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In this paper a coordinatizing Baer semigroup is used to
pick out an interesting sublattice of the lattice of congruence
relations on a lattice with 0 and 1, These congruences are
defined for any lattice with 0 and 1 and have many of the
nice properties enjoyed by congruence relations on a relatively
complemented lattice,

These results generalize the work of S. Maeda on Rickart (Baer)
rings and are related to G. Gratzer and E. T. Schmidt’s work on
standard ideals.

In [7] M. F. Janowitz shows that lattice theory can be approached
by means of Baer semigroups. A Baer semigroup is a multiplicative
semigroup S with 0 and 1 in which the left and right annihilators,
Lx)={yeS:yx =0} and R(x) ={yeS:ay =0}, of any xe S are
principal left and right ideals generated by idempotents. For any
Baer semigroup S, A(S) = {L(z):xeS} and 2(S) = {R(x):xe S},
ordered by set inclusion, are dual isomorphic lattices with 0 and 1.
The Baer semigroup S is said to coordinatize the lattice L if <~(S)
is isomorphic to L. The basic point is Theorem 2.3, p. 1214 of [7],
which states: a partially ordered set P with 0 and 1 is a lattice if
and only if it can be coordinatized by a Baer semigroup.

It will be convenient to introduce the convention that S will
always denote a Baer semigroup and that for any 2z ¢ S, z! and 2" will
denote idempotent generators of L(x) and R(x) respectively. Also the
letters e, f, g, and & shall always denote idempotents of S.

Some background material is presented in §1. In §2, A— P
congruences are defined and it is shown that every A — P congruence
o on S induces a lattice congruence 8, on .&7(S) such that <~(S)/#, =
Z(S/p). In §38 congruences which arise in this manner are charac-
terised as the set of all equivalence relations on .#°(S) which are
compatible with a certain set of maps on <°(S). These congruences
are called compatible with S. They are standard congruences and are
thus determined by their kernels.

The ideals of <“(S) which are kernels of congruences compatible
with S are characterised in §4. In §5 it is shown that a principal
ideal, [(0), Se], is the kernel of a congruence compatible with S if
and only if ¢ is central in S. In §6 this is applied to complete Baer
semigroups to show that, in this case, the congruence compatible with
S form a Stone lattice.
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1. Preliminaries. We shall let L(M) ={yeS:yx =0 for all
xeM} and R(M) ={yeS:a2y = 0 for all x € M} for any set M < S.
The following is a summary of results found on pp. 85-86 of [8].

LEmMMA 1.1. Let x,ycS.

(i) xS < yS implies L(y) S L(x) ; Sx S Sy implies R(y) = R(x).

(ii) Sz & LR(z) ;xS S RL(x).

(iii) L(x) = LRL(x) ; R(x) = RLR(x).

(iv) Sze L(S) if and only tf Sx = LR(x);xSe.#(S) if and
only tf ©S = RL(x).

(v) The mappings eS— L(eS) and Sf— R(Sf) are mutually
inverse dual isomorphisms between Z(S) and ~(S).

(vi) Let Se, Sfe <~(S) and Sh = L(ef"). Then he = (he)?,
SeN Sf = Shee ~(S), and Se V Sf = L(e’S N f*S).

(vil) Let eS, fSe.#Z(S) and gS = R(f'¢). Then eg = (eg)?,
eSNfS =egSe.#(S), and eSV fS = R(Se' N SfY).

Note that the meet operation in <~(S) and .Z(S) is set intersection
and that the trivial ideals, S and (0), are the largest and smallest
elements of both <~(S) and <Z(S).

We shall be interested in a class of isotone maps introduced by
Croisot in [2].

DEFINITION 1.2. Let P be a partially ordered set. An isotone
map ¢ of P into itself is called residuated if there exists an isotone
map ¢+ of P into P such that for any pe P, pg*¢ < p < pps*. In this
case ¢* is called a residual map.

Clearly ¢* is uniquely determined by ¢ and conversly. The pair
(¢, ) sets up a Galois connection between P and its dual. Thus we
can combine results from [2], [3], and [11] to get.

LEMMA 1.38. Let P be a partially ordered set and ¢ and  maps
of P wnto ttself.

(1) If ¢ and + are residuated then ¢y is residuated and
(p9)" = PToT.

(ii) If ¢ 1s residuated then ¢ = ¢¢*¢ and ¢ = ¢Tps™.

(iii) Let ¢ be residuated and {x,} be any family of elements of
P. If V.,x, exists then V. (x.5) exists and V. (€.0) = (V«2a)o.
Dually if A%, exists then A, (x.07) exists and A, (Tp) = (AeTa)™.

(iv) A mecessary and sufficient condition that ¢ be residuated
1s that for any xe L, {z:2¢ < x} has a largest element x*. In this
case ¢+ 1s given by xpt = x*,
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According to Lemma 1.8 (i) the set of residuated maps forms a
semigroup for any partially ordered set P. We shall denote the
semigroup of residuated maps on P by S(P). In [7], Theorem 2.3,
p. 1214, it is shown that P is a lattice if and only if S(P) is a Baer
semigroup. In this case S(P) coordinatizes P.

In [8], pp. 93, 94, it is shown that any Baer semigroup S can be
represented as a semigroup of residuated maps on &<°(S). We shall
be interested in the maps introduced to achieve this.

LEMMA 1.4. For any xc S define ¢,: <(S)— A (S) by Sep, =
LR(ex).

(1) ¢, is restduated with residual ¢ given by Sep; = L(xe).

(ii) If LR(y) = Se then Ses, = LR(yzx).

(iii) Let S, = {¢,:2x€8S}. Then S, is a Baer semigroup which
coordinatizes <7(S).

(iv) The map x— ¢, s & homomorphism, with kernel {0}, of S
wnto S,.

We shall now develop an unpublished result due to D. J. Foulis
and M. F. Janowitz.

DEFINITION 1.5. A semigroup S is a complete Baer semigroup if
for any subset M of S there exist idempotents e, f such that L(M) = Se
and R(M) = f8S.

In proving Lemma 2.3 of [7] the crucial observation was [7]
Lemma 2.1, p. 1213, where it is shown that for any lattice L and
any a < L there are idempotent residuated maps 6, and +r, given by :

X r<a 0 r=Za
wl, = { . Ty = { .
a  otherwise 2V a otherwise.

THEOREM 1.6. Let P be a partially ordered set with 0 and 1.
Then the following conditions are equivalent.

(i) P is a complete lattice.

(i) S(P) is a complete Baer semigroup.

(iii) P can be coordinatized by a complete Baer semigroup.

Proof. (i) = (ii) Let P be a complete lattice and M = S(P) with
m=V{lg:0e M} and n = A {0 :pc M}. It is easily verified that
L(M) = S(P)§, and R(M) = +¥,S(P).

(i) = (iii) follows from [7], Theorem 2.3.

(iii) = (i) Let S be a complete Baer semigroup coordinatizing P
and <#(S) the complete lattice of all subsets of S. Define & and £
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mapping <2 (S) into <7 (S) by Ma = L(M) and MB = R(M). Clearly
(a, B) sets up a Galois connection of <?2(S) with itself. Since S is a
complete Baer semigroup <~(S) is the set of Galois closed objects of
(a, B). Thus ~(S) is a complete lattice.

We conclude this section with some relatively well known facts
about lattice congruences. An equivalence relation & on a lattice is
a lattice congruence if a®b and cOd imply (¢ VY ¢)8(d VY d) and
(a A )@ A d). We shall sometimes write a = 6(#) in place of a@b.
With respect to the order # < #’ if and only if a@b implies a0’b, the
set of all lattice congruences on a lattice L is a complete lattice,
denoted by @(L), with meet and join given as follows :

THEOREM 1.7. Let L be a lattice and I' a subset of O(L).

(1) a=bATD) if and only tf avb for all veI'.

(i) a=bV I tf and only if there exist finite sequences
Qy, Ay + =+, A, Of elements of L and v, ---, 7, of elements of I, such
that @ = a,, a, = b, and a,_, va; for 1 =1, «--- n,

The largest element ¢ of @(L) is given by a¢h for all a,be L and
the smallest element w is given by awbd if and only if a = b.
In [4] it is shown that &(L) is distributive. In fact we have:

THEOREM 1.8. Let L be a lattice. The @(L) is a distributive
lattice such that for any family {0, S @(L)
(va@rx) A v = Va (@a A QD‘)
for any ¥ eB(L).

Thus by Theorem 15, p. 147, of [1] we have:

THEOREM 1.9. For any lattice L, O(L) is pseudo-complemented.

Finally we mention that if ® e (L) then a®b if and only if xPy
for all x,yef[a A b, a VY b].

2. A — P congruences. In [10] S. Maeda defines annihilator
preserving homomorphisms for rings. We shall take the same defini-
tion for semigroups with 0.

DEFINITION 2.1. A homomorphism ¢ of a semigroup S with 0 is
called an annihilator preserving (A — P) homomorphism if for any
ze S, R(x)p = R(xg) N S¢ and L(x)¢ = L(xz¢) N S¢. A congruence re-
lation o on a semigroup S is called an 4 — P congruence if the natural
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homomorphism induced by p is an A — P homomorphism.

For any congruence o on a semigroup S and any ze S let z/p
denote the equivalence class of S/o containing x. Similarly for any
set AS S, let A/o = {z/peS/p:xcA}. If S has a 0 then R(x)/p &
R(z/p) and L(x)/p & L(xz/p). Thus a congruence p is an A — P con-
gruence if and only if R(x/o) & R(z)/p and L(x/p) S L(z)/o. Note
that we are using L and R to denote the left and right annihilators
both in S and in S/p.

THEOREM 2.2, Let p be an A — P congruence on a semigroup S.
If e and f are idempotents of S such that Se = L{x) and fS = R(y)

Sfor some wm,yeS, then (S/p)e/p) = L(z/p) and (f/0)(S/p) = R(y/0).
Thus if S 1s a Baer semigroup so is S/p.

Proof. Since p is an A — P congruence L(x/o) = L(x)/p. Thus
L(x) = Se gives L(x/p) = L(z)/o = (Se)/o = (S/p)(e/p). Similarly R(x) =
FS gives R(x/0) = (f]0)(S/p).

We now use an A — P congruence p on S to induce a homomor-
phism of <2(S) onto <~(S/p).

THEOREM 2.3. Let o be an A — P congruence on S. Then
0,: . 7(S)— Z(S/p) by L(x)0, = L(x/p) 15 a latiice homomorphism
of ~(S) onto <~ (S/p).

Proof. Let Se, Sfe <7(S) and note that, by Theorem 2.2,
Sel, = (S/p)(e/o) and Sf0, = (S/p)(f/p) .
Clearly 64, is well defined since if L(x) = L(y) then
L(x/0) = L(x)/o = L(y)/0 = L(y/0) .

By Lemma 1.1 (vi), She = Sen Sf where Sh = L(ef”). Applying
Theorem 2.2 gives (f7/0)(S/0) = R(f/p) and (S/p)(h/0) = L((e/0)(f"/0)).
Thus applying Lemma 1.1 (vi) to S/p yields

(S/p)e/p) N (S/0)(f]0) = (S]0)(h/0)(e/0) = (S/0)(he/p) .

Therefore, Sed, N Sf6, = (Se N Sf)d,. By a dual argument 6}.2(S) —
#(S/p) by R(x)8F = R(x/p) is also a meet homomorphism.

By Lemma 1.1 (vi) Se YV Sf = L(R(e) N R(f)). Let gS = R(e) N R(f)
so that Se VY Sf = Sg¢'. Since 6} is a meet homomorphism,

R(e/0) N B(f]0) = (9/0)(S/p) .
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Noting that L(g/o) = (S/0)(¢'/0) and applying Lemma 1.1 (vi) to S/p
gives

(S/p)elp) Y (S/o)(flo) = (S/e)g'/e) .

Thus Sef, V Sf0, = (Se Y Sf)8, and 6, is a lattice homomorphism.
Clearly 6, is onto.

For any A — P congruence p on S let &, denote the lattice con-
gruence 6,060, induced on <~(S) by 6,.

COROLLARY 2.4. <~(S)/0, = <~ (S/p).

3. Compatible congruences. In this section we shall charac-
terise lattice congruence which are induced by an A — P congruence
on a coordinatizing Baer semigroup in the manner given in Theorem
2.3, Since L = ¢~(S) for any Baer semigroup S coordinatizing L,
we shall lose no generality by considering only lattices of the form
Z(S).

The residuated maps ¢,, € S, defined in Lemma 1.4, play a central
role in the theory of Bear semigroups. We shall be interested in
equivalence relations on <~(S) which are compatible with ¢, and ¢;,
considered as unary operations on $7(S).

DEFINITION 3.1. An equivalence relation E on ¢(S) is called
compatible with S if for any xe S,

SeESf — (Se¢,)E(Sfp.) and (Sep.)E(Sfs7) .

By [7] Lemma 3.1 and 3.2, pp. 1214-1215, Se N Sf = Se N S¢, = Seg}¢,.
Dually SeV Sf = Seés¢fr. Thus we have:

LEMMA 3.3. Any equivalence relation compatible with S is a
lattice congruence.

We now consider an A — P congruence o on S and 6,, the lattice
congruence induced on ~“(S) by p as in Theorem 2.3.

THEOREM 3.4. Let o be an A — P congruence on S. Then 6, s
compatible with S.

Proof. Since Se6,Sf if and only if (S/)(e/o) = (S/0)(flp), Sed,Sf

implies (e/0) = (e/o)(f/p) and (f/p) = (flo)(e/0). Note that for any
ye S, LR(y)d, = LR(y/p). If Se®,Sf we have
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(Se.)0, = LE((ex)/0) = LE((¢/p)(/0))
= LR((e/0)(f]0)([0)) S LE((f]0)(x/0)) = (Sf$.)0, .

By Symmetry (Sf¢z)09 = (S6¢m)0ﬂ ie’ Se¢x@PSf¢x'
Now E(e/0) = R((e/0)(f]0) 2 R(f/p) = R((f]p)(e/0)) 2 R(e/p). Thus
(¢’/0)(S/0) = (f7/0)(S/p). But

(Seg;)0, = L(we")d, = L((we')/0) = L((w/p)(e"/p))

and similarly (Sfs2)8, = L(@/0)(f"/0)). Clearly yfo e L((z/o)(¢/p) if
and only if (y/0)(/0) € L(¢/p)(S/0)) = L(f"/0)(S/p)). Thus we have
(Sep)0, = (Sfei)0,. Therefore, Sep;0,SfF and @, is compatible with
S.

By the following theorem every congruence compatible with S is
determined by its kernel in a very nice way.

THEOREM 3.5. Let 0 be a congruence compatible with S. Then
the following are equivalent,

(i) SedSy.

(ii) Segsr VY Sfp,r€ ker 6.

(iii) There is an Sgeker® such that SeV Sf= SeV Sg =
SfV Sg.

Proof (i) = (ii) Since 6 is compatible with S, Se9Sf gives
Seg -0Sfé» = (0), i.e., Seg»cker@. By symmetry Sf¢,-c ker @ so we
have (ii).

(i) = (iii) Let Sg = Seg;r V Sfé.-cker® and claim SeV Sg =
SfV Sy, i.e.,

LR(e) Y LR(ef") Y LE(fe") = LR(f) YV LR(ef") V LE(fe") .
By Lemma 1.1 (v) this is equivalent to
R(e) N R(ef") N R(fe") = R(f) N R(ef") N B(fe") .

Let zeR(e) N R(ef”) N R(fe"). Then x =ex and fr = ferx =0 so
ze R(f) N R(ef”) N R(fe"). By symmetry

R(e) N R(ef") N R(fe') = R(f) N R(ef") N B(fe")

so we have Se VY Sg = SfV Sg. To show that Se YV Sf = SeVY Sg =
SfV Sg we need only show that Sg = Se YV Sf. This is equivalent
to R(e) N R(f) < R(ef") N R(fe"). But if x e R(e) N R(f) then & = ez =
frx, 80 ef'x = ex = 0 and fe'x = fx = 0, i.e., x€ R(ef") N R(fe").

(iii) = (i) If SeV Sg = SfV Sg and Sg&(0) then Ss9Se VY Sg =
SfV Sg8Sf.
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A congruence & on a lattice is called standard if there is an ideal
S such that a@b if and only if a V b = (¢ A b) V s for some seS.

COROLLARY 3.6. Any congruence & compatible with S is a standard
congruence.

Proof. Since # is a lattice congruence Se#Sf if and only if
(Se VY Sf)0(Se N Sf). By Theorem 3.5 this is equivalent to

(SeV Sf)V (Sen Sf) =SeVY Sf=(Sen Sf) VY Sy

for some Sg e ker 6.
Thus by Lemma 7, p. 36, of [5] we have:
COROLLARY 3.7. Compatible congruences are permutable.

By Theorem 3.5 every congruence compatible with S is determined
by its kernel. Since, by Theorem 3.4, @, is compatible with S for
any A — P congruence o on S we know that 6, is determined by its
kernel. By the following lemma, @, is also uniquely determined by
ker p.

LEMMA 3.8. Let o be an A — P congruence on S. Then x cker o
iof and only if LR(x)c ker6,.

Proof. Let zekerp. Then x00—= zyp0 for any yeS. Thus
R(xz/p) = S/p so that LR(x/p) = L(S/0) =(0/p), i.e., LR(x) € ker@,. If
we let LR(x) € ker 6, then LR(x/p) = (0/0). Thus R(z/0) = RLR(x/p) =
R(0/p) = S/p which gives x/o = 0/p and we have x e ker p.

That & should be determined completely by ker o is unexpected
since an A — P congruence need not be determined by its kernel.
For clearly the congruence w given by zwy if and only if x =y is
an A — P congruence with kernel {0} as is the congruence p, given
by xp,y if and only if ¢, = ¢,. Clearly o, is not generally equal to
. It turns out that o, is the largest A — P congruence with kernel
{0}, Our next project shall be to start with a congruence @ com-
patible with S and determine the existance of an A — P congruence
A on S, such that & = ;. By lemma 3.8 we shall have to construct
) so that kerx = {# € S : LR(x) € ker 6}.

For any congruence & on .&~(S) let Se/@ denote the equivalence
class of .2(S)/@ containing Se.
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LEMMA 3.9. Let 0 be a congruence compatible with S. For each
xze S define @,; F(S)/0 — ~(S)/6 by (Se/0)®, = (Seg,)/#. Then @,
1s residuated with residual @} given by (Se/0)®; = (Sep;)/O.

Proof. Clearly @, and @; are well defined since # is compatible
with S. We shall use Lemma 1.3 (iv), i.e., we shall show that the
inverse image of a principal ideal is principal. Let Sf/0 €[(0)/0,
Se/0]0;'. Then (Sf/0)®, = (Sf$.)/0 = (Sf$.)/6 N Se/0 = (Sf¢. N Se)/6.
This gives Sfé,#(Sfé, N Se) so by compatibility with S,

Sf S Sf¢.6:6(Sf¢. N Se)p; < Seg; .

Thus in <7(8)/0, Sf]0 < (Sf¢.¢:)/0 = (Sfp. N Se)s:/6 < (Se/6)P;, i.e.,
[(0)/6, Se/6)10;" = [(0)/8, (Se/9)®;]. Now let Sf/® < (Se/6)@;. Then

Sf8 = Sf/6 N [(Se/0)D;] = Sf/0 N (Ses:)/0 = (Sf N Seg)/6
i.e., SfO(Sf N Seg)). By compatibility with S
Sfe.01(Sf N Sepi)p.] S Sepio. < Se .
Hence (Sf/0)®, = (Sf$.)/0 = (Sf N SepF)s,/0 = Se/@. Therefore,
[(0)/6, Se/6]D;" = [(0)/0, (S£/6)P;]

and by Lemma 1.3 (iv), @, is residuated with residual @;.

For any equivalence relation E on &2(S) we can define a left
congruence A, on S by taking aiy if and only if (Ses,)E(Ses,) for
all See <~(S). Similarly, xozy if and only if (Seg¢})E(Ses;) for all
Se e <~(S), defines a right congruence on S.

LeEmMaA 3.10. If © is a congruence compatible with S then
Ao = 0o. Thus N is a congruence on S.

Proof. By definition x\gy if and only if &, =@,. But ¢, =0,
if and only if @} = @] which is equivalent to z0.y.

THEOREM 3.11. Let @ be a congruence compatible with S. Then
Ne 18 an A — P congruence on S.

Proof. We know that A, is an A — P congruence if and only if
L(y/ne) S L(y)/Ne and R(y/Ne) & R(y)/\e for all ye S. We shall start
with x/n, € L(y/ns) and show that x/A, = xe/\, where Se = L(y). This,
of course, is equivalent to @, = @,,.

Let x/ns€ L(y/x) so that xyekern,. Thus Sf¢,,0Sfé, = (0) for
all Sfe &~(S). In particular, S4,,0(0) so for any Sfe <~ (S),
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Sfp. & 8¢. S 89.9,8; = (5¢.,9,)6(0)¢; = L(y) = Se .

Thus Sf¢, = (Sfé, N S¢.,65)6(Se N Sfg,). Now if Sg & Se then g = ge
so Sgp, = LR(ge) = LR(g) = Sg. Thus applying ¢, to both sides of
the above gives Sf¢,, = Sf¢.6.6(Se N Sfé.)p. = Se N Sf$,. By trans-
itivity Sf¢..0Sf¢, and so wensxr. Since zeec L(y) this gives z/hs€
L(y)/Ne-

The argument to show R(y/\e) = R(y)/h, is exactly dual to the
above but will be included. We have z/xse R(y/xe) if and only if
yx € ker vy, By Lemma 3.10 and the definition of o, this is equivalent
to Sfe;.0Sfé7 = L(0) = S for all Sfe <~(S). In particular (0)¢;.0S.
By Lemma 1.3 (i) ¢,. = ¢:¢, so for any Sfe &(S) we have

Sfes 2 (0)¢F 2 (0)¢: ¢, 6,1=1(0)9,.9,058, .

Thus Sfp; = (Sf6: V (0)5.6,)0(Ss, V Sfé?). Let eS = R(y) and note
that S¢, = LR(y) = L{e). Now L(¢) S Sg implies ¢S = RL(¢) 2 R(g) =
9'S so g"=eg’. Thus Sgé¢; = L(eg”) = L(g") = LR(g) = Sg. Since
L(e) = S¢, = S¢, V Sfs;, applying ¢F to both sides of the above
gives; Sf¢l, = Sfei¢;6(Se, VY Sfel)es = S¢, VY Sfel. By transitivity
Sfe:0Sfe), so by Lemma 3.10 a)gex. Since exc R(y) this gives
2/hg € R(y)/Ne. Thus g is an A — P congruence.

By Theorem 3.11 every congruence & compatible with S gives
rise to an A — P congruence )\, on S.

LEMMA 3.12. Let 6 be a congruence compatible with S. Then
x e kerng tf and only if LR(x)c ker®.

Proof. Let xekeri, i.e. Sep,8Sep, = (0) for all Seec ~(S).
Taking Se = S gives LR(x)cker®. Let LR(x)cker®. The for any
Seec #(S) Ses, S S¢, = LR(x)0(0) = Seg, so € ker \,.

THEOREM 3.13. Let @ be a congruence compatible with S and
0 =%e. Then 6, =0,

Proof. By Theorem 3.11 pis an A — P congruence so by Theorem
3.4 6, is compatible with S. By Lemma 3.8 and 3.12 ker @, = ker 6.
Thus by Theorem 3.5 @, = 6.

We now show that )\, is the largest A — P congruence which
induces 6.

COROLLARY 3.14. Let 6 be a congruence compatible with S. If
o is an A — P congruence on S such that ker o = ker \,, then o < N,
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Proof. Let zoy. Then for any See <~(S), expey so
(Seg.)0, = LR((ex)/0) = LR((ey)/p) = (Se¢,)0, .
Thus Se$.0,Seg, and since 6, = O this gives xnzy.

4. Compatible ideals. In this section ideals which are kernels
of congruences compatible with S are characterised. Clearly if 6 is
a congruence compatible with S and J = ker® then Jg, & J for all
xe S. Since ¢, preserves join (Lemma 1.3 (iii)) the following is clear.

LEMMA 4.1. Let J be an ideal of <~ (S) such that Jé, < J for
all e S. Define a relation R on <~(S) by Se R Sf if and only tf
there is an SgeJ such that SeV Sg = SfV Sg. Then R is an
equivalence relation and Se R Sf = (Se¢,) R (Sf¢.) for all x€ S.

In order to find an additional condition on J which will assure
that the relation R defined in Lemma 4.1 is compatible with S, it will
be valuable to look at certain residuated maps on the lattice 1(.<~(S))
of all ideals of _<~(S).

LEMMA 4.2. For each xS let ¢,:1(7(S)— I(F(S)) be given
by Ip, = {Sec <~ (S):Se & Sfp, for some Sfel}. Then ¢, is re-
siduated with residual 7 given by Ip; = {See <~ (S): Se S Sfe: for
some Sfe I}

Proof. Clearly Ip, and Ip; are ideals. Also ¢, and ¢; are clearly
isotone. Now since Sf < Sf¢.¢s, Sfel implies Sfe I, ;. Thus
1< I$,$;. Similarly Sfe Ip;$ implies Sf < Sgsi¢, for some Sge I.
Thus Sf < Sgé:¢é, < Sge I so we have Ip; ¢, < I

We will make use of the residuated maps ¢, to characterise ideals
which are kernels of congruences compatible with S.

LEMMA 4.3. Let J be an ideal of <~(S) such that J¢, < J.
Then for any Ie (<7 (S)), Ié; YV J S (IV J)é:.

Proof. Recall that by Lemma 1.3 (iv), for any residuated map ¢
on a lattice L and any a,be L, ap < b if and only if a < bgt. Now
(Ig: V N)p. = 1354,V J. = IV J since I$;$. < Iand J§, = J. Thus
I VIS IV J)é:.

COROLLARY 4.4. Let J be an ideal of <~ (S) such that Jo, = J.
Then J S Jo and for any Ie I(F(S)) we have
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I3 VIS 1V Jb: STV N .

The next theorem indicates what all of this has to do with con-
gruences compatible with S.

LeEMMA 4.5. Let & be a congruence compatible with S and J =
ker ®. Then for any Ie I(<F(8S)), and any z€ S,

Is; V J = 1Ig; V Jg; = (IV J)g. .

Proof. By Corollary 4.4 we need only show that (IV J)g; &
167 VY J. Thus let SecIY J. Then there is an Sfel and an Sge J
such that Se = SfV Sg. Since Sg#(0) we have SfV Sg8Sf. Thus,
by compatibility with S, Se¢; < (Sf'V S9)¢;0Sfs.;. By Theorem 3.5
there is an SheJ such that (SfV Sg)¢: V Sh = Sfs; VY Sh. This
gives Ses; < (SFV Sg)g; V Sh = Sfs; V Sh so that Seg; e Ip; V J.
Thus (I'V J)$: < Ig: V J.

Without further justification we make the following definition.

DEFINITION 4.6. An ideal J of <~(S) is called compatible with
Sif forallze S, Jg, = J and, for all Ie I[(<~(S)), Ig; V J =TV J);.

THEOREM 4.7. An ideal J of <~(S) is compatible with S if and
only if it s the kernel of a congruence compatible with S.

Proof. By Lemma 4.5 the kernel of a congruence compatible with
S is an ideal compatible with S. Conversly let J be an ideal com-
patible with S and define ® by Se®Sf if and only if there is an SgeJ
such that SeVY Sg = SfV Sg. By Lemma 4.1 @ is an equivalence
relation such that Se®Sf implies Seg,0Sf¢, forall ze S. Let Se VY Sg =
SfV Sg, SgeJ, i.e., let SeOSf. Note that

(SfV Sg)g: € ([(0), SV Néi = [(0), Sfe:1V J

and (Se V Sg)¢; € ([(0), Se] V J)é; = [(0), SegflV J. Thus there are
Sh, Sh' € J such that

Seg: S (Se V Sg)p: < Sep. VY Sh
and
Sfés S (SfV S9)¢s = Sfer Y Sh' .

Thus Seg; VY Sh = (Se V Sg)s: VY Sh and Sk’ V (SfV Sg)s; = Sfef V Sk'.
It follows that Sfg¢; V (ShV Sk’) = Ses; V (Sh 'V Sh') and since
Sk 'V Sk'eJ we have Ses;0Sfé;. Thus by Lemma 3.3 @ is a con-
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gruence compatible with S.

Note that in the proof of Theorem 4.7 the only use made of the
hypothesis (I J)$; = I¢; \V J was for I a principal ideal. This ob-
servation together with Lemma 4.5 gives.

COROLLARY 4.8. Let J be an ideal such that J¢, S J for all
xeS. Then J is compatible with S if and only if for any principal
ideal Te I(.7(S)) IV J)é; = Ip7 V J for all xeS.

By Corollary 4.8 the situation with ideals compatible with S is
analogus to that with standard ideals. An ideal J of a lattice L is
standard if IV JI)AK=UAK)V (JAK) for all I, KeI(L). By
Theorem 2, p. 30, of [5] an ideal is standard if and only if the above
holds for all principal ideals I, Ke I(L). This similarity is not sur-
prising since by Corollary 3.6, Theorem 4.7, and Theorem 2 of [5]
any ideal compatible with S is a standard ideal. In fact the definition
of ideal compatible with S is closely related to the definition of
standard ideal. To see this we need the following :

LEMMA 4.9, For any Ie (< (S)) and any See <7 (S),
IN[0), Se] = I3, .

Proof. Clearly I [(0), Se] = {Sfe <« (S):Sf& Sg N Se, for some
SgeI}. But Sgn Se= Sgsi¢, so IN[(0), Sel = I$}4,.
For any ideal for which J¢, & J Corollary 4.4 gives

Igr VIS I8,V Jpl S IV J)g!
for all Te I(L). Now Ié: V Joi = (I'V J)é; implies
(165 V I8, = 1:6. V J§:6. = IV J)§ 4. .
Taking = = ¢ with Seec .~°(S) and applying Lemma 4.9 this becomes
(I N [0), Se) V (J N [(0), Se]) = (I'V J) N[(0), Se] .

Thus if we had required only I} V Jé; = IV J)$, for all e such
that See ~(S) we would have J a standard ideal. However, to
define an ideal compatible with S we require the stronger condition
that Ig; V J = (I Y J)é: and not only for all idempotents « such that
Sxze (S) but for all xe S.

5. Compatible elements. An element a of a lattice L is called
standardife A @Vy) =& Aa)V (x Ay forall z, ye L. By Lemma
4, p. 32 of [5] an element is standard if and only if the principal
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ideal it generates is a standard ideal.

DEFINITION 5.1. An element Se of <~ (S) is compatible with S
if [(0), Se] is an ideal compatible with S. Let 6, denote the con-
gruence compatible with S having [(0), Se] as kernel.

Note that by Corollary 3.6 every element compatible with S is a
standard element of .~ (S).

It will be convenient to look at co-kernels of congruences com-
patible with S.

LEMMA 5.2. Let 6 be a congruence compatible with S. Then
LR(x)e ker® if and only if L(x)ec co-ker @.

Proof. Let Sf= LR(x)cker®. Then Sfo;6(0)¢; = L(x). But
Sfei = L(zf7) and since 7S = R(f) = R(Sf) = RLR(x) = R(x) we have
Sfe; = L(0) = S. Thus L(z) € co-ker &#. Conversly let L(x)@S and note
that L(x)¢, = LRL(x)¢, = LR(x")¢, = LR(x'x) = (0). Thus

(0) = L(x)¢$,0S¢, = LR(x), i.e., LR(x)eker® .

LEMMA 5.3. Let Se be compatible with S. Then Se' is a com-
plement of Se and [Se', S] = co-ker Og,.

Proof. Clearly Sen Se' = (0). By Lemma 5.2, Se®,,S so, by
Theorem 3.5, Se' Y Se = S. Thus we clearly have [Se!, S] < co-ker O,.
Let Sfeco-ker®;,. Then SfV Se =S and since Se is standard we
have Se! = Se' N (SfV Se) = (Se' N Sf) V (Se' N Se) = Set N Sf. Thus
Se! = Sf, i.e., co-ker©, = [Se', S].

We now wish to characterise elements compatible with S,

LEMMA 5.4. Let Se be compatible with S. Then e is central in
S and eS = RL(e).

Proof. By Lemma 5.2, Se¢ € co-ker @,. Since Se' = LR(¢') = L(e'")
applying Lemma 5.2 again gives LR(e'") e ker Oy, i.e., LR(e") & Se.
Thus ¢'" = ¢"e. But e'e = 0 implies ec R(¢') s0 ¢ = ¢'"¢. Thus e =
¢ s0 eS = R(¢') = RL(e). By Lemma 5.3, Sel¢; 2 Se! and Sel¢; =
L(xe'") = L(xze). Thus RL(xe) =& R(¢') = RL(e) = eS so xe = exe. But
Ses, = Se so ex = exe = xe, i.e., ¢ is central in S.

We can use any central idempotent of S to induce an A — P
congruence on S as follows :

LEMMA 5.5. Let e be central in S and define a relation o on S
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by xoy if and only if we = ye. Then p is an A — P congruence on
S and ker p = Se'.

Proof. Clearly p is a congruence on S. Let y/oe L(x/0). Then
0/0 = (y/p)x/p) = (yx)/o so yxe =0. But yxe = (ye)x so yeec L(x).
Thus ye = (ye)e gives y/p = (ye)/p € L(x)/p. Similarly R(xz/0) S R(x)/p.
Clearly x/o = 0/p if and only if x e L(e) = Se'.

LEMMA 5.6. If e¢ is central in S then Seé' is compatible with S.

Proof. Since ¢ is central zoy if and only if ¢ = ye isan A — P
congruence with kernel Se’. By Lemma 3.8, LR(%) € ker 0, if and only
if xe Se’. But xze Se® if and only if © = wxe! if and only if LR(x) < Se.
Thus ker @, = [(0), Se¢'] so that Se' is compatible with S.

We can now characterise elements compatible with S as follows :

THEOREM 5.7. Let See .o (S). Then Se is compatible with S
of and only if e is central in S.

Proof. Let e be central in S. By Lemma 5.6, Se' is compatible
with S. Now L(e) = R(e) so Set = ¢'S. Thus ¢ = e¢* =e¢". By
Lemma 5.6, Se! = Se” compatible with S gives Se™ compatible with
S. But Se = LR(¢"") = LR(e) = Se. Thus Se is compatible with S.
The converse is Lemma 5.4.

Note that Se is compatible with S if and only if Se' is compatible
with S. Thus, by Lemma 5.3, if either Se or Se' is compatible with
S then Se and Se' are standard elements of & (S) which are com-
plements. Thus by Theorem 7.3, p. 300, of [6] we have.

THEOREM 5.8. If either Se or Se' is compatible with S then :
(i) Both Se and Se' are compatible with S.

(ii) Both Se and Sé' are central in Z(S).

(iii) By, and Oy are complements in O( (S)).

COROLLARY 5.9. Let See <~ (S). Then if e is central in S, Se
1s central in #(S).

5. The lattice of compatible congruences. From the formula
for meet and join in O(L) (see Theorem 1.7) it is clear that both the
meet and the join of any family of congruences compatible with S
are congruences compatible with S. Thus, applying Theorem 1.8, we
have.
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THEOREM 6.1. The lattice 6. (S)) of all congruence compatible
with S is a subcomplete sublattice of O((S)). Thus Oy (S)) s
an uppercontinuous distributive lattice.

It follows from [1], Theorem 15, p. 147, that &< (S)) is pseudo-
complemented. If @ € O5(<~(S)) we shall use #* to denote the pseudo-
complent of & in @(%(S)) and 6’ to denote the pseudo-complement
of @ in 64~ (S)).

In [9], Theorem 4.17 (iii), it is shown that for a complete rela-
tively complemented lattice L, @(L) is a Stone lattice in the sense
that every pseudo-complement has a complement, The remainder of
this section is devoted to showing that for suitable choice of S,
0(Z(S)) is a Stone lattice.

We first look at the left and right annihilators of the kernel of
an A — P congruence.

LEMMA 6.2. Let o be an A — P congruence on S and J = ker p.
Then L(J) = R(J).

Proof. Let zxed and yeL(J). If zeJ then a2yz = 0. Thus
J S R(xy) so that L(J) 2 LR(xy). Let LR(xy) = Sf and note that
fe L(J). Since J is an ideal, zyecJ, i.e., 2y/o = 0/o. Thus

flpo e LR(xy)/0 = LR(xy/p) = LE(0/p) = (0/0)

so feJ. But then we have feJ N L(J) so f= f*=0. This gives
LR(xy) = (0) which implies 2y = 0. Thus L(J) & R(J). By symmetry
R(J) S L(J) so R(J) = L(J).

Recall that a semigroup S is a complete Baer semigroup if the
left and right annihilators of an arbitrary subset of S are principal
left and right ideals generated by idempotents. Also (Theorem 1.6)
as S ranges over all complete Baer semigroups .&(S) ranges over all
complete lattices.

LEMMA 6.3. Let S be a complete Baer semigroup, 6 a congruence
compatible with S, and Se = (N co-ker &. Then Se ts compatible with
S.

Proof. Let J = kerx,. By Lemmas 5.2 and 3.12, zeJ if and
only if L(x)ecco-ker®. Thus L(J) S Se since L(J) & L(x) for all
xedJ. But Se & L(zx) for all e J gives Se S L(J). Thus Se = L(J).
Now by Lemma 6.2, L(J) = R(J) and since S is a complete Baer
semigroup there is an idempotent fe S such that fS = R(J). Then
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fS = Se so e = fe = f. Since Se = ¢S is an ideal we have ex = exe =
ze for all xe€S. Thus ¢ is central in S so by Theorem 5.7, Se is
compatible with S.

We can now characterise the kernel of the pseudo-complement of
a congruence compatible with a complete Baer semigroup.

THEOREM 6.4. Let S be a complete Baer semigroup and 6 a
congruence compatible with S. Then ker@* 1is a principal ideal
generated by an element of £ (S) which is compatible with S.

Proof. Let Se = Nco-ker® and J = kerr,. By Lemma 6.3, Se
is compatible with S. But Se = L(J) = R(J) and % e J if and only if
LR(x)eker® gives SenNSf=(0) for all Sfcker®d. Thus ker
Os, Nker® = (0) so by Theorem 3.5, &3, A ® = w. By definition of
pseudo-complement we have 0, < 6* so [(0), Se] = ker &, = ker 6%,
Now let Sg cco-ker® and Sfeker&*. Then (SfN S9)@(SfNS) =Sf
and (SfN Sg)p*(0). Since (0)0*Sf we have (SfN Sg) = Sf(O A 6%).
This gives SfNSg = Sf so Sf< Sg. Thus Sf< Se and ker8* =
[(0), Se]. We, therefore, have ker #* = [(0), Se] and since Se is com-
patible with S this completes the proof.

We clearly have 6’ < #*. Since ker #* is a principal ideal gene-
rated by an element Se compatible with S, it is clear that 6’ = @,.
By Theorem 5.8, Sé¢' is compatible with S and &, is a complement
of @, in O4(2(8S)).

THEOREM 6.5. Let S be a complete Baer semigroup. Then
O~ (8S)) 1s a Stone lattice.
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