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If a string with integrable density function p(x) is fixed
at the points x =0, x = a then the natural frequencies of
vibration are determined by the eigenvalues of the Sturm-
Liouville System

(1) yY'+p@y =0 y0) =ya)=0.

These eigenvalues depend on the density function p(x) and we
denote them accordingly by 2.(p),

0< 2(p) < 2:(p) < ++-.

In this work we investigate the nature of the density func-
tions which yield the largest and smallest possible value for
2.(p) assuming that the average value of the denmsity p(x)
defined by

1 x
P(z) = —S p)dC
X Jo
is restricted in some manner.

We assume for example that P(x) is decreasing or that P(x) is
concave (see Theorems 4 and 7 below).

Assuming a string of given mass m and a bounded density function
p(x), 0 < p(x) =< H, M. G. Krein [8] has obtained the sharp bounds

4H’ X(2) = n0) = T H
m? aH m?

where X(t) is the smallest positive root of the equation

VX tan VX = — .
1—1¢

Banks [1], [2], [5] has obtained some improvements of the Krein
inequality by imposing various restrictions on the density function
p(x). Schwarz [12], Nehari [10], [11], Banks [4] and Maki [9] have
obtained additional related results.

Given numbers m, H, a such that m < aH, and an integrable
density functions p(x) defined on [0, a] for which

(2) 0sp@) = H, |p@ds=m,
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then the function p(x) will be said to be of class

E(m, H, a) provided P(x) is decreasing

E,(m, H, a) provided P(x) is increasing

E,(m, H, a) provided P(x) is convex

E.(m, H, a) provided P(x) is concave.

These function classes are related to certain classes studied by
Bruckner and Ostrow [6] defined as follows:

A function p(x) which satisfies (2) and

lim p(x) = p(0) = 0
-0+

will be said to be of class

K. (m, H, a) provided p(x) is convex,

K,(m, H, a) provided P(x) is convex,

K,(m, H, a) provided p(x) is starshaped from above at the origin,
that is

p(ax) < ap(z) for all x€[0, a] and for all @€[0, 1],

K,(m, H, a) provided p(x) is superadditive, that is for any z, y € [0, a]
if © + yel0,a] then p(x + y) = p(x) + »(y) ,

K (m, H, a) provided P(xz) is starshaped from above at the origin,

K,(m, H, a) provided P(x) is superadditive.

It follows from the work of Bruckner and Ostrow that

(3) K,(m, H, a) C K;;,(m, H, a) 1=1,2,..-5,

In [6] these class inclusions are shown to hold for continuous functions
which vanish at the orgin. That is, if K; denotes the class of con-
tinuous functions contained in K;(m, H, a) then K,c K;,,. Thus the
Baire class generated by K; is contained in the Baire class generated
by K;.,. Making use of the dominated convergence theorem it is easy
to see that the classes K;(m, H, a) are closed under the operation of
taking pointwise limits. Thus the inclusions (3) hold if p(x) is a Baire
function. This will be sufficient for our work since the functionals
M.(p) are not altered by changing p(x) on a set of measure zero.

We now define corresponding classes of functions for the concave
case. If the function p(x) satisfies (2), it will be said to be of class,

Ji(m, H, a) provided p(x) is concave

Jy(m, H, a) provided P(x) is concave,

Jy(m, H, a) provided p(x) is starshaped from below at the origin,
that is p(awx) = ap(x) for all x€[0, a] and for all a €0, 1],

J(m, H,a) provided p(x) is subadditive, for any =z,ye]0, a] if
x + y€[0, a] then p(x + y) =< p(x) + p(y),

Jy(m, H, a) provided P(x) is starshaped from below at the origin,

Js(m, H, a) provided P(x) is subadditive.
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Note that in this case we do not assume that p(0) = 0.

In Theorems 1, 2, and 8 below we will give a general method
which allows one to calculate the extremal values of \,(p) whenever
p(x) belongs to one of the above function classes. In some cases
these calculations may be carried through to completion and explicit
numerical bounds are given. In other cases however only general
information concerning the extremal function for \,(p) is given.

We review briefly the results we shall need from the Sturm-
Liouville theory of differential equations (see [7]). Given the system
(1), then corresponding to each eigenvalue \,(p) there is an eigen-
function u, which is uniquely determined except for a multiplicative
factor. It has exactly n + 1 zeros in the interval [0, a] which we
denote by x;,

(4) 0:x0<x1<"'<xn:ay u’n(xl)zo'

We may assume #,(x) = 0 in [0, z,]. It then follows from (1) that w,
is concave in [0, z,], convex in ]z, x,] etc. Thus in each of the inter-
vals [x;, ¢;.,], u2(x) will have a unique maximum value which will be
attained for some point a;,

(5) € (g Biyr) ,  un(@) = max wui(x) .

2iSe5ni41
The point «; may or may not be uniquely determined. It follows that
u(x)un(x) = 0 if xelwx,_, a;
and
u@)un(x) <0 if zela;, x].
In order to investigate the lower bounds on \,(p) we make use of

the following theorem (compare [11] and [3].)

THEOREM 1. Let p(x) and q(x) be two density functions. Let u,
be the nth etgenfunction of (1) corresponding to the eigenvalue \,(p).

If
(6) unuzﬁjlp@ — g(@1dC = 0 for all [0, al
then

(@) = Nu(D) .

Proof. Let x; be the nodal points of the string with density p(x)
(see (4)). An integration by parts and (6) implies
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Ogszi

Ti—1

2u,u,aP@) — Q@)ds = — | wilp@) — g@)ldz .
Therefore
(7) | wp@de < |7 we@ds .

Following Banks [1] we fix the string at its nodal points x;,. It is
known that [7]

S” wrdx
T&ﬂ_—_ ’[; = 1’ 2’ cee N,
S w2 p(x)de

Zi—1

Nu(p) =

by (7) we have

Sxi witdx Sxi y*dw
z.zi—-l glnf z~‘°i—-1

|7 we@as " vo@ide
Ti—1

Ti—1

Aa(p) =

where y(x;) =0¢:=0,1,2, ---n. It follows that

gz‘ y*dx
Ao (P) = max inf %=t .
1<i<n yec’ (% 2

LY q(v)dw
But the quantity on the right is greater than the nth eigenvalue of
a string of density q(x) [7] whence \,(p) = \,.(q).

The upper bounds on the functionals A,(») are more difficult to
handle. We shall use methods from the calculus of variations. In
order to use these methods we must know that the functional \,(p)

actually attains its last upper bound.

THEOREM 2. Let E be any one of the function classes E;(m, H, a)
for 1=1,2 8,4, K(m, H,a) for t=1,2,3,5,6 or J(m, H, a) for
1=1,2,3,56. Let \,(p) be the nth eigenvalue of (1). Then there
s a function o(x) € K such that

max M(D) = Na(D), p@)EE.

The proof uses a result of Krein [8] which may be stated as
follows: Let M be the set of all measurable functions on [0, a] such
that



THE EIGENVALUES OF VIBRATING STRINGS 47

0sp@) = H, |p@ds=m.
Then there is a function g(x) € M such that

[pdc—[[ad  as K-

The convergence is uniform in x and

Krein’s proof may be modified simply by selecting »,(x) € E (note that
E<S M). Thus it is only necessary to show that ¢(x)e E provided
pi(%) € K.

Suppose for example that p,(x) € E(m, H, a) so that p,(x) is concave
on the average. Thus the corresponding sequence of average values
{P.(x)} is a sequence of concave functions which converge uniformly to

Q@ = 1| ez

in any interval of the form [¢, a]. € > 0. Thus Q(x) is concave and
q(x) € E(m, H,a). The proof of the other cases p,(x)e E(m, H, a)
1 =1, 2,3 follows in a like manner. We must consider in more detail
those function classes which are not defined in terms of an integral
relationship. Suppose for example that p.(x)c Jy(m, H,a) so that
pi(ax) = ap,(x). It follows that

1
rT—Y

| patic = 2 - [ p@dc o=y,
If we first let £ — o and then let ¥y — 2 in the above inequality we
find g(ax) = aq(x) for almost all . Clearly we may redefine ¢(x) on
a set of measure zero so that this inequality holds for all . With
this new definition of ¢(x) it follows that q(x) € Jy(m, H, a). It is now
easy to complete the proof of Theorem 2 which we leave to the reader.

It is known [2] that the first variation of the functional \,(p)
subject to the condition

Sap(x)dx =m
is
on,(p) = —M(p)gzu‘iép(x)dw ,

where u, is the nth normalized eigenfunction corresponding to \,(p)
and
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S:Sp(x)dx =0.

The following theorem will be used to obtain information about
the upper bounds on \,(p).

THEOREM 3. Let E be one of the function classes E(m, H, a)
1=1,238,4, K;(m,H,a)©1=1,2,8,5,6 or Ji(m, H,a) fori=1,2,3,
5,6. Let \,(p) be the nth eigenvalue of (1) and let w, be the cor-
responding mnormalized eigenfunction. Suppose that o(x) is the
maximizing function for \,(p),

Max Ny (p) = Ma(0) -

Suppose also that a mapping of E into E is given by p(x) — p(x)
which satisfies

unuz,g:[ma —BOME=0  for wel0,a].

Then p(x), the maximizing function of \,(p), is a fixzed point of the
mapping

p(x) = p() .

Proof. If p(x) is the maximizing function for \,(p) then there
exists some p(x) such that

(8) wi To(©) - PO S 0.
A simple integration by parts yields
(9) — {"wilote) - p@lde < 0.

We now take a variation in p(x) given by do(x) = e[p(x) — p(%)],
0 <e <1, We note that po(x) + dp(x) e E. But now

a(0) = (o) w0 = 0.

However o(x) is the maximizing function for \,(p) and thus ox,(0) < 0.
Therefore on,(0) = 0. This together with (8) and (9) yields

wi|10@) = POME =0 for we[0a].

Since u, has only » + 1 simple zeros we obtain
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(10) | 1o - A =o.

We cannot divide by u/ since there may exist a set of positive measure
on which %/, = 0; and indeed such eigenfunctions will play an important
role in the proof of Theorem 4. Let A be the set of points is [0, a]
on which %j(x) = 0. A is a closed set. Since u, = — \,(0)0(%)%y,, U,
is locally concave or convex depending on its sign. Therefore A must
consist of a finite number of closed intervals, some of which may be
only a single point. The complement of A, A° must therefore be open
and from (10) it follows that p(x) = p(x) for almost all x € A°. Suppose
now that z e A°, the interior of A. Thus %, (x) =0 and from (1) it
follows that o(x) = 0 on A° It follows that

S:P(x)dx = SAC o(x)dx = Sﬂp(x)dx — E:f)(x)dx ,

where we have used the fact that o(x) and p(x) must have the same
integral over [0, a]. We obtain

SAoﬁ(x)dx =0

and therefore p(x) = 0 for almost all x e A°. Thus p(x) = p(x) almost
everywhere which completes the proof of Theorem 3.
Finally we note that we may consider the eigenvalue problem

11) w + up(t)u =0 #(0) =u(1) =0

where po(t) = {ap(at)/m}, 0 < ¢t < 1 instead of (1). Denoting the eigen-
values of (11) by p.(0) we see that

(12) 1a(0) = mar,(p) and [ ot = 1.

Since all the conditions on p(x) which we study here will also be
satisfied by o(f) we see that no loss of generality is involved by con-
sidering a string of unit length and unit mass. The relationship
between the eigenvalues is given by (12).

2. Bounds on A,(p) in case p(x) € E(m, H,a). As an example
of the preceding ideas we will obtain a sharp upper bound on \,(p)
whenever p(x) is decreasing on the average, p(x) € E(m, H, a).

THEOREM 4. Let \,(p) be the nth eigenvalue of a vibrating string
with fixed end points and a density function p(x) which is decreas-
wng on the average. If p(x)e E,(m, H, a) then
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ﬂznzH[Z'n — 1+ VvV mjaH ]2
m? )

(D) <
(D) = o

The inequality ts sharp and equality 1s attained uniquely for a
string of density o(x)e E(m, H, a) given by

H 02<s
o) = 0 s<e <t
mja t<rx=a,
where
_ @2n — 1)ma . @2n — 1)a*H
s = R t = .
(2n — 1)Ha + V'mHa (2n — 1)aH + V' mHa

REMARK. We note that Krein’s upper bound on \,(p) (assuming
only that 0 < p(x) < H and ap(x)dx = m) is given by 7*n*H/m?. Thus
if we assume in addition thoat p(x) is decreasing on the average we
are able to improve this result by the factor indicated in the theorem.

Proof of Theorem 4. Let p(x)e E(m, H, a) and let u, be the nth
normalized eigenfunction corresponding to \,(p). Let z; be the nodes
of the string with density p(x) and let «; be the sequence of maxi-
mizing points for %2 as in (4) and (5). Define constants m,; and M, by

m; :Saip(x)dx ’ M; = szp(x)dx ’ m, =M, =0.
0 0

Furthermore define constants k,, s;, ¢; by

ky=H k;=—", s =—%, 8=, . t; = ®—.
x; H ;

We now show that
(13) S s =t

We know that 2, , < a; < x;. Thus

M;

M, .
M, <m; <M, and ==t =" )
Liy a; X;

v

The first set of inequalities above implies that z, , <s; and ¢ < ;.
The second set of inequalities implies that s; < a; < ;. Therefore (13)
holds.

We now define functions p(x), f(x) and f(x) by



THE EIGENVALUES OF VIBRATING STRINGS 51

ki, z ,<x=<s; ki w_,Sx=<s;
) =40 s <<t , fl@)=im ss<z=<t
k; L,=x=uw, ki Lb=sr=w;

fia) = | P

according to the definition of s; and ¢;, the function f() is well defined,
continuous and

Fa) = | p©0c .

It is easy enough to see that f(x)/x is decreasing and that
?(x) € E\(m, H, a). This procedure defines a mapping of E.(m, H, a)
into itself given by p(x) — p(x). In order to apply Theorem 3 we
shall show

(14) wuw[ f(®) — f@)] <0, wxel0,a].

Suppose first of all that x€][0,s]. Now if there is some point
z, € [0, s;] such that f(x,) > f(x,), then an easy generalization of the
mean value theorem shows that f/(¢) = p() > f'() = H for some
point £ e (0,s,). This is a contradiction and we must have f(z) < f(x),
xe[0,s]. We also know that wu,u, =0 in [0,s,]. Therefore (14)
holds for x € [0, s,]. Now suppose x¢€[x;_;, s;], ¢ =1,2, --- n. In this
case also we have u,u, = 0. Since p(x) is decreasing on the average
we have

(15) Mo 2 L{"ppac

Ly X Jo
Therefore f(x) = f(x) and (14) follows. Suppose now that =€ |[s;, a;].
Since z < «; it follows that

(16) fo) = | p@at = [ "p©1at = mi = fo) .

Since wu,u, =0 we obtain (14). We now suppose z€[a; t;]. An
argument similar to that used in (16) shown f(z) < f(x). Since how-
ever u,u, < 0 in this case we obtain (14). Finally, suppose z € [¢;, x,].
In this case an argument similar to that used in (15) will show that
fx) = f(x). Since u,u, < 0 in this interval, (14) will hold.

Thus a mapping p(x) — p(x) of E into E is defined which satisfies
the conditions of Theorem 3. Therefore, if p(x) is the maximizing
function for \,(p) over E,(m, H,a) then po(x) = p(z). In order to
simplify the notation, we assume that the original function p(x) which
we started with is the maximizing function, that is p(x) = p(z) = p(z).
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Note that u, is now the nmth eigenfunction corresponding to A\,(0).

Now we know p(x) = p(x) = 0 if z € (s;, ¢;) and «;, the maximizing
point for 2, is contained in (s;, t;). Therefore u, is constant in the
interval (s;, t;) since u, satisfies

amn uy + Ma(0)p@)u, =0 u,(0) = u,(a) = 0.

We may now replace the above equation by the collection of equations

(18) U, +Nu =0, w(8i4) = U'(t;) w € (s; ty)
19) u' + NHu =0, u(0) = u'(s) =0
(20) w Ay =0 , w'(t,) = u(a) =0,

a

where the 2nd eigenvalue of (18) and the first eigenvalue of (18) and
the first eigenvalue of (19) and (20) are all equal to the nth eigenvalue
of (17) (see [7]). Solving each of these equations in turn yields the
equations for X\,

Vm(xi—ti):%, i=1,2+n—1,

1) VNHS, = —

Making use of the fact that Sap(m)dx = m we obtain
0
SH + 3, (siy — ks + (@ — tn)% =m.
i=1
Substituting for s;, ¢; from equations (21) we easily obtain
T - n—1 P m
(D) = ——[1/H + SV + /_] .
2m? im1 a

Therefore the largest possible value of \,(0) will occur when the k; are
as large as possible. We must therefore take k; = H1=1,2, --- n—1,
This yields the upper bound on A\,(p) given in Theorem 4. We now
obtain the function p(x). Obviously p(x) must be of the form

H 0zx<s
0 s<ae<t

m t<x<a
a

o(@) =
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for some choice of s,¢ with wu}(s) = u,(t) = 0. Solving this system
shows that the eigenvalue N must satisfy the equation

l/mz—g@n—l).

Solving this equation for s and using the formula for \ already given
we obtain the required formula for s. The formula for ¢ is obtained
in a similar fashion to complete the proof of Theorem 4.

We now consider the lower bound on X\, (p) whenever p(x) is
decreasing on the average. In this case it is not necessary to assume
that p(x) is bounded above in order to obtain useful lower bounds.
We therefore set H = + - and assume p(x)€ E(m, «,a). In case
p(x) is not only decreasing on the average but is actually decreasing,
Banks [1] has given a sharp lower bound on X\,(p). The following
theorem is a generalization of his result.

THEOREM 5. Let )\ (p) be the first eigenvalue of a vibrating
string having fixed end points and a density function p(x) which is
decreasing on the average. If the total mass is m and the length
of the string is a, so that p(x) € E,(m, «, a) then

mar,(p) = N

where N, = 7.88 --.. The inequality ts sharp and equality is attained
for a string of demsity q(x) given by

at,

M0 <o < at,
q(x) =
0 at, Zx=a

where t, = .643 - .-,

Proof. In view of (12) we may assume that m = a = 1. The
general case will follow immediately. Now let p(z) € E,(1, «, 1) and
let w be the eigenfunction of (1) corresponding to \,(p). Let a be
the maximizing point for u*(z), x€[0, 1] and define constants H,, m, by

m, = S:p(odc, H =2

Now define a density function q,(x) by
H 05zt 1

qx:{ t= .
@ 0 t<z<1, H,

Note that ¢,(x) € E(1,  1). We may assume that the eigenfunction
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% is positive in (0, 1). We shall show
(22) w|p© - a@Mac =0, aelo,1].
Define functions f(x), g(x) by

0@ = |[a@©d S =p0dc  wefo1].

Since p(x) is decreasing on the average it follows that f(x) is starshaped
from below, that is f(ax) = af(x) for all x, a0, 1] (see [6] Lemma
3). Now f(a) = g(@) and f(1) = g(1). From this it follows that

|2 = [[a©d  aclo,al

Ep@)dc < §:q,<c>dc vela, 1.

Taking account of the sign of w' we see that (22) holds. We may
now apply Theorem 1 to obtain M\,(¢t) < M(p). Now the eigenvalue
Mi(g;) is a function of ¢. Banks [1] Theorem 2.1 has calculated the
minimum value of this function. We may apply his results to complete
the proof of Theorem 5.

Now Theorem 5 deals only with the first eigenvalue \,(p). In
general it seems to be very difficult to obtain a precise lower bound
on A,(p). One can however pin the string down at its nodal points
and consider it to be made up of n separate parts. The nth eigenvalue
M (p) will then be equal to the first eigenvalue of each separate part
(see [7]). If one then applies a construction similar to that used in
Theorem 5 to the n parts of the string one obtains.

THEOREM 6. Let \,(p) be the nth eigenvalue of a vibrating string
with fixed end points and density function p(x) which is decreasing
on the average. If the total mass is m so that p(x) e E(m, «,a)
then there is a density function q(x) € E(m, «, a) such that

(@) = Mo(D)
Here q(x) has the form

0 T SE=S,
gv) ={H, s,=ax=t k=12 ---m.
0 t, <x <o,

The points x, are the zeros of the eigenfunction u, corresponding to
the density p(x). The constants H,, s, t, satisfy
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5, =0, H, S+, = Hp ty
H=HzHz---2H, SHt-s)=m.
k=1
Banks ([2], Th. 4) has shown that if p(x) is concave then M\ (p) <

m*/ma with equality in case p(x) = m/a for all x. The following
theorem generalizes this result.

THEOREM 7. Let \(p) be the first eigenvalue of a vibrating string
with fixed end points and a demsity function p(x) which s concave
on the average. If the total mass is m so that p(x) € E(m, H, a) for
some constant H then

man,(p) < 7.

The inequality is sharp and equality is attained if
p(x) = m for all x€]0,1].
a

Proof. Suppose p(x) e Eym, H,a) for some H > 2mja. Let u be
the eigenfunction corresponding to A, (p). If « is the maximizing point
for u* we define m,, P(x) and »(x) by

m, = | "p(@)dc

and
P(z) _m (@ — )am1 am
©23) a aa(a — a)
B(2) = == + (20 — o) T — 2%
a aa(a — a)

Obviously P(x) = l/xrﬁ(C)dC. Thus p(x)€ E(m, H,a). It follows
from (23) that P(a) = P(a) = m/a and P(a) = P(a) = m,/a (where, as
usual, P(xz) is the average value of p(z).) In view of the concavity
of P(x) it follows that

P(x) < P(x) for z [0, a]
P(z) < P(x) for e [a,)a] .

Thus we obtain
wu'[P(x) — P(x)] <0  for xe[0,a].

Therefore Theorem 3 implies that the maximum of \,(p) will be attained
for a linear function of the form 7(x). We may now apply the result
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of Banks [2] to complete the proof of Theorem 7.

3. Bounds on )\, (p) in case p(x)€ J;(m, H,a). As a further
example of the method we consider the minimum value of A\,(p) when-
ever p(x) € Jy(m, «, a) so that p(x) is starshaped from below on the
average. It turns out that the minimizing function for Jy(m, «,a)
actually belongs to Jy(m, «,a). Since Jy(m, o, a)S J(m, ~,a) =
Jy(m, = a) (see [6]) it follows that \,(p) has the same minimum value
if p(x) belongs to any one of these three classes.

THEOREM 8. Let \,(p) be the first eigenvalue of a vibrating string
having fixed end points and a density function p(x) which is star-
shaped from below on the average. If the total mass is m so that
p(x) € J5(m, =, a) then

man,(p) = N\,

where Ny = 5.96 - - - .  The inequality is sharp and equality is attained
uniquely for a density function q(x)€ Jy(m, « a) given by

tia*

2m . 0<z<at,
q(x) =
0 at, <r=a

with t, = .590 <. .,

Proof. In view of (12) we may assume m = a = 1. Now suppose
p(x) € J4(1, =, 1) and that » is the first eigenfunction of (1) correspond-
ing to the density p(x). Let a be the maximizing point for «* and
define

m, = (L .

Furthermore we define a function Q(z) by

Q) =1 &
1/x tsa<s1.

IA
IA

=t

where t is selected so that Q(x) is continuous. Thus we require
mt* = a®. We note that Q(x) is starshaped from below and that it
is the average value of the function

tz

25 g<p<t
Qt(x) =
0 t<z=<1.
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Now ¢,(x) is also starshaped from below so that gq.(x)e Ji(1, =, 1).
If P(x) denotes the average value of p(x) then in follows that P(a) =
Q@) and P(1) = Q@ (1) (one can easily show that ¢« < ¢ <1.) Since
P(x) and Q(x) are starshaped from below it follows that

P@x) z Q@)  =¢€[0, a]
Px) = Q@) =zela,t].

In case z€[t, 1] we have
P) = ig’p(cmc < lg‘p@)dc =1/ = Q) .
X Jo € Jo

Taking account of the sign of uwu’, these three inequalities yield
wu/[Px) — Q)] = 0 for all z€[0,1].

We may now multiply this inequality by « and apply Theorem 1 to
obtain N\ (q,) < M(p), Now A\(q,) is a function of the number ¢ <€ [0, 1].
In order to complete the proof of Theorem 7 we must calculate its

minimum value.
Since g(x) = 0 for x € [t, l] it follows that \,(q) is the first eigen-
value of the system

@4  w+ x_ztzlu —0, w0 =0, ut)+L—twt)=0.
In order to solve this equation we introduce the function u*(x) defined
to be the solution of

w +au=0, u(0) =0, w'(@l)=1.

This function is tabulated in [13]. Now the first eigenfunction of
(24) is

(25) wx) = uX(Zx),  Z = [2NE]R

where Z is the smallest positive root of the equation

(26) w2ty + ZU(L — tyur(ZVt) = 0 .

We define 8 = Z'*t and y(B) = u*(B)/u*'(8). Now (26) becomes
u*(B) + (Bt — Bu*'(B) = 0.

This equation together with the definition of S and y(5) may be used
in conjunction with (25) to obtain

@7 2\ = —‘j—a = 818 — y(B)] .
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This equation defines M as a function of 8. If we set d\/dB = 0 and
simplify the resulting equation, making use of the relations

u*(8) = — Bu*(8) and % — 1+ BB

we obtain

_|_ 1)1/2 _ 0

3
(28) BB +2(B) —B=0 or y(@)+ 1T (2‘;2
(note that (27) and ¢ < 1 implies y(B) < 0). We denote by 8, = 1.915 ...
the smallest positive root of (28). This choice of A will yield the
smallest possible value of N which will be given by

No = 1/2[1 + Bl + (28} + 1] = 5.69 -,

This completes proof of Theorem 7. We note that for the higher
eigenvalues \,(p) the minimizing function for Jy(m, -, a) will not
belong to J(m, o, a).

3. Some generalizations. There are obviously many other results
concerning the size of \,(p) which one may obtain using the method
of Theorem 1, 2, and 3. Space does not permit inclusion of all of
them but the basic ideas involved are the same as those in Theorems
4, 5, 6, 7, and 8.

We now introduce a different type of average value function.
We define the average value of a function p(x) with respect to a
function »r(x) by

P@ = —|'p@dl, PO =limP@).
r(x) Jo z—0t
We may now define many different classes of density functions by
placing some restriction on P(x). For example we say that p(x) is
starshaped from below at the origin with respect to «* provided

(29) P(x) = —i;rp(C)dC with P(az) = aP ()
a 0
for all xe[0,a], ac]0,1].
As an example of the results which can be obtained along this line

we give:

THEOREM 9. Let N\ (D) be the first eigenvalue of a vibrating string
with fixed end points and a density function p(x) which satisfies (29)
above. If the total mass is m then
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MaAN(P) Z No

where N, = 5.83 «++. The inequality is sharp and equality is attained
for the function q(x) given by

3x?/tia’ 0= 2 £ at,

0 at, <r = a

mm={
where t, = 566+.-,

Proof. In view of (12) we may assume m = a = 1. Suppose p(x)
is some function which satisfies (29) and let u be the first eigenfunc-
tion of (1) corresponding to \,(p). Let a be the maximizing point for

u? and define m, = Sap(C)dC. We now construct functions Q(x) and
q.(x) by

a® - 3a?/t° 02t

Q@) = 1 q.(%) = 0 <1
= t=e=1 t<z=1,
X

where ¢t is selected so that Q(x) is continuous. Thus we require
mt* = a®. Since m, <1 we see a <t. Thus Q(a) = m,ja? = P(a).
Obviously Q(1) = P(1) = 1. Applying (29) with x = 1 we obtain P(a) =
aP(1) = «a. Thus m, = a® so t <1. Now it follows that

mm=uﬂ%mﬁ

and Q(x) satisfies (29). We now show

P) =z Q)  xel0,a]
P@) =Q@  w2ela1].

(30)

For x€[0, a] we have P(x) = P(z/a o) = (x/a)P(a) = Q(x) which is the
first inequality. Now if ze[a,t] then P(a) = P(x a/z) = (a/x)P(x).
This implies P(z) < Q(x). Finally we suppose x € [t, 1] so that

|p@dc=1.

Division by «* yields P(x) < Q(x) which proves (30). Taking account
of the sign of uu’ we obtain from (30)

uu'[P(x) — Q)] = 0 for all ze[0,1].

We may now multiply this inequality by x* and apply Theorem 1 to
obtain \(p) = N\(g.). Now \,(g,) is a function of the number ¢ ¢ [0, 1].
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In order to complete the proof of Theorem 9 we must calculate its
minimum value. We shall find it convenient to use functions V(x), V,(x)
defined to be the solution of

V'+a2V=0 V,0)=V;0 =1, V/0)=V,0) =0.

These functions are tabulated in [13].
Now we note that ¢q,(x) = 0 for t < 2 < 1. Thus )\(q,) is the first
eigenvalue of the system

Vo4 x%fv =0 V©0)=0, V) + AL —tV't) =@ =0.
Solving this differential equation subject to V(0) = 0 gives

w@) = V,(VZx) with N = %Zzt3 .
Applying the second boundary condition defines Z as a function of ¢
to be the smallest positive root of the equation
(32) V.WZt)y+ (VZ —VZ t)yVJVZ t)=0.

Define a number 8 =1Z t and a function y(B) = {V.(B)/VI(B)}.
Equation (32) becomes

(33) t=—B |

B — y(B)
Since ¢t < 1 we see y(B) < 0. Thus ) as a function of B is given by
(34) 3\ = B — By(B) .

If we set dr/dB = 0 and simplify the resulting equation making use
of the relation dy/dB = 1 + B** we obtain

By (B) + 3y(B) — 38 =10

or

ViB) _ _ 3+ V91125
Vi(B) 25 )

This equation is the condition under which dr/dB = 0. Its smallest
positive root is B, = 1.733 --- (see [13]). Equations (33) and (34) give
the corresponding values )\, = 5.33 ... and ¢, = .566. This completes
the proof of Theorem 9.

Y(B) =
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