COMPARISON OF HAAR SERIES WITH GAPS WITH TRIGONOMETRIC SERIES

JAMES R. MCLAUGHLIN AND JUSTIN JESSE PRICE
We study Haar series with gaps and show striking differences between these series and lacunary trigonometric series. For example, we prove that under certain gap conditions Haar series are finite series almost everywhere.

Haar’s orthonormal system \{\chi_n(t)\} is defined as follows on [0, 1]: \(\chi_0(t) = 1\) and for \(m = 2^n + k\) with \(0 \leq k < 2^n\), \(n = 0, 1, \cdots\)

\[
\chi_m(t) = 2^{-n/2}, \quad t \in (k/2^n, (k + 1/2)/2^n),
\]

\[
= -2^{-n/2}, \quad t \in ((k + 1/2)/2^n, (k + 1)/2^n),
\]

\[
= 0, \quad t \in [k/2^n, (k + 1)/2^n],
\]

and at the three remaining points we let \(\chi_m(t)\) be equal to the average of the right and left hand limits. Thus, in contrast to the trigonometric system, if \(2^n \leq m < 2^{n+1}\), the Haar function \(\chi_m(t)\) is supported on an interval of Length \(2^{-n}\) and

\[
\int_0^1 |\chi_m(t)| \, dt = 2^{-n/2}.
\]

For \(f \in L(0, 1)\) we call

\[
a_m(f) = \int_0^1 f(t)\chi_m(t) \, dt, \quad m = 0, 1, \cdots
\]

the Haar-Fourier coefficients of \(f\) and \(\sum_{m=0}^\infty a_m(f)\chi_m(t)\) the Haar-Fourier series of \(f\).

P. L. Ul’janov has noted [8, p. 42] that if \(\{m_k\}\) is an increasing sequence of positive integers for which \(\sum (m_k)^{-1}\) converges, and if the gap series \(\sum a_{m_k}\chi_{m_k}(t)\) is the Haar-Fourier series of a bounded function, then the series converges absolutely almost everywhere (cf. [9, p. 247]). The following theorem strengthens this result.

Theorem 1. (i) If \(\{a_k\}\) is any sequence of real numbers and \(\{m_k\}\) is an increasing sequence of positive integers such that \(\sum (m_k)^{-1}\) converges, then \(\sum_{k=1}^\infty a_k\chi_{m_k}(t)\) is a finite series for almost every \(t \in [0, 1]\).

(ii) If \(\sum (m_k)^{-1}\) diverges, then there exists a sequence of real numbers \(\{a_k\}\) and an increasing sequence of positive integers \(\{n_k\}\) satisfying

(a) \(\sum_{k=1}^N \frac{1}{n_k} \leq \sum_{k=1}^N \frac{1}{m_k}\) for \(N = 1, 2, \cdots\).
(b) $\sum a_\ell x_{n_\ell}(t)$ is the Haar-Fourier series of $f \in L^p$, for all $p \in [1, \infty)$,

(c) $\sum |a_\ell x_{n_\ell}(t)|$ diverges for almost every $t \in [0, 1]$.

Proof. Part (i). Let E_m denote the support of $\chi_m(t)$ on $[0, 1]$ for $m = 2^n + k$ with $0 \leq k < 2^n$, $n = 0, 1, \ldots$. Then

$$\frac{1}{m} \leq \frac{1}{2^n} = \mu(E_m) = \frac{2}{m}$$

where $\mu(E_m)$ denotes the measure of E_m. Thus, $\sum_\ell \mu(E_{n_\ell})$ converges and consequently $\mu(\limsup \ E_{n_k}) = 0$ [5, p. 40, Exercise 6].

Part (ii). Choose a sequence of real numbers $\{b_\ell\}$ satisfying

(1) $\sum b_\ell^2 < \infty$ and $\sum |b_\ell| = \infty$.

Set

(2) $f(t) = \sum_\ell b_\ell r_{p_\ell}(t) = \sum_\ell b_\ell (2^{p_\ell})^{-\frac{1}{2}} \sum_{m=p_\ell}^{p_{\ell+1} - 1} \chi_m(t)$

where $r_m(t)$ denotes the mth Rademacher function [1, p. 51] and $\{p_\ell\}$ is an increasing sequence of positive integers. Now let $\{a_\ell\}$ and $\{n_\ell\}$ be defined by the right side of (2). Then if $\{p_\ell\}$ increases fast enough (a) holds. Also, since $\sum a_\ell^2$ converges, the right hand side of (2) is the Haar-Fourier series of its sum $f(t)$ [1, p. 47]. The remaining properties follow from (1) by well-known properties of Rademacher series [9, p. 213].

Remark 1. It would be interesting to know if in condition (b) in Theorem 1 one might replace $f \in L^p$, for all $p \in [1, \infty)$, by f continuous or even f bounded.

Remark 2. A. M. Olevskií has proved [6, p. 1382] that for every complete orthonormal system (and hence the Haar system) there exists a continuous function whose Fourier series is absolutely divergent almost everywhere.

It is known [3, p. 243] that if a lacunary trigonometric series is the Fourier series of a function f, then $f \in L^q$ for every $q \in [1, \infty)$.

This result is not valid for Haar series as we now prove.

Theorem 2. For every $p \geq 1$, there exists a function $f \in L^p$ with

Haar-Fourier series $\sum a_\ell x_{n_\ell}(t)$ where $m_{k+1}/m_k = 2$, $k = 1, 2, \ldots$, and such that for every $q > p$, $f \in L^q$.

Proof. Define
COMPARISON OF HAAR SERIES

\[
f(t) = (2^n \cdot n^{-3})^{1/p} \quad \text{if } t \in (2^{-n}, 2^{-n+1}), \quad n = 1, 2, \ldots
\]

Then

\[
\int_0^1 |f(t)|^p \, dt = \sum_{n=1}^\infty (2^n \cdot n^{-3}) \cdot 2^{-n} < \infty,
\]

but if \(q > p \),

\[
\int_0^1 |f(t)|^q \, dt = \sum_{n=1}^\infty (2^n \cdot n^{-3})^{q/p} \cdot 2^{-n} = \infty.
\]

Also, the Haar-Fourier series of \(f \) is

\[
a_0(f) + \sum_{k=0}^{\infty} a_{2k}(f) \chi_{2k}(t).
\]

If a lacunary trigonometric series is a Fourier series with Fourier coefficients \(\{c_k\} \), then \(\sum c_k \) converges [9, p. 203]. As Theorem 2 shows, for Haar-Fourier series, this need not be. We can even obtain a stronger result.

Theorem 3. Let \(\{a_k\} \) be any sequence of real numbers. Then there is a function in \(L(0, 1) \) with a gap Haar-Fourier series

\[(3) \quad \sum_{k=1}^{\infty} a_k \chi_{m_k}(t).\]

Proof. If \(m = 2^n + k \) with \(0 \leq k < 2^n \), \(n = 0, 1, \ldots \), then

\[
\int_0^1 |\chi_m(t)| \, dt = 2^{-n/2} < 2m^{-1/2}
\]

and so there is a sequence of positive integers \(\{m_k\} \) increasing so fast that

\[
\sum_{k=1}^{\infty} |a_k| \int_0^1 |\chi_{m_k}(t)| \, dt < \infty.
\]

Hence, series (3) is the Haar-Fourier series of its sum by Lebesgue's dominated convergence theorem.

If a lacunary trigonometric series converges to zero in a set of positive measure, then all the coefficients of the series equal zero [3, p. 265]. For Haar series this result is not valid. In fact, we have the following.

Theorem 4. For every \(t_0 \in [0, 1] \), there exists a gap Haar-Fourier series \(\sum a_{m_k} \chi_{m_k}(t) \), where \(m_{k+1}/m_k \geq 2 \), which converges to zero for
t \neq t_0 and diverges for t = t_0.

Proof. If t_0 = 1, we set \(a_0 = -1, a_{2n+1} = 2^{n/2} \) for \(n = 0, 1, \ldots \), and \(a_m = 0 \) otherwise.

If \(t_0 \in [0, 1) \), then for the sequence of integers \(\{k_n\} \) satisfying

\[
(k_n)2^{-n} \leq t_0 < (k_n + 1)2^{-n}, \quad n = 0, 1, \ldots
\]

we set

\[
\begin{align*}
 a_m &= 1, \quad m = 0 \\
 &= (-1)^{k_n + 2^{n/2}}, \quad m = 2^n + k_n, \quad n = 0, 1, \ldots \\
 &= 0 \quad \text{otherwise}.
\end{align*}
\]

Then, using the fact (which is easily proved inductively) that

\[
\sum_{\alpha=0}^{2^n-1} a_\alpha \chi_\alpha(t) = 2^n, \quad t \in [(k_n)2^{-n}, (k_n + 1)2^{-n})
\]

\[
= 0, \quad t \in [(k_n)2^{-n}, (k_n + 1)2^{-n}]
\]

for \(n = 0, 1, \ldots \), we obtain our desired result.

Corollary. A nonempty set is a set of multiplicity for Haar series.

Remark 3. G. Faber had previously shown [4, p. 111] that the point \(t_0 = 1/2 \) was a set of multiplicity for Haar series. Also F. G. Arutjunjan and A. A. Talaljan noted Theorem 4 for \(t_0 = 0 \) [2, p. 1405]. On the other hand, M. B. Petrovskaja proved that the empty set is a set of uniqueness for Haar series [7, p. 797].

References

4 (1965), 35-43.

Received April 26, 1968.

Pennsylvania State University and Purdue University
Jon F. Carlson, *Automorphisms of groups of similitudes over F_3* 485

Archie Gail Gibson, *Triples of operator-valued functions related to the unit circle* 503

David Saul Gillman, *Free curves in E^3* 533

E. A. Heard and James Howard Wells, *An interpolation problem for subalgebras of H^∞* 543

Albert Emerson Hurd, *A uniqueness theorem for weak solutions of symmetric quasilinear hyperbolic systems* 555

E. W. Johnson and J. P. Lediaev, *Representable distributive Noether lattices* 561

David G. Kendall, *Incidence matrices, interval graphs and seriation in archeology* 565

Robert Leroy Kruse, *On the join of subnormal elements in a lattice* 571

D. B. Lahiri, *Some restricted partition functions; Congruences modulo 3* 575

Norman D. Lane and Kamla Devi Singh, *Strong cyclic, parabolic and conical differentiability* 583

William Franklin Lucas, *Games with unique solutions that are nonconvex* 599

Eugene A. Maier, *Representation of real numbers by generalized geometric series* 603

Daniel Paul Maki, *A note on recursively defined orthogonal polynomials* 611

Mark Mandelker, *F'-spaces and z-embedded subspaces* 615

James R. McLaughlin and Justin Jesse Price, *Comparison of Haar series with gaps with trigonometric series* 623

Ernest A. Michael and A. H. Stone, *Quotients of the space of irrationals* 629

William H. Mills and Neal Zierler, *On a conjecture of Golomb* 635

J. N. Pandey, *An extension of Haimo's form of Hankel convolutions* 641

Terence John Reed, *On the boundary correspondence of quasiconformal mappings of domains bounded by quasicircles* 653

Haskell Paul Rosenthal, *A characterization of the linear sets satisfying Herz's criterion* 663

George Thomas Sallee, *The maximal set of constant width in a lattice* 669

I. H. Sheth, *On normaloid operators* 675

James D. Stasheff, *Torsion in BBSO* 677

Billy Joe Thorne, A $-P$ congruences on Baer semigroups 681

Robert Breckenridge Warfield, Jr., *Purity and algebraic compactness for modules* 699

Joseph Zaks, *On minimal complexes* 721