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In the theory of nonparametric minimal surfaces there
is a transformation which replaces a minimal surface by a
certain type of convex surface. Construction of this trans-
formation depends on the exactness of certain differential
one-forms, a consequence of the minimal surface equation. In
this article analogous systems of (n—l)-forms are introduced
on a minimal w-hypersurface. This leads to new tensors and
to relations between them.

Let u — u(x, y) satisfy the minimal hypersurface equation

(1 + p2 + q2)(r + ί) = rp2 + 2spq + tq\

It is known (see Radό [6], pp. 57-60) that if we set

w2 — 1 + p2 + q2, a = dx + p du, β — dy + q du,

then

d(«-) = 0 , d(£) = 0 .

Also if we define P and Q by

dP= SL , dQ = $-,
w w

then

d{P dx + Qdy) = 0 ,

hence there is a function U satisfying

dU = Pdx + Qdy .

The function U has Hessian

d2u d2u __ ίjpuy = 1

dx2 dy2 \dxdyy

and by Jorgens [4, Th. 2], U must be a quadratic polynomial if u is
defined on the whole plane. This yields another proof of Bernstein's
theorem. Nitsche [5] gave an alternative proof of Jorgen's result,
Flanders [2] pushed the proof, not the theorem, to ^-dimensions, and
Calabi [1] pushed Jorgen's theorem to five dimensions with smooth-
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ness requirements.
This paper is a partial attempt to extend the formal transition

from u to U to more than two dimensions.

2* Notat ion* Let u = u(x19 •••, xn) be C" on a domain in En.

Set

v - d u r - 3 % w2 - 1 + y v2-
3x̂  dxidxj

The mean curvature of the graph of u is

3

(See Flanders [3 , p. 126].) This graph is a minimal hypersurface if
H= 0, i.e.,

w2 Σ r« = Σ VirnVi.

We introduce the matrices

dx = (da?!, , dxn) , i> = (px, •••,#„),

12= l | r ί y | | , B = I+*pp.

The minimal hypersurface equation is

(2.1) w2tr(i?) =pRtp .

We set

α^ = rf^i + P i ^ = dXi + Σ PiPjdXj ,

α = (α t, ••-,«»).

Hence

(2.2) α = do; B .

3* Relat ions. Since />*/> = w2 — 1 we have

It follows that

(3.1) B2 - (w2 + 1)5 + w2l = 0 .

The characteristic roots of the rank zero or one matrix *pp are 0
with multiplicity n — 1 and (w2 — 1). It follows that the roots of B
are 1 with multiplicity n — 1 and w2. This gives us

(3.2) I B I = w2 .

From (3.1) we have
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(3.3) B-1 = — [(w2 + 1)/ - B] = I - — *pp .
w2 w

and for the matrix of cof actors,

(3.4) cof B = (w2 + 1)I - B = w2/ - *pp .

We note that B and this matrix cof B are positive definite.
We next establish the relations

(3.5) p A ιa = w 2 ^ ,

(3.6) da = dp A du ,

(3.7) α Λ *<ZJC = 0 .

For

p A ιa = p Λ (^Λ: + ιpdu) — du + (^2 — l)d% = w2du,

da = d(dx + pc^) = dp A du,

and

α Λ *cϊx = (dr + dup) Λ *dx = du A du — 0 .

For convenience we shall set

(3.8) M = M(u) - w2 Σ r« - Σ P^iPy .

When there is no danger of misinterpretation we shall omit the
wedge (Λ) in exterior products. Finally we use the abbreviation

dτ = dx1 dxn

for the volume element of En.
We next introduce the usual star (adjoint operator) *. (See

Flanders [3, pp. 15-17 pp. 82 ff.].) With this we have

*du — Σ (— ly^PidXi dx{ dxn ,

d(—*du) = ——(wdw A *du) + — d * d u
\w / wz w

= — ( Σ radτ) — — ( Σ PidPi Λ *dv)
w w

Wό

and so
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(3.9) d(—*du) = — M(u)dτ .
\w J w

The components of the vector *dx are the (n — l)-forms

(— l)i~1dx1 dXi dxn .

We seek the corresponding expressions in the a{. We introduce the
notation

(3.10) α* = (•••, ( - l ) * " 1 ^ •••«*•••«•, •••)•

Since a — dxB we have

(. . . , a, . - . άi ••• an, . . . ) = (•••, dxL . . . dxy . . . dxn, --'XΛ^B) .

Now /\n~ιB is the matrix of (n — l)-rowed minors of the (symmetric)
matrix B. Alternating the signs changes this to cof B, hence

(3.11) α* = (*dx)(coϊB) .

THEOREM 1. We have

(3.12) α* Λ 'dp - M(u)dτ .

Proof. By (3.11)

By (3.4) and (3.8),

α* Λ 'dp = (*dx)(cof B^R'dx)

= t r [(cof B)i?]dr .

tr [(cof B)R] = t r [w2R - ιppR]

= w2 t r J? -

LEMMA. TFβ have

(3.13) (wdw)a* = pR(coίB)dτ ,

(3.14) dα* - [/jβ - (tr R)p]dτ .

Proof. We have

wdw = pιdp — pRιdx

hence
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(wdw)a% =

=pR(dτI)(coί B)

= pR(coΐB)dr .

We avoid some signs by transposing and have

*(α*) = (cof B) ψdx) = (w2l - ιpp) *(*<ZΛΓ) ,

\da*) = [2wdwl- d(tpp)]t(^dx)

= [2dxR ιp - *pdxR - R *dxp] f(*dx)

= [2R*p - *p(trR) - R*p]dτ

= [R*p- (trR)ιp]dτ .

Equation (3.14) follows.

We now state the main result of this section.

THEOREM 2. We have

(3.15) (

Proof. By (3.13),

(wdw)a* = pR(w2I - tpp)dτ

= w2pRdτ - (pR tp)pdτ .

Using (3.14) we have

(wdw)a* - w2da* = w2(tr R)pdτ - (pR lp)pdT

= M{u)pdτ ,

and the result follows.

COROLLARY. // the graph of u is a minimal hypersurface,
then

(±a*) = 0 .

We close this section with the proof of one other relation :

(3.16) dua* - pdτ .

By (3.5),

(w2du)a* = p taa* = p{ax . an) .

But a, an = IB \ dτ = w2dτ and (3.16) follows.
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4* Minimal hypersurfaces* In this section we assume u is
defined on a contractible domain and that M{u) = 0 so that the graph
of u is a minimal hypersurface.

By the corollary above, each of the (n — l)-forms

1
ΓΫ ίY ίY

W

is closed. Hence there exist (n — 2)-forms ω^ (i = 1, , n) such
that

( — IV"1 ^
(4.1) do),- = -* ^—ax α, an (j = 1, , ̂ ) .

THEOREM 3. i^or eαcΛ i, j we have

(4.2) d(ωidxj — ωάdx^ — 0 .

Proof. We multiply the relation (3.7) by

a, a, άj an

to derive

(α : άi άj a^iμ^Xi + α. dxy) = 0 ,

and the result follows.

COROLLARY. There exist (n — l)-forms ηiS such that

Via + Va = °

and

(4.3) drjij = cOidxj — ωάdXi (ij = 1, , %) .

There are too many choices of the α^ and ) ^ . We should expect
progress on Bernstein's Theorem in higher dimension if a way were
found of limiting these forms to families with finitely many parameters.

To take one step in this direction we use the operators <5, A.
(See Flanders [2], pp. 136 if.) One known fact is that the Poisson
equation

has a solution on En for any continuous y. This implies that if β
is a p-form on En, then
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Δa = β

has a solution a.
Now consider the (n — 2)-form ω{. We may write

i +

hence

Thus we may replace α^ by δdλi. Now λ4 is determined up to an
(n — 2)-form μi such that dδdμ = 0. There are, unfortunately, still
too many of these when n ^ 3.

REMARK. If / is any function on the hypersurface, its Laplacian
relative to the hypersurface is

(4.4) If = λ Σ A
w dXi j

(Here I is the Beltrami operator.) We apply this to / = x and use
(3.11) to obtain

(4.5) w{Δx) = d(—a*
\w

We also apply (4.4) to / = u :

w(Δu) = Σ ^ - Γ — Σ (w2δi5

These formulas verify the well-known fact that on a minimal hyper-
surface each of the euclidean coordinate functions xlf , xn, u is
harmonic.

5 Equations in component form* We shall restate the results
of § 4 in component form. As in that section we assume M(u) — 0.
We set

(5.1) G = A
w

so that (4.1) and (3.11) become
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(5.2) dύϋi = gij*dXj ,

where we use the summation convention as we shall in this section.
We write

(5.3) ω{ = —aijk*{dx5dxk) , aijk + aikj = 0 .
Δ

Now (5.2) may be rewritten as

(5.4) ^ = giS .
dxk

This is obtained by a direct calculation which hinges on the following
readily checked relations :

dxk Λ *(dxjdxk) = *dxk ,
(5.5)

dx3 Λ *(dXjdxk) = —

Next we set

(5.6) (-l)n-2Vij = ^>iίk

where

bijki + bjikι = 0
(5.7)

bijki + bijlk = 0 .

In this notation the relations (4.3) become

(5.8) % * L = ajik - aijk .

Combined with the skew-symmetry of aijk in the second and third
indices, this yields in the usual way

(5.9) aijk - %AL
oxι

where

(5.10) cίjkl = — ( — δiiΛi + δi*ii - 6*iji)
Δ

These relations imply

(5.11) Vijkl — CϋfcZ ^iJfcil

The skew-symmetries in (5.7) thus are equivalent to
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ijkl

(5.12)

Equations (5.9) and (5.4) combine to yield

The minimal hypersurface equation M(u) = 0 may be interpreted as
integrability conditions for (5.13) with the side conditions (5.14).

We may cut down the number of variables by introducing

hjki = —(CijH + Cijik + Cjiki + CJilk)

(5.14) χ

= -rΦilcjι + 6 i ί i Λ + δyjfciz + bίιjk) .
4

Then we have

(5.15)

while (5.13) implies

(5.16) ξhψL = g .
oxkoxι

In addition to the symmetries in (5.15) the quantities h satisfy

(5.17) hijkl = hklij = 0

and

(5.18) hiikl + hjkil + hkijι = 0 .

These are easy consequences of (5.14) and (5.7). The relations (5.15),
(5.17), (5.18) span all relations in the h's. To see this we must
count dimensions. The space of tensors (6) subject to (5.7) has
dimension n2(n — l)2/4. The nullity of the mapping (6) —> (h) given
by (5.14) is determined by finding independent solutions of

(5.19) (ijkl) + (jlik) + (jkil) + (iljk) - 0

where we abbreviate (ijkl) = bijkl. We need consider only (ijkl)
where i < j and k < I, using (5.7) to determine the others. By
(5.19),

4(1212) - 0 , (1212) = 0 .

The (ijkl) with three distinct indices are represented by (say) indices
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1, 1, 2, 3 and this gives us (1213) and (1312). But by (5.19),

2(1213) + 2(1312) = 0 ,

hence we are free to choose only one of these. We thus have s( ^ j

degrees of freedom in choosing (ijkl) with three distinct indices. If
there are four distinct indices, say 1, 2, 3, 4, the quantities we con-
sider are these six:

(1234) , (1324) , (1423) , (2314), (2413) , (3412) .

The relations (5.19) are seen to yield two independent relations
amongst these :

(1234) + (3412) - (2314) - (1423) = 0 ,

(1234) + (3412) + (1234) + (2413) = 0 .

This means that with all indices distinct we have 4( n* j degrees of

freedom. Thus the desired nullity is

and the rank equals dimension of the (h) space is

n2(n - I)2

 tχ(n\ Λ(n\ _ n\n2 - 1)
4 ~\s)~\J Ϊ2~ '

On the other hand, the space of (h) tensors subject to (5.15),
(5.17), and (5.18) has precisely the same dimensions. To see this we
use (5.15) and (5.17) to limit the parameter to those (ijkl) for which
i ^ j , k ^ I, and (ij) ^ (kl) in lexicographic order. (Now (ijkl)
denotes hijkl.) By (5.17), (1111) = 0 and (1112) = 0. With two distinct
indices we need only consider (1212) and (1122). By (5.17) these are
related by

(1122) + 2(1212) = 0 .

Thus with only two distinct indices we have ( o ) degrees of freedom.
With three distinct indices, say 1, 1, 2, 3, the only possibilities, (1123)
and (1213), are again related by

(1123) + 2(1213) - 0 .

We thus have 3( o ) degrees of freedom in this case. Finally with
four distinct indices, say 1,2,3,4, the three possibilities, (1234),
(1324), and (1423), are related by
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(1234) + (1324) + (1423) = 0

so we have 2ί \ J degrees of freedom in this case. In total the

space of (h) we are considering has dimension

n
2J ' Ά 3 / ' "V4/ 12

This completes our proof that the relations (5.15), (5.17), and (5.18)
span all relations between the h's. In the course of the proof we
have obtained a set of independent parameters for the (h) space :

rίijij V* \ J) J

i^ijik (^ \ 3 ^ "V j

ίjkl y '^ikjl V ^ ^ J ^ ^ ^ ^ ^)

This result n2(n2 — 1)/12 is certainly better than the number of
&'s (or c's), namely n\n — l)2/4. When n = 2, both numbers are one
so that equations (5.16) only involve a single unknown function
h — ̂ i2i2 This is what makes a proof of Bernstein's Theorem along
the lines discussed in the introduction work.
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