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In this note we prove that all the points of a rim-compact
space X at which X is not locally compact are critical points
for any local dynamical system defined on X. When a local
system is global this result is obtained by extending the
global system π on X to a global system p on the Freudenthal
compactification Y of X, then showing that Y-X is a critical
set for p, and, finally, observing that Y-X contains all the
points of X at which X is not locally compact. This weaker
result will appear in the author's doctoral dissertation and
requires the use of general extension theorems proven there.
For this paper, we isolate those parts of the thesis which are
pertinent to our theorem.

DEFINITION 1. [1]. A (continuous) local dynamical system on a
topological space Z is an object π satisfying the following conditions:
(R is the set of real numbers with the usual topology)

(1) π is a continuous partial map from Z x R into Z.
(2) For every z in Z there are (bounds) az and ωz such that

— co <: az < 0, 0 < ωz <^ +co and π(z, t) is defined if and only if t is in

(3) The domain of π is open in Z x R.
(4) For each z in Z, π(z, 0) = z.
(5) When π(z, t) is defined, π(π(z, t), tf) = π(z, t + tr) whenever

either side is defined.

A local dynamical system π on Z is global if az — — oo and
ωz = + oo for all z e Z. Condition (4) is called the initial value con-
dition, and condition (5) the additive condition. Because of the
additive condition, it has become conventional to write π(z, t) as zπt.
Thus the equality in condition (5) is written (zπt)πf = zπ(t + V). To
prove that a point z is a critical point of TΓ, it suffices to show there
is an ε > 0 such that z = zπt for all t e [0, ε).

DEFINITION 2. A topological space X is said to be rim-compact
if and only if it is T2 and each point of X has a fundamental system
of neighborhoods with compact boundaries.

In this paper X denotes a rim-compact space and Y denotes the
Freudenthal compactification of X, ([2], p. 111). Y is T2 and every
point in Y has a fundamental system of neighborhoods with compact
boundaries entirely in X. These and compactness are the only pro-
perties of Y that will be used. Convergence of a net {y^ indexed
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by the directed set I is written as {?/;} >y; thus a net {j/ilieJ*},

indexed by J\ converging to the point yt is written as {y)} • yc and
ij

convergence of the composite net is written as {y)} > y.

THEOREM. For a local dynamical system π on a rim-compact
space X, each point in X which does not have a compact neighbor-
hood is a critical point of π.

Proof. Consider X as a subspace of its Freudenthal compactifica-
tion, Y. All of our work is done in the space Y, with the following
notational convention: the letter x denotes an element of X, the letter
b denotes an element of Y-X, and the letter y denotes an element of
Y (all of these may be equipped with various indices).

Let x be any point which does not have a compact neighborhood

in X. There is a net {b^ > x, with an index set I, since for any

compact neighborhood Nx of x we have that Nx Π X is not compact,

which implies Nx Π Y-Xφ 0 . Also, since X is dense in Y, for each

bi there is a net {x)} —3—+ b{ with index set J\ Choose t > 0 so small

that xπt is defined, and assume x Φ xπt. Because {#*•} > x, eventually
{xfat}itj is defined. More precisely, there is an antiresidual subset /'
of I and an antiresidual subset of Jι for each i in Γ such that
{x)πt} is defined. Without loss of generality, let I and Jι be the
antiresidual subsets described above. Again, there must be an antire-
sidual subset of I for which the net {x)πt}ji does not converge to b{.

η

If not, there would be a cofinal subset of / such that {x)πt} »b{

and thus a subnet of {x)πt} • x, which would imply x = xπt. Once
more, let I be the new antiresidual subset.

Each bi has a neighborhood N{ such that some subnet of {x)πt}ji

is not in Nt and that its boundary dN{ is compact and contained in

X. Denote this subnet by {x)πt}. From the connectedness of #yπ[0, t]

there is a τ) in (0, t) such that x)πτ) e dNj. As dN{ is compact and

{τ}}^ is bounded, there are subnets {xfoτ)} — -̂> x{ in dNi and {τ)} ——* τ\

Let {xfaτ)}^ and {τ)}^ denote these subnets. Since Y is compact and

{τ1} is bounded there are subnets of {x1} —^->y e Y and of {τ1} - ^ τ e

[0, ί], again denoted by {af} and {τ*}. Thus, we have {x)πτ)}-^-+ y and

{Γy} > r However, since xπτ is defined and {x)} > x, we obtain

y = xπτ. From condition (3) of Definition 1, this implies there is an

i such that xιπ{ — τι) is defined. For this i, {xftr)} —°—+ x\ { — τ}} --̂ -» — τι

A

implies {(ίφrτ})7Γ —r}} > x^-τ1 which is in X. But, {(^7rτ })7Γ-τ}} =
η

{x)} > bi G Y-X. This contradiction yields our assertion.
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COROLLARY. Let a space Z have a rim-compact but not locally
compact open subset. Then every local dynamical system on Z has
a critical point.
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