COMPARISON OF HAAR SERIES WITH GAPS WITH TRIGONOMETRIC SERIES

JAMES R. McLAUGHLIN AND JUSTIN JESSE PRICE
COMPARISON OF HAAR SERIES WITH GAPS WITH TRIGONOMETRIC SERIES

J. R. McLAUGHLIN AND J. J. PRICE

We study Haar series with gaps and show striking differences between these series and lacunary trigonometric series. For example, we prove that under certain gap conditions Haar series are finite series almost everywhere.

Haar's orthonormal system \{\chi_m(t)\} is defined as follows on \([0, 1]\): \(\chi_0(t) = 1\) and for \(m = 2^n + k\) with \(0 \leq k < 2^n, n = 0, 1, \ldots\)

\[
\chi_m(t) = \begin{cases} 2^{n/2}, & t \in (k/2^n, (k + 1/2)/2^n), \\ -2^{n/2}, & t \in ((k + 1/2)/2^n, (k + 1)/2^n), \\ 0, & t \in [k/2^n, (k + 1)/2^n], \\
\end{cases}
\]

and at the three remaining points we let \(\chi_m(t)\) be equal to the average of the right and left hand limits. Thus, in contrast to the trigonometric system, if \(2^n \leq m < 2^{n+1}\), the Haar function \(\chi_m(t)\) is supported on an interval of length \(2^{-n}\) and

\[
\int_0^1 |\chi_m(t)| \, dt = 2^{-n/2}.
\]

For \(f \in L(0, 1)\) we call

\[
a_m(f) = \int_0^1 f(t)\chi_m(t) \, dt, \quad m = 0, 1, \ldots
\]

the Haar-Fourier coefficients of \(f\) and \(\sum_{m=0}^{\infty} a_m(f)\chi_m(t)\) the Haar-Fourier series of \(f\).

P. L. Ul'janov has noted [8, p. 42] that if \(\{m_k\}\) is an increasing sequence of positive integers for which \(\sum (m_k)^{-1}\) converges, and if the gap series \(\sum a_{m_k}x_{m_k}(t)\) is the Haar-Fourier series of a bounded function, then the series converges absolutely almost everywhere (cf. [9, p. 247]). The following theorem strengthens this result.

Theorem 1. (i) If \(\{a_k\}\) is any sequence of real numbers and \(\{m_k\}\) is an increasing sequence of positive integers such that \(\sum (m_k)^{-1}\) converges, then \(\sum_{k=1}^{\infty} a_k\chi_{m_k}(t)\) is a finite series for almost every \(t \in [0, 1]\).

(ii) If \(\sum (m_k)^{-1}\) diverges, then there exists a sequence of real numbers \(\{a_k\}\) and an increasing sequence of positive integers \(\{n_k\}\) satisfying

\[
(a) \quad \frac{1}{\sum_{k=1}^{N} 1/n_k} \leq \frac{1}{\sum_{k=1}^{N} m_k} \quad \text{for} \quad N = 1, 2, \ldots ,
\]

623
(b) \(\sum a_k \chi_{n_k}(t) \) is the Haar-Fourier series of \(f \in L^p \), for all \(p \in [1, \infty) \),
(c) \(\sum |a_k \chi_{n_k}(t)| \) diverges for almost every \(t \in [0, 1] \).

Proof. Part (i). Let \(E_m \) denote the support of \(\chi_m(t) \) on \([0, 1]\) for \(m = 2^n + k \) with \(0 \leq k < 2^n \), \(n = 0, 1, \ldots \). Then
\[
\frac{1}{m} \leq \frac{1}{2^n} = \mu(E_m) < \frac{2}{m}
\]

where \(\mu(E_m) \) denotes the measure of \(E_m \). Thus, \(\sum_{k=1}^{\infty} \mu(E_{m_k}) \) converges and consequently \(\mu(\limsup_k E_{m_k}) = 0 \) [5, p. 40, Exercise 6].

Part (ii). Choose a sequence of real numbers \(\{b_k\} \) satisfying
\[
\sum b_k^2 < \infty \quad \text{and} \quad \sum |b_k| = \infty.
\]
Set
\[
f(t) = \sum_{k=1}^{\infty} b_k r_{p_k}(t) = \sum_{k=1}^{\infty} b_k (2^{p_k})^{-1/2} \sum_{m=2^{p_k}}^{2^{p_k+1}-1} \chi_m(t)
\]

where \(r_m(t) \) denotes the \(m \)th Rademacher function [1, p. 51] and \(\{p_k\} \) is an increasing sequence of positive integers. Now let \(\{a_k\} \) and \(\{n_k\} \) be defined by the right side of (2). Then if \(\{p_k\} \) increases fast enough (a) holds. Also, since \(\sum a_k^2 \) converges, the right hand side of (2) is the Haar-Fourier series of its sum \(f(t) \) [1, p. 47]. The remaining properties follow from (1) by well-known properties of Rademacher series [9, p. 213].

Remark 1. It would be interesting to know if in condition (b) in Theorem 1 one might replace \(f \in L^p \), for all \(p \in [1, \infty) \), by \(f \) continuous or even \(f \) bounded.

Remark 2. A. M. Olevski\u043d\u0438 has proved [6, p. 1382] that for every complete orthonormal system (and hence the Haar system) there exists a continuous functions whose Fourier series is absolutely divergent almost everywhere.

It is known [3, p. 243] that if a lacunary trigonometric series is the Fourier series of a function \(f \), then \(f \in L^q \) for every \(q \in [1, \infty) \). This result is not valid for Haar series as we now prove.

Theorem 2. For every \(p \geq 1 \), there exists a function \(f \in L^p \) with Haar-Fourier series \(\sum a_{m_k} \chi_{m_k}(t) \) where \(m_{k+1}/m_k = 2, k = 1, 2, \ldots \), and such that for every \(q > p \), \(f \in L^q \).

Proof. Define
\[f(t) = (2^n \cdot n^{-2})^{1/p} \quad \text{if} \quad t \in (2^{-n}, 2^{-n+1}), \quad n = 1, 2, \ldots. \]

Then
\[\int_0^1 |f(t)|^q \, dt = \sum_{n=1}^\infty (2^n \cdot n^{-2}) \cdot 2^{-n} < \infty, \]

but if \(q > p, \)
\[\int_0^1 |f(t)|^q \, dt = \sum_{n=1}^\infty (2^n \cdot n^{-2})^{q/p} \cdot 2^{-n} = \infty. \]

Also, the Haar-Fourier series of \(f \) is
\[a_0(f) + \sum_{k=0}^\infty a_{2^k}(f) \chi_{2^k}(t). \]

If a lacunary trigonometric series is a Fourier series with Fourier coefficients \(\{c_k\}, \) then \(\sum c_k^2 \) converges [9, p. 203]. As Theorem 2 shows, for Haar-Fourier series, this need not be. We can even obtain a stronger result.

Theorem 3. Let \(\{a_k\} \) be any sequence of real numbers. Then there is a function in \(L(0,1) \) with a gap Haar-Fourier series
\[(3) \quad \sum_{k=1}^\infty a_k \chi_{m_k}(t). \]

Proof. If \(m = 2^n + k \) with \(0 \leq k < 2^n, \) \(n = 0, 1, \ldots, \) then
\[\int_0^1 |\chi_m(t)| \, dt = 2^{-n/2} < 2m^{-1/2} \]

and so there is a sequence of positive integers \(\{m_k\} \) increasing so fast that
\[\sum_{k=1}^\infty |a_k| \int_0^1 |\chi_{m_k}(t)| \, dt < \infty. \]

Hence, series (3) is the Haar-Fourier series of its sum by Lebesgue’s dominated convergence theorem.

If a lacunary trigonometric series converges to zero in a set of positive measure, then all the coefficients of the series equal zero [3, p. 265]. For Haar series this result is not valid. In fact, we have the following.

Theorem 4. For every \(t_0 \in [0,1], \) there exists a gap Haar-Fourier series \(\sum a_{m_k} \chi_{m_k}(t), \) where \(m_{k+1}/m_k \geq 2, \) which converges to zero for
t \neq t_0 and diverges for \(t = t_0 \).

Proof. If \(t_0 = 1 \), we set \(a_0 = -1 \), \(a_{2n+1} = 2^{n/2} \) for \(n = 0, 1, \ldots \), and \(a_m = 0 \) otherwise.

If \(t_0 \in [0, 1) \), then for the sequence of integers \(\{k_n\} \) satisfying
\[
(k_n)2^{-n} \leq t_0 < (k_n + 1)2^{-n}, \quad n = 0, 1, \ldots
\]
we set
\[
a_m = 1, \quad m = 0 = (-1)^{k_n+1}2^{n/2}, \quad m = 2^n + k_n, \quad n = 0, 1, \ldots = 0 \text{ otherwise}.\]

Then, using the fact (which is easily proved inductively) that
\[
\sum_{n=0}^{2^n-1} a_m \chi_m(t) = 2^n, \quad t \in ((k_n)2^{-n}, (k_n + 1)2^{-n})
\]
\[
= 0, \quad t \in [(k_n)2^{-n}, (k_n + 1)2^{-n}]
\]
for \(n = 0, 1, \ldots \), we obtain our desired result.

Corollary. A nonempty set is a set of multiplicity for Haar series.

Remark 3. G. Faber had previously shown [4, p. 111] that the point \(t_0 = 1/2 \) was a set of multiplicity for Haar series. Also F. G. Arutjunjan and A. A. Talaljan noted Theorem 4 for \(t_0 = 0 \) [2, p. 1405]. On the other hand, M. B. Petrovskaja proved that the empty set is a set of uniqueness for Haar series [7, p. 797].

References

Received April 26, 1968.

Pennsylvania State University and Purdue University
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. R. PHELPS
University of Washington
Seattle, Washington 98165

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94703.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.