This is a Hilbert space where the inner product is given by \((f, g) = \int_{-\infty}^{\infty} fg d\psi \) and where we identify all functions which agree on \(\Sigma(\psi) \). In [2], (p. 215), Carleman showed that the condition \(\sum 1/\sqrt{b_i} = \infty \) implies that when \(\psi \) is normalized to be continuous from the left and to have \(\psi(-\infty) = 0, \psi(+\infty) = 1 \), then it is unique. In [6], M. Riesz showed that if \(\psi \) is essentially unique then Parseval’s relation holds for the orthonormal set \(\{P_i\} \) in the space \(L^2(\psi) \). Hence the set \(\{P_i\} \) is dense in this space.

We now make the assumption that \(\lim b_i = 0 \). Combining the Carleman result and the Riesz result we see that \(\psi \) is essentially unique and the polynomials \(\{P_i\} \) are a dense set in \(L^2(\psi) \). Using this information we define an operator \(A \) on a dense subset of \(L^2(\psi) \). The domain of \(A \) is the set of all functions \(f \) which are in \(L^2(\psi) \) and for which \(xf \) is also in \(L^2(\psi) \). We take \(A \) to be the self-adjoint operator defined by \((Af)(x) = xf(x) \). By inspection of (*) we see that for \(i = 1, 2, 3, \cdots \) we have

\[
A(P_i) = b_{i-1}P_{i-1} + a_iP_i + b_{i+1}P_{i+1}.
\]

We call \(A \) the operator associated with the sequences \(\{a_i\} \) and \(\{b_i\} \).

3. Theorems. Let \(\sigma(A) \) be the spectrum of the operator \(A \), i.e., all points \(\lambda \) where \(A - \lambda I \) does not have a bounded inverse. Then we have the following:
LEMMA. \(\sigma(A) \subset S(\psi)\).

Proof. Let \(\lambda \in \sigma(A)\). Since \(A\) is self-adjoint, \(\lambda\) is in the approximate point spectrum of \(A\). Hence there exists a sequence \(\{f_n\}\) in the domain of \(A\) satisfying \(\|f_n\| = 1, n = 1, 2, \ldots\), and \(\|(A - \lambda)f_n\| \to 0\) as \(n \to \infty\). Now by the definition of the norm in \(L^2(\psi)\) this means \(\int_{-\infty}^{\infty} f_n^2 d\psi = 1, n = 1, 2, \ldots\), and \(\int_{x+\varepsilon}^{x-\varepsilon} (x - \lambda)^2 f_n^2 d\psi \to 0\) as \(n \to \infty\). Now suppose \(\lambda \in S(\psi)\). Then there exists \(\varepsilon > 0\) such that

\[
\psi(\lambda + \varepsilon) - \psi(\lambda - \varepsilon) = 0.
\]

Thus \(\psi\) has no mass in the interval \([\lambda - \varepsilon, \lambda + \varepsilon]\), and we have

\[
\int_{x-\varepsilon}^{x+\varepsilon} f_n^2 d\psi + \int_{x+\varepsilon}^{x+\varepsilon} f_n^2 d\psi = 1, \quad n = 1, 2, \ldots,
\]

and

\[
\int_{x-\varepsilon}^{x+\varepsilon} (x - \lambda)^2 f_n^2 d\psi + \int_{x+\varepsilon}^{x+\varepsilon} (x - \lambda)^2 f_n^2 d\psi \to 0 \quad \text{as} \quad n \to \infty.
\]

But these are contradictory since

\[
\int_{x-\varepsilon}^{x+\varepsilon} (x - \lambda)^2 f_n^2 d\psi + \int_{x+\varepsilon}^{x+\varepsilon} (x - \lambda)^2 f_n^2 d\psi \geq \varepsilon^2 \left[\int_{x-\varepsilon}^{x+\varepsilon} f_n^2 d\psi + \int_{x+\varepsilon}^{x+\varepsilon} f_n^2 d\psi \right] = \varepsilon^2.
\]

This completes the proof.

We are now ready for our result about \(S(\psi)\). It is motivated by the results in [5] where we constructed \(\psi\) in the case where \(b_i \to 0\) and \(\{a_i\}\) has only a finite number of limit points.

THEOREM. Let the sequence of polynomials \(\{P_i\}\) be recursively defined by (*) and assume \(b_i > 0\) for each \(i\) and \(b_i \to 0\). Then each limit point of the sequence \(\{a_i\}\) is a point of the spectrum of the associated distribution function \(\psi\).

Proof. From the above lemma it suffices to show that each limit point of the sequence \(\{a_i\}\) is in \(\sigma(A)\). Thus let \(\lambda\) be a limit point of \(\{a_i\}\) and suppose \(\{a_{i(n)}\}\) is a subsequence converging to \(\lambda\). Next let \(f_n(x) = P_{i(n)}(x), n = 1, 2, 3, \ldots\). By the defining relation (*) and by the definition of \(A\), we have

\[
\|(A - \lambda)f_n\|^2 = \|(x - \lambda)P_{i(n)}\|^2
\]

\[
= \int_{x-\varepsilon}^{x+\varepsilon} \left((b_{i(n)} - 1)P_{i(n)-1} + (a_{i(n)} - \lambda)P_{i(n)} + b_{i(n)}P_{i(n)+1} \right)^2 d\psi
\]

\[
= b_{i(n)-1}^2 + (a_{i(n)} - \lambda)^2 + b_{i(n)}^2.
\]
Now $b_i \to 0$ and $a_{i(n)} \to \lambda$, so we see $\| (A - \lambda) f_n \|^2 \to 0$ as $n \to \infty$. Moreover $\| f_n \| = \| P_{i(n)} \| = 1$, so $\lambda \in \sigma(A)$ and the proof is complete.

Remark. If we choose the a_i's to be dense in the real line, for example any enumeration of the rationals, then for every set of b_i's satisfying $b_i \to 0$ we have $S(\psi) = (-\infty, +\infty)$.

Conjecture. The converse of the above theorem does not hold since in [5] our construction exhibited points of $S(\psi)$ which were not limit points of $\{a_i\}$. However each limit point of $S(\psi)$ was a limit point of $\{a_i\}$. So it seems reasonable to conjecture that when $b_i \to 0$, λ is a limit point of $S(\psi)$ if and only if λ is a limit point of $\{a_i\}$.

References

Received January 12, 1968.

Indiana University
Bloomington, Indiana
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. R. PHELPS
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA
UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
* * *
AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON
CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY
TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsuusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
Pacific Journal of Mathematics
Vol. 28, No. 3 May, 1969

Jon F. Carlson, Automorphisms of groups of similitudes over F_3 485
W. Wistar (William) Comfort, Neil Hindman and Stelios A. Negrepontis, F'-spaces and their product with P-spaces 489
Archie Gail Gibson, Triples of operator-valued functions related to the unit circle 503
David Saul Gillman, Free curves in E^3 533
E. A. Heard and James Howard Wells, An interpolation problem for subalgebras of H^∞ 543
Albert Emerson Hurd, A uniqueness theorem for weak solutions of symmetric quasilinear hyperbolic systems 555
E. W. Johnson and J. P. Lediaev, Representable distributive Noether lattices 561
David G. Kendall, Incidence matrices, interval graphs and seriation in archeology 565
Robert Leroy Kruse, On the join of subnormal elements in a lattice 571
D. B. Lahiri, Some restricted partition functions; Congruences modulo 3 575
Norman D. Lane and Kamla Devi Singh, Strong cyclic, parabolic and conical differentiability 583
William Franklin Lucas, Games with unique solutions that are nonconvex 599
Eugene A. Maier, Representation of real numbers by generalized geometric series 603
Daniel Paul Maki, A note on recursively defined orthogonal polynomials 611
Mark Mandelker, F'-spaces and z-embedded subspaces 615
James R. McLaughlin and Justin Jesse Price, Comparison of Haar series with gaps with trigonometric series 623
Ernest A. Michael and A. H. Stone, Quotients of the space of irrationals 629
William H. Mills and Neal Zierler, On a conjecture of Golomb 635
J. N. Pandey, An extension of Haimo’s form of Hankel convolutions 641
Terence John Reed, On the boundary correspondence of quasiconformal mappings of domains bounded by quasicircles 653
Haskell Paul Rosenthal, A characterization of the linear sets satisfying Herz’s criterion 663
George Thomas Sallee, The maximal set of constant width in a lattice 669
I. H. Sheth, On normaloid operators 675
James D. Stasheff, Torsion in BBSO 677
Billy Joe Thorne, $A - P$ congruences on Baer semigroups 681
Robert Breckenridge Warfield, Jr., Purity and algebraic compactness for modules 699
Joseph Zaks, On minimal complexes 721