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The structure of the lattice of pretopologies on the set S,
unlike that of the lattice of topologies on S (a proper sublattice
of the former), has not been closely examined. We establish
that pretopologies may be identified with products of certain
filters in a natural way. From this identification, we are able
to determine much of the structure of this lattice.

We show that (p(S), <), the lattice of pretopologies (pretopologies
in the sense of Kent [2; p. 126]) on the set S, is order isomorphic to
a sublattice of filters on Ss (using Bourbaki's [1; p. 61-63] approach
to filters). From this, we deduce that (p(S),•<) is complete, atomic,
coatomic, modular, distributive, and compactly generated; S being
finite is both necessary and sufficient for the lattice to be co-compactly
generated and complemented (in which case it has a unique complement).
It is infinitely distributive only in the trivial case of S being finite.
(The lattice terminology is that of Szasz [3] with the exception of
coatomic which we use rather than dually atomic and co-compactly
generated which is used for the notion dual to that of compactly
generated.)

1* The isomorphism φ. A pretopology p on a set S is com-

pletely determined by a specification of the neighborhood filter ηp(x)

of each x in S. These neighborhoods necessarily satisfy ηp{x) < x,

where x is the principal filter generated by {x}. For each xe S, let

F(x) = { g : g > ΐ , g a filter on S], and let F = ΐ[xesF(x) (Bourbaki

[l p. 69-70]); both ordered by g < © if and only if g c @ . Then F

is a subset of the set of filters on Ss. Indeed, it is easily seen

that F, with this ordering, is a sublattice of the lattice of filters on

Ss. For given g, © e F, we have g Λ © = {F U G: Fe g, G e ©} and

g v© = {Ff)G:Fe%, Ge®} (FnG^φ since Π^We^G).

Given a pretopology p, we define φ by φ(p) = ΐ[xesVp(χ) Then
φ is easily seen to be a one-to-one mapping from the pretopologies on
S onto F. Furthermore, if p, q are pretopologies on S, the following
will be equivalent:

(1) P<q;

(2) Ύ]p{x) < τjq(x) for all x in S; and

( 3) ILes VP(X) ^ 11,65 r/q(x).
Thus we have
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THEOREM 1. φ is an order isomorphism from the lattice of
pretopologies on S onto the sublattice (F, <) of filters on Ss.

2* The structure of (F(x), <). We shall deduce the structure
of (F, <) from an examination of the structures of the lattices (F(x),
<), for each x.

It follows readily from the definition of Λ and V in (F(x), <)
that this lattice is complete, modular, and distributive. The remaining
propositions of this section further describe its structure.

PROPOSITION 1. (F(x), <) is atomic. Its atoms are precisely those

elements of the form S\{a} for a Φ x. (A denotes the filter of all
super-sets of A in S).

Proof. Given g Φ 0 ='SinF(x)f select A e g, A Φ S. Then there

exists a n α ^ x in S\A, and S\{a} < g .

To show that S\{a} is an atom of (F(x), <) for a Φ x, let g < S\{a}.
Then S\{a}czF for all F e g , and FaS\{a} for no Fe%. Thus g =
S = 0.

PROPOSITION 2. (F(%), Ŝ) is coatomic. Its coatoms are precisely
those % = x AVi where II Φ x is an ultrafilter.

Proof. Let g e F(x) be distinct from 1 = x. Then since % is not
an ultrafilter, there must be at least two ultrafilters above %. One
of these, say II, must be distinct from rχ. Then g < x Λ K .

To show that x A U is a coatom of (F(x), <), assume there is an
g G Έ\x) with Ϊ Λ U < | < ϊ . Since g < a?", {F\{a;}: ί7 e g} is a base for
some filter ©. Clearly # Λ © = g. Now, for each U e tl, there exists
F e g such that F c U c {a?}, since ^ Λ U < g. Thus F\{x} c ?7. Hence
© > U. But II is an ultrafilter. Consequently © = U. Thus, we must
conclude that a?ΛU = a?Λ© = 8, a contradiction.

PROPOSITION 3. g e F(x) is compact if and only if g = A for some
AdS with xeA. Consequently (F(x), <) is compactly generated.

Proof. Let g e F(x) be compact. Observe that g = V {F: Fe%}.

Thus g < V J=1 ̂  for some choice of n and i^ G g (i = 1, n). But

since filters include finite intersections of their members, g ^ Π?=i ̂  Ξ

V?=i^ Thus g Ξ h?=iM
Conversely, let g = A and let g < Vrergr Then since AGg,

there exists ΓQ(zΓ (Γo finite), and Fre%r such that [\r&rFr(zA.
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Thus g < V7BΓoFΓ.
For any ®eF(x), we have

VίS: g < ®, g compact} <® = \/{G: Ge®}

< V ί S : S < ® , S compact}

thus @ = VίS : S ^ ®> g compact} and (F(x), <) is compactly generated.

PROPOSITION 4. g G F(X) is co-compact if and only if g = A where
A is some finite subset of S containing x. Consequently (F(x), <) is
co-compactly generated if and only if S is finite.

Proof. Let g G ̂ (X) be co-compact and let T = S\{a;}. Observe

that g > S = Aaeτ{%, a}- Consequently for some n and a{e T(i = 1,

• , n), g > A?=i k 4 = UΓ=i {«, 4 Thus (jΓ=i {̂ %4 e g. But any
filter containing a finite set J? can be expressed as A for some A g 5 .
Thus g = A for some A c U^i {x, α j .

Conversely, let g = A where A = {a?, αx, α2 αw}, and suppose
that g > Arergr- Then we may select i^ r eg r such that \JrerFγ^A.
Select Ίi so that aieFϊ.. Then g > Aί^igrr

If S is finite, each g e 25#) is of the form A with A finite, so
(F_(x), <) will consist only of co-compact elements and hence be co-
compactly generated. Observe however, that ΛrerAr = \JΐerAΓ for
arbitrary filters. Thus, in particular, the only elements of (F(x), <)
which will be co-compactly generated are the principal filters. Con-
sequently (F(x), <) is not co-compactly generated when S is infinite.

PROPOSITION 5. g e F(x) has a complement ® if and only if g = A.

In this case ® is unique and ®= (S\A) U {x}. Consequently (F(x),<)
is complemented if and only if S is finite.

Proof. Let g = A. If ® = (S\A) U {x}, then g Λ ® = S = 0 and
g v ® = x = 1. Thus @ is a complement of g. Let ©' be any com-
plement of g. Then since g Λ ©' = S, (S\A) c {α;} must be in ©'.
But g V ©' = », so no proper subset of (S\A) U {̂ } may be in ($'.
Consequently ©' = \s\A U {a;} - ©.

Suppose on the other hand, that g is not principal. Let A = Π S
Then A =£ ̂  since a e i . Suppose that © is a complement of g. Then
for each Fe g, G e ©, we have F{jG = S, since g Λ © = S. Thus
JB = (S\A) U {̂ } must be a subset of every G in ©. Observe that any
F in g will contain A as a proper subset since g is nonprincipal.
Thus any Fe% will include points of B distinct from x. Hence for
each Ge ©, F\/G will contain at least two points. But this violates
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the requirement that g V © = 'x. Therefore g can not have a com-
plement.

We conclude this section with a discussion of infinite distributivity.
Let g, %r e F(x) (7 e Γ) be arbitrary. Then, since filter joins are given
by finite intersections, we have % A (Vrer%r) = Vrer(% A g r). We
also have g V (ArerSr) ^ ΛreΛg V g r). However, if S is not finite, we
need not have equality. A particular example can be found by letting

Γ = S, %r = {T, a?}, and % = {AixeA, A cofinite}. For in this case
{s}e Λrer(S V gr) is not cofinite. Thus (F(x), <) is distributive only
in the trivial case where S, and consequently F(x), is finite.

3. Structure of (F, <) and (v(S), <). The results of § 2 carry
directly over to the lattice (F, <). For letting g = J[xeS gβ, © = Π*es
©̂  with g s, ©,. G JF(#) for each x, we see that g < © if and only if
g. < ©α in (F(χ), <) for each a?, while g Λ © = ILβ*(g. Λ ©,) and
S V © = Πα esίδx V ®χ). We summarize these results in the following
proposition. Each of its components follows from the coresponding
result in §2.

PROPOSITION 6. 1. (F, <) is complete, modular, and distributive.
It is infinitely distributive only in the trivial case of S, and consequently
F, being finite.

2 (E, <) is atomic (coatomic). g = ILes S*e i? is an atom (co-
atom) if and only if %x = S f or x Φ S (ge = Έ f or x Φ S) and g s is an
atom of F[s) (a coatom of (F(s)).

3. %eF is compact (co-compact) if and only if %x is compact
(co-compact) for each xeΪ3 and %x = ΪS(%Z = Ίή except for most a finite
number of the x e S.

4. (F, <) is compactly generated.
5 ( S ^ ) is co-compactly generated if and only if S is finite.
6. g has a complement © = EUs©* if and only if %x and ©x

are complements for each x e S.
7. (F, <) is complemented if and only if S is finite. In this case

complements will be unique.
Using the isomorphism φ, these results immediately carry over to

(v(S), <) . Thus we have

THEOREM 2. (p(S), <) is always complete, modular, distributive,
atomic, coatomic, and compactly generated. It is complemented (and
has unique complements), co-compactly generated, and infinitely dis-
tributive if and only if S is finite.
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