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For each primitive idempotent f in a left artinian ring R,
let T(Rf) denote the unique simple factor of Rf and let
E(T(Rf)) denote its injective hull. Then, identifying a
module with its isomorphism class,

SR — E(T(Rf))
provides a one-to-one correspondence between the finite sets
of isomorphism classes of indecomposable injective left R-
modules and indecomposable projective right R-modules. The
importance of this correspondence is illustrated by the Nagao-
Nakayama result that if R is a finite-dimensional algebra over
a field K then, under the duality ( )* = Homx (__, K) between
the categories of finitely generated left and right R-modules,
one has

(fR)* = E(T(Rf)) .
Thus the structure of an indecomposable injective module
E(T(Rf)) over such an algebra R is completely determined
by the indecomposable (projective) direct summand fR of Rjz.
However, in the more general case when K is a left artinian ring,
very little is known about the structure of these indecompos-
able injective modules. In this paper we attempt to shed some
light on the problem by showing that a large part of the
above mentioned duality can be carried over to fR and
E(T(Rf)) over a ring R with minimum condition on left ideals.

The key to most of our results is annihilator relations between
fR and E(T(Rf)) given by the lemma of §1.

If S is the inverse R-endomorphism ring of the left R-module F
then E is a left R-right S-bimodule. Moreover, fRf is naturally iso-
morphic to the R-endomorphism ring of fR and fR is a left fRf-right
R-bimodule. In §2 we show that, if E = E(T(Rf)),

(fr,o) = fre, frefR,zc K,

yields an orthogonal pairing between ,,,fR and E; in the sense of
Tachikawa [16]. Because the fRf-submodules of fR and the S-sub-
modules of E satisfy the annihilator conditions under this pairing, we
are able to determine the simple submodules of the various Loewy
factors of E in terms of those of fR. As a consequence, a left
artinian ring is QF-3 if and only if the projective covers of its left
injective modules are themselves injective.

Nakayama’s original definition of quasi-Frobenious (= QF) rings

115



116 K. R. FULLER

amounts to saying that a ring R with both minimum conditions is
QF in case for each primitive idempotent ¢ in R there is a primitive
idempotent f in R with Socle (Re) = T(Rf) and Socle (fR) = T(eR). In
§ 3 we show that this condition is necessary and sufficient for any primi-
tive left ideal Re over a left artinian ring R to be injective. Thus the
injective projective left modules over such rings are characterized in
terms of one-sided ideal structure. We also present generalizations of
the annihilator and the duality characterizations of QF rings to injective
left ideals. Using these results we see that a left artinian QF-3 ring
(i.e., E(xR) is projective) also has E(R;) projective.

In §4 we consider the Johnson-Wong [9] and Wu-Jans [19] notions
of quasi-injectives and quasi-projectives. The annihilator conditions
of §2 provide us with a natural one-to-one correspondence between
the quasi-injective submodules of E(T(Rf)) and the quasi-projective
factors of fR. In the event that R has both minimum conditions
this correspondence yields one between the sets of isomorphism classes
of left indecomposable quasi-injectives and right indecomposable quasi-
projectives over R. Here we also show that a left artinian ring has
an infinite number of nonisomorphic left indecomsable quasi-injectives
if and only if its lattice of two-sided ideals is infinite; thus providing
a dual result to a theorem of Wu and Jans [19].

In the concluding section we show that left quasi-projective quasi-
injectives are taken to right quasi-injective quasi-projectives by the
correspondence of § 4. This result allows us to give several characteri-
zations of generalized uniserial rings. Perhaps the most interesting of
artinian ring is generalized these is that a left uniserial in case each of
its left indecomposable projectives and each of its left indecomposable
injectives has a unique composition series.

1. Notation and the key lemma. Our main concern shall be
with injective modules over rings with minimum condition on left
ideals (i.e., left artinian rings). However, to insure that certain of
our results hold for right as well as for left modules, we are forced
to operate within the framework of the usual right-left symmetric
generalization of left artinian rings—semi-primary rings. A semi-
primary ring R is an associative ring with identity 1 and nilpotent
Jacobson radical N such that R/N is semi-simple. We assume know-
ledge of the well known decomposition theorems for projective [4] and
injective [11] modules over semi-primary and left artinian rings.

If M is a left (right) R-module we write S(M) for the socle of
M, T(M) = M/NM (T(M) = M/MN), and E(M) for the injective hull
[3] of M. If JER and K& M we write

LK)={jeJ|jK =10}
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and
r«(J) = ke{K|Jk = 0}

when M is a left R-module. If M is a right R-module r,(K) and
lx(J) are defined in the obvious manner. Note that if M is a left
R-module then S(M) = r,(N); and that if E is an indecomposable in-
jective left R-module then E = E(T(Rf)) where f is a primitive idem-
potent in R with the simple module T(Rf) = S(E).

As stated in the introduction, we intend to examine the relation-
ship between E(T(Rf)) and fR for f a primitive idempotent in R.
However, for some of our results we shall need a slightly more
general notion. If f is any idempotent in R then f can be written.

f=fut oo+ fuwt+ st o A+ faim

where the f;; form an orthogonal set of primitive idempotents satisfy-
ing fi,R = f.R if and only if 7 =s. Letting f;=/fu, t=1,---,n,
we say that f,, ---, f.. is a basic set of idempotents for f. If E is
an injective left R-module whose socle has a finite composition series
then we can write

E;Eu@"‘@Em(l)@"'@Eml@."@Emv(m)

where the E;; are indecomposable injective modules with E;; = E,, if
and only if ¢ =s. Letting E;=E;, 1=1,+.-.,m wecall £, ---, E,
a basic set of injectives for E. If E(T(Rf)), ---, E(T(Rf,)) form a
basic set of injectives for E we say that E is paired to fR or that
fR and E form a pair.

Some of the most important examples of such pairs are

(a) If R is a finite dimensional algebra over a field K then the
injective left R-module (fR)* = Homg (fR, K) is paired to fR.

(b) If E is indecomposable and f is primitive then fR and E
form a pair if and only if E = E(T(Rf)).

(¢) An injective module E is paired to R if and only if S(&) is
finitely generated and faithful as an R/N-module.

We are now in a position to state the lemma that is the foun-
dation of this paper.

LEmMMA 1.1. Let fR and E form a pair over the semi-primary
ring R. Then

@) re(J) =r(fJ) and l;x(K) = L,x(KE) for every left ideal J and
every right ideal K in R;

() rx(fR) =0 and 1;x(E) = 0;

(¢) rx(fR) = lx(E).

Proof. (a) Let X=ry(fJ),J < zR. Itis apparent that ry(J)&X.
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Suppose JX = 0. Then, since JX <  E,JX N S(F) # 0. This implies
that JX has a simple submodule that can be embedded in T(Rf) and
hence that fJX # 0, a contradiction. Thus rz(J) = ry(fJ). Let L =
I.(KE), K< R;. Then L=< R and fL=fRNL=1IKE)2l:(K).
Suppose fLK = 0. Then there must exist left ideals I’ < I < LK with
I/T" simple and isomorphic to a submodule of T(Rf). This gives a
monomorphism ¢: I/I'— E., If n: I— I/I' is the natural epimorphism
we have, by injectivity of E, that ¢on(I) = Ix for some < E. But
then LKE 2 Iz = pon(l) # 0, contrary to the definition of L. This
proves that I;,(KE)= [;(K).

(b) This part follows from (a) by taking J = R and K = R.

(¢) Let A =rx(fR)and B =1,(E). Then, using (b), fRB = fB =
I;x(F) =0, so B&A. Also AESr,(fR) =0, so ASB.

As an easy consequence of (1.1) we note that there is a natural
one-to-one correspondence between the injective simple left R-modules
and the projective simple right R-modules.

PROPOSITION 1.2. Let R be a semi-primary ring with primitive
idempotent f. Then T(Rf) is injective if and only tf T(fR) is
projective.

Proof. Since fR is indecomposable, the exact sequence 0 — fN —
fR—T(fR)— 0 splits if and only if fN = 0. On the other hand,
since E(T(Rf)) is indecomposable, E(T(Rf)) = T(Rf) if and only if
NS (E(T(Rf))). But the latter is true if and only if fN = fRN =0
by (1.1, ¢).

Gerald Janusz recently informed us that he has been aware of
(1.2) for some time. He also pointed out that using (1.2) is easy to
show that R is hereditary with N* = 0 if and only if every simple
left R-module is either injective or projective.

2. The Loewy series of indecomposable injectives. If M is a
left module over a semi-primary ring R and p is the smallest positive
integer satisfying N?M = 0, the upper Loewy series for M is

M>NM> -« >N*M=0
and the lower Loewy series for M is
0<ryN)< -+ <ry(N)=M

(see [1, pp. 102-104]). Letting N° = R, N*"'M/N*M is the k-th upper
Loewy factor of M and r,(N*)/r, (N*') is the k-th lower Loewy factor
of M. Loewy series and factors for a right R-modules are defined in
the obvious manner.
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Using well known properties of Loewy seres and the vector space
dual one can show that if R is a finite dimensional algebra, the k-th
upper (lower) Loewy factor of E(T(Rf)) = (fR)* 1is isomorphic to
T(Re)® --- P T(Re,) where ¢, ---,e, is a finite indexed set of primi-
tive idempotents such that the k-th lower (upper) Loewy factor of
SR is isomorphic to T(e,R) P --- D T(e,R). In this section we shall
prove a related, though admittedly weaker, result for left artinian
rings. For future use, we continue to state the lemmas in a setting
more general than necessary for our immediate goal.

LemmA 2.1. If fR and E form a pair over the semiprimary
ring R then, for each left R-module M, restriction to fM gives an
abelian group isomorphism

Hom, (M, E) = Hom;x, (fM, fE) .
Moreover,
(a) the map + defined via

[’l/l‘(S)](fx) = S(fx), s€ HomR (Ey E): fx efE ’

18 a ring isomorphism from Homy (E, E) onto Hom,,, (fE, fE);
®) if JEJ are two-sided ideals in R then

re(JS)/re(J) = Homy, (fI/fT, fE)
as left R-modules.

Proof. Let R,fR and E be as in the hypothesis. Let M be a
left R-module. If e Hom, (M, E) then, for all re R, me M,

a(frfm) = frf-a(fm) e fE.

Thus « |, € Hom;, (fM, fE) and restriction to fM is an additive map
from Homg (E, M) into Hom;; (fM, fE). If 0= a(fM) = fRa(M)
then « is the zero map by (1.1, b). Let 6 € Hom,,, (fM, fE). If r,e R,
m; e M with >, r,fm; = 0, then for each fre fR,

Fr(Srd(fm)) = 3 frrd(fm)
= 6(fr(S 7. fms)
=5(0)=0.

So >\ ro(fm;)eryx(fR) = 0 by (1.1, b). Thus there exists an R-homo-
morphism é; RfM — E defined via

0> rifm;) = 2 rio(fmy) .

Using the injectivity of E, let §: M— E extend 6. Then §(fm) =
o(fm) for all fmefM and we have shown that restriction to fM
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provides the desired isomorphism Homg (M, E) = Hom,,, (fM, fE).
To see that (a) holds take M = E.
For (b) note that, since E is injective,

[o@ + r=(IDIG + J') = jr,wery]),jed
defines an isomorphism
0: 7e(J')[15(J) — Homg (J/J', E) .
But we know that
Homy (J/J', E) = Hom,, (fJ/fJ', fE) .

It is routine to check that these isomorphisms commute with left
multiplication by elements of R.

According to [7, p. 48, Proposition 1] fNf is the radical of the
ring fRf. Hence if R is semi-primary (or artinian) so is fRf; and if
fi, <+, f. is a bagic set of idempotents for f then T(fRf;) = fRf;/fNf:,
2 =1, .-+, m, are all the (non-isomorphic) simple left fRf-modules.

LemMma 2.2. If fR and E are as in (2.1) then the right fRf-
module fRf and the left fRf-module fE form a pair over fRf.
Specifically, if fi, <+, fn 1s @ basic set of idempotents for f and

E =@ E; with E; = E(T(Rf)), i=1+,n,
then
fE = @ S fE; with fEy; = B(T(fRf)), i=1,--n,

over fRf.

Proof. First we show that ;,.fFE is injective. Every left ideal in
the ring fRf is of the form fIf where If is a left ideal in R. If
0: fIf — fE then by (2.1) 6 can be extended to an R-map o: If— E.
Since E is injective there is an z in E with 6(a) = ax for all ac If.
Thus o(faf) = faf-fx for all fafe fIf and fE is injective over fRf.
To complete the proof we let E;; = E(T(Rf)), f; in a basic set of
idempotents for f, and show that S(fE;;) = T(fRf;) is simple over fRf.
Since S(E;;) is simple and fS(E;;) 2 fiS(E;;) # 0 it follows at once that
FS(E;;) is simple and isomorphic to T(fEf;). Moreover, using (1.1, a),

S(fE;;) Sre(fN) N E;; = rg(N) N Ey; = S(E;)
so that
fS(E:;) S S(fE;;) = fS(E) .

This completes the proof.
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REMARK. The isomorphism p in the proof of (2.1, b) was pointed
out by Rosenberg and Zelinsky in [15]. There they proved that if T
is simple then E(T) has finite length if and only if each of the left
R-modules

Hom, (N*'/N*, T) , k=1,2,.--,m

has finite length. Using a similar argument along with (2.1, b) and
(2.2) one can show that if f is a primitive idempotent in R then
E(T(Rf)) has finite length if and only if each of the left R-modules
Hom,,, (fN*'/fN*, T(fRf)), k = 1,2, ---, has finite length. Thus the
finiteness of an indecomposable injective left module E over a semi-
primary ring R depends only upon the indecomposable projective right
module fR, where f is a primitive idempotent with T(Rf) = S(¥).

Now we turn to left artinian rings. Our next lemma depends
upon Tachikawa’s generalized notion of orthogonal pairings.

LEMMA 2.3. Let R be a left artinian ring. Suppose E is paired
to fR over R and S is the inverse R-endomorphism ring of E. Then
(a) rEs = Homyg, (fR, fE), srsfRz = Homs (E, fE);
(b)  Lpr(re(fT)) = fJ, relsx(M)) = M,
for each left ideal J in R and each right S-submodule M of E.

Proof. In Tachikawa’s terminology [16], it follows from (1.1, b)
that the left fRf-module fR and the right S-module E form an
orthogonal pair with respect to fE via the left fRf-right S-bilinear
map

(fr,x)— fre, frefR,xec K .

Moreover, since S may be regarded as the inverse fRf-endomorphism
ring of fE by (2.1) and fE is an injective module over the left artinian
ring fRf whose socle is finitely generated and faithful over fRf/fNf by
(2.2), it follows from [16, Th. (2.1)] that Hom (T, fF) is simple for each
simple left fRf-module and each simple right S-module. Now the left
fRf-isomorphism and the right S-isomorphism of (a) and the equalities
of (b) are consequences of [16, Th. (1.1)]. To complete the proof one
checks that the right S-isomorphism p: E— Hom (fR, fF) defined via

[o(@)](fr) = fre,xe E, fre fR,
and the left fRf isomorphism \: fR— Hom (E, fE) defined via
(fN)(x) = frz, fre fR,ze B,

are also R-maps.
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Our next result gives a natural one-to-one correspondence between
the homogenious components of the k-th upper (lower) Loewy factor
of E and the k-th lower (upper) Loewy factor of fR whenever fR
and F form a pair over a left artinian ring B. We state the theorem
in terms of indecomposable injectives and projectives.

THEOREM 2.4. Let E be an indecomposadble injective left module
over a left artintan ring R. Left f be a primitive idempotent in R
with T(Rf) = S(E). If e is any primitive idempotent in R then
T(Re) appears in the k-th upper (lower) Loewy factor of E if and
only if T(eR) appears in the k-th lower (upper) Loewy factor of fR.

Proof. First we show that if J' = J are two-sided ideals in R then
La(re(JJ)re(J)) = re(fIIfT) .

It follows at once from (2.1, b) that rx(fJ/fJ") S lx(rz(J")/rz(J)). For
the reverse inclusion suppose that fJr & fJ’, r € R. Then (fJr+fJ")/fJ’
has a simple fRf-factor and using (2.2) we see that there is a map
a e Hom,,, (fJ/fJ’, fE) such that (ra)(fJ/fJ") = a((fIr + fJ')/fJ’) = 0.
Thus, by (2.1,b), » does not annihilate ryz(J')/rz(J) and the desired
equality holds.

Now taking J = N¥'2 N* = J’ we see that if ¢ is a primitive
idempotent in B then T(Re) can be embedded in r (N*)/ry(N*) if
and only if T(eR) can be embedded in fN*'/fN*.

On the other hand, by (2.3) and (1.1, a),

N"E = rE(lfR(Nk.E)) = rE(lfR(Nk))
= ry(flx(N*) = rz(lz(N")) .
So that, letting J = Ix(N*) 2[(N*) = J',

Ix(N*EIN*E) = Lp(rg(Lo(N*™))[re(lz(N*)))
= rp(fL(N®)/fIz(N*7))

and the theorem is proved.

If M is a left module over a semi-primary ring R there is an
indexed set of primitive idempotents {e.|a@ € I} in R such that

T(M) = 69(% T(Re,) .

The projective cover of M is isomorphic to @ >..; Re, (see [2]). If
R is left artinian, f is a primitive idempotent in R and F = E(T(Rf))
then it follows from (2.4) that the simple submodules of T(E) (the
1-st upper Loewy factor of E) are precisely those of the form T'(Re)
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where ¢ is a primitive idempotent with T(eR) isomorphic to a sub-
module of S(fR) (the 1st lower Loewy factor of fR). Thus we have

COROLLARY 2.5. Let E be an indecomposable injective left module
over a left artinian ring R. Let f be a primitive idempotent in R
with T(Rf) = S(E). If e is any primitive idempotent in R then Re
s 1somorphic to a direct summand of the projective cover of E if
and only if T(eR) is isomorphic to a submodule of fR.

A left artinian ring R is QF-3 in case E(RR) is projective or,
equivalently, R has a faithful injective projective left module. Using
well known properties of injective and projective modules over a left
artinian ring one can easily show that such a ring is QF-3 if and
only if the injective hull of each of its projective left modules is it-

self projective.

THEOREM 2.6. A left artintan ring is QF-3 if and only if each
of its imjective left modules has an injective projective cover.

Proof. (=) If RE is an injective module over a left artinian
ring R then every simple submodule of T(E) must be isomorphic to a
simple factor of an indecomposable (injective) direct summand of E.
Thus the projective cover of E can be written P = @ 3, Re, where,
by (2.5), each T(e.R) is isomorphic to a minimal right ideal in R, If
R is QF-3 then according to [5, Th. (2.1)] each such Re, is injective
and hence so is P. (see [11, Lemma 3.5]).

(=) Let R be a left artinian ring satisfying the condition. Let
e, +++, e, be an orthogonal set of primitive idempotents such that
T(e,R), -+, T(e,R) represent the minimal right ideals in R. Let f,
«++, fn be primitive idempotents such that 7T'(e¢;R) is isomorphic to a
submodule of f;R, + =1, ..., m. Then by (2.5) Re, is isomorphic to a
direct summand of the projective cover of E(T(Rf;)),% =1, --., m, and
by hypothesis, each Re; is injective. Moreover no minimal right ideal
annihilates Re, + +-- + Re,. Thus Re, + -+ + Re, is a faithful in-
jective projective left R-module and R is QF-3.

3. Injective projective modules. In [5] we characterized two-
sided artinian QF-3 rings in terms of one-sided ideal structure and
a certain duality. The first theorem of this section gives similar
characterizations of injective projective modules over left artinian
rings. As a consequence [5, Th. 3.6] is valid for left artinian rings.

—

THEOREM 3.1. If e is an tdempotent element in a left artinian
ring R then the following statements are equivalent:
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(a) Re is injective.
(b) For each e; in a basic set of idempotents for e there is a
primitive idempotent f; in R such that

S(Re;) = T(Rf,) and S(f,R) = T(e:R) .

(¢) There exists an idempotent f in R such that
(1) Ilr(Re) = 0 = rp(fR);
(ii) The functors

Hom, g, (_, fRe) and Hom,, (__, fRe)

define a duality between the category of finitely generated left fRf-
modules and the category of finitely generated right eRe-modules.

Moreover, if Re is injective then the f.R of (b) and the fR of (c)
are also injective.

Proof. (a)=(b) Here we may assume that ¢ is a primitive
idempotent. Then by assumption Re is an indecomposable injective
module and there is a primitive idempotent f in B with Re = E(T(Rf)).
Thus, since the indecomposable injective left module Re is paired to
fR and we may take eRe as the inverse R-endomorphism ring of Re,
we have by (2.3, a)

fR = Hom,,, (Re, fRe) .

Next we see that (1) eRe is inverse-isomorphic to the fRf endomor-
phism ring of fRe via the map [v(ere)](fte) = fte-ere,r,tc R, by
(2.1,a); (2) fRe is injective as a left fRf-module and the unique
simple left fRf-module is isomorphic to the socle of fRe, by (2.2); (3)
fRe is finitely generated over the left artinian ring fRf. According
to [10, Th. 6.3] these three conditions insure that Hom (__, fRe)
defines a duality between the categories of finitely generated left fRf-
modules and finitely generated right eRe-modules. In particular
fRe = Hom,,, (fRf, fRe) must be the unique indecomposable injective
right eRe-module E(T(eRe)). Now, applying the right-left symmetric
versions of (2.2) and (2.1, b) (with J’ = 0,J = R), we have

fRe = E(T(eR))e
as right eRe-modules and
E(T(eR)) = Hom,,, (Re, fRe) .

Thus
fR = E(T(eR))

and the relationships of (b) follow.
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(b)=(c) If ¢; and f;, i =1,---,n, satisfy the condition (b) we
may assume f,---,f, are also pairwise orthogonal. Let f=/f,++--+ f..
Then no minimal right ideal in fR anihilates ¢ and no minimal left
ideal in Re annihilates f, so (i) holds. To show that (ii) also holds
we note that [5, Lemma (3.5, b)] can be shown to be valid for our
present ¢ and f by replacing an argument involving the length of a
composition series with one involving the length of a Loewy series.
The implication now follows from reasoning identical to that of the
proof that (b) = (¢) in [5, Th. (3.6)].

(¢) = (a) Let e and f satisfy the conditions of (c) and note that
according to [10, Th. (6.3)] eRe is right artinian. Write

( )Y =Hom (__, fRe).
Using (i) we see that if
[o(re)](ft) = ftre, rec Re, ft € fR

and
N(fr)|(te) = frte, fre fR, tec Re

then p is a left R-right eRe-monomorphism

0 — Re - (fR)*,

Re is finitely generated over e¢Re, and A is a right R-left fRjf-mono-
morphism

0 — fR—— (Re)* .

Since a duality preserves composition lengths it follows that o and A
must be isomorphisms. In particular

Re = Hom;y, (fR, fRe) .

According to [10, Th. (6.3, VI)] we can write
raifRe = @ 3. By, By = E(T(fRf), i=1,-,m,
where f,, ++-, f. is a basic set of idempotents for /. Thus, by (2.2), if
E = @ > Ey;, E;; = E(T(Rf)), t=1,.,m,

we have E paired to fR and fRe = fE over fRf. Now applying
(2.1, b) (with J' = 0,J = R) or (2.3, a) it follows that

Re = Hom,,, (fR, fRe) = E

is injective.
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In proving (a) = (b) we showed that each f;R of (b) is injective.
A proof symmetric to that of (c) = (a) shows that the fR of (c) is
injective.

COROLLARY 3.2. The indecomposable injective projective left
modules over a left artinitan ring R are (to within isomorphism)
precisely those modules of the form Re where e is a primitive
idempotent with

S(Re) = T(Rf) and S(fR) = T(eR)
for some primitive idempotent f in R.

COROLLARY 3.3. If R is a ring with minimum conditions on
left and right ideals there is a natural one-to-one correspondence be-
tween the sets of isomorphism classes of indecomposable injective
projective left R-modules and indecomposable injective projective
right R-modules.

The characterizations of injective projective modules given in
(8.1) clearly generalize Nakayama’s definition of QF rings as well as
the characterization of these rings in terms of duality. Our next
result generalizes the annihilator characterization of QF-rings.

THEOREM 3.4. Let e be an idempotent element in a left artinian
ring R. Then Re is injective if and only if there is an idempotent
f in R such that

Uin(re(I)) = fI and rg,(L;z(J)) = Je
for each left ideal I and each right ideal J of R.

Proof. (=) If Re is injective, take fe R such that fR and Re
form a pair. Then by (1.1) rz.(I) = rz.(fI) and l;x(J) = l;z(JRe) =
l;n(Je). Also Je is stable under R-endomorphisms of Re. Therefore
the annihilator conditions hold by (2.3).

(=) Suppose Re and fR satisfy the given annihilator conditions.
Then

lip(Re) = Lip(rg.(0)) = 0 = rg,(l;2(0)) = rz(fR) ,

so Re and fR satisfy part (i) of (3.1,¢). To show that part (ii) of
(3.1, ¢) holds we once again appeal to Morita’s duality theorem [10,
Th. (6.3)]. According to condition V of that theorem, we need only
show that (1) for every left ideal I of fRf and every right eRe-sub-
module W of fRe,

I'=1lgs(rpl)) and W = rp5,(Liz (W)
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and (2) for every left fRf-submodule V of fRe and every right ideal
J of eRe,

V = lr(rzV)) and J = r.z(lr(J)) .
If I is a left ideal of fRf then I = fIf and
re() S frel) + 1 = firgl) Sril) + (1 — f)Re .
Thus we have

I = fRI = L 5(rp(RI)) 21:2(rz.1)) 2L2,(rz.(I))
2Up,(rzI) + (1 — f)Re)
= Lirp(rereI)) N1z (1 — f)RE) = Lppp(rsz.(I)) .

Since it is obvious that IS, (r/z.(I)), we now have the first part of
(1). The proof of the rest of (a) is similar. By a symmetric argument
(2) also holds and the theorem is proved.

Note the conditions (b) and (c¢) of (3.1) and the condition of (3.4)
give characterizations of left artinian QF-3 rings if we demand that
Re be faithful. Also as a consequence of (3.1) we have a generali-
zation of a theorem that Harada [6] proved for rings with both
minimum conditions.

THEOREM 3.5. Let R be a left artinian QF-3 ring. Then E(Rj)
18 projective and S(Ryz) has finite composition length.

Proof. Let e be an idempotent in B with Re a faithful injective
projective left R-module. Let f be an idempotent in R such that fR
and Re form a pair. Then by (8.1) fR is injective and by (1.1,c¢) fR
is faithful. Now once we see that S(R;) has finite composition length
we will have that E(R;) is a direct summand of a direct sum of a
finite number of copies of fR (since faithful right modules contain
copies of all minimal right ideals) and hence is projective. To this
end, note that no minimal right ideal of R annihilates Re so that if
S(Rz) = P Siaer Say S, simple, then S(Rp)e = P X..: S.¢, S.e simple
over eRe. Thus S(R;) has finite length over R if S(R.)e has finite
length over eRe, and the latter is true by (3.4).

The question arises whether every left artinian QF-3 ring is
necessarily right artinian. Theorem (8.5) reduces this question to one
of the finiteness of the indecomposable injective projective right
modules over such a ring. Moreover, we note that if each factor ring
of a left artinian ring is QF-3 then it follows from (3.5) that R is
also right artinian. Independently Morita [10] and Wall [18] proved
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that this econdition is necessary and sufficient for a finite dimensional
algebra to be a generalized uniserial ring. Morita’s proof [10, Th.
(17.8)] is valid for two-sided artinian rings. Thus we see that

THEOREM 3.6. A left artinian ring is generalized uniserial if
and only if each of its factor rings is QF-3.

4. Indecomposable quasi-injectives. An R-module M is quasi-
injective in case every R-map of a submodule of M into M can be
extended to an R-endomorphism of M (see [9].) Wu and Jans [19]
have recently considered the dual notion—an R-module L is quasi-
projective in case every R-map of L into a factor module of L is the
composite of an R-endomorphism of L and the natural epimorphism.

Let R be a semi-primary ring. Then it follows from [9, Th. (1.1)]
and an argument given in [19, Proposition (2.4)] that

THEOREM. A left R-module M is an indecomposable quasi-ingec-
tive module if and only if E(M) is indecomposable and M is stable
under R-endomorphisms of E(M).

Wu and Jans [19] proved the following theorem that is valid in
the same setting.

THEOREM. A left R-module L is an indecomposable quasi-projec-
tive module if and only if
L = Re/Je
where e is a primitive idempotent and J is a two-sided ideal in R.

These results leads us to consider how the duality relations of
§ 2 apply to indecomposable quasi-injective and quasi-projective modules.

THEOREM 4.1. Let f be a primitive tdempotent in a left artinian
ring R. Let E = E(T(Rf)) and let S be the inverse R-endomorphism
ring of K. Then

X — fRIl;p(X), X < pEj
and
JR[fJ—rz(J), J < Ry

provide inverse bijections between the set of quasi-injective submodules
of E and the set of quasi-projective factors of fR.

Proof. Using the two theorems cited above one can quickly check
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that the given associations define mappings between the desired sets.
They are bijections because, using (2.3, b) and (1.1, a),

rz(l;z(X)) = X
and
Lia(re()) = Lip(re(fJ)) = fJ .

The fact that fR/fJ— rz(J) is surjective gives us the dual to
the Wu-Jans characterization of indecomposable quasi-projectives.

COROLLARY 4.2. If R is a left artinian ring, a left R-module M
18 an indecomposable quasi-injective module if and only if

M = rgy(J)

where K 1s an indecomposable injective left R-module and J is «
two-sided ideal in R.

If R is right artinian with two-sided ideal J and J’ and a primi-
tive idempotent f then it follows from an argument given in [19, p.
447] that fJ = fJ' whenever fR/fJ = fR/fJ’. On the other hand if
X and X' are isomorphic quasi-injective submodules of E = E(T(Rf))
it is easy to show that, since X and X’ are stable under endomo-
phisms of F, X= X’. Thus we have

COROLLARY 4.3. Let R be a ring with both minimum conditions.
If M is an R-module let [M] be the isomorphism class of M. Then

[X] < [FR/L;(X)], S(X) = T(Ef)

defines a one-to-one correspondence between the isomorphism classes
of indecomposable left quasi-injectives and the isomorphism classes
of indecomposable right quasi-projectives over R.

We note that the above correspondence can be shown to be precisely
that given by the vector space dual if R is a finite dimensional algebra.

The next theorem shows that the indecomposable quasi-injective
modules over R are nothing more nor less than the indecomposable
injective modules over the factor rings of E.

THEOREM 4.4. Let M be an indecomposable left module over a
left artinian ring R. Then the following are equivalent.

(a) M 1is quasi-injective.

(b) M is injective over R|J for some two-sided ideal J <l (M).

(¢) M 1is ingective over R/l (M).
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Proof. (b) = (¢) We omit this easy proof.

(¢) = (a) Suppose M is an R-module injective over R/l,(M) and
L £ ;M with a: L— M over R. Then a; L — M over R/l (M) and «
can be extended to an endomorphism of M.

(a) = (b) This implication follows from (4.2) and the next lemma.

LeMMA 4.5. Let f be a primitive idempotent in a simi-primary
ring R. Let E = E(T(Rf)) and suppose J is a two-sided ideal in R
with feJ. Then T(Rf) is a simple R/J-module and

E(z; T(RS)) = re(J) .

Proof. If JT(Rf) # 0 then Jf £ Nf, so Jf = Rf and feJ. Thus
by assumption JT(Rf) = 0 and T(Rf) is an R/J-module. Since any
of its R/J-submodules must be R submodules, T(Rf) is simple over
R/J. Also T(Rf)Sru(J) so ry(J) is an essential extension of T(Rf).
Suppose L < ;M and a: L — ry(J) over R/J. Then we can regard «
as an R-map a: L — E, so there is an R-map &: M — E that extends
a. But Ja(M) = a(JM) = 0 and we really have a: M — rz(J). This
proves the lemma.

Wu and Jans [19] showed that a left artinian ring has an infinite
number of non-isomorphic indecomposable left quasi-projectives if and
only if it has an infinite ideal lattice. Dually

THEOREM 4.6. A left artinian ring has an infinite number of
nonisomorphic indecomposable quasi-injective left modules if and only
if it has an infinite lattice of two sided ideals.

Proof. (=) If the lattice of two-sided ideals of a left artinian
ring R is finite then R has only a finite number of left indecomposable
quasi-injectives by (4.4).

(=) If R has an infinite lattice of two-sided ideals, then, writing
le R as a sum of primitive orthogonal idempotents, we see that there
is a primitive right ideal fR with an infinite number of distinct sub-
modules of the form fJ,J a two-sided ideal in R. Thus E(T(Rf))
must have an infinite number of distinet quasi-injective submodules
by (4.1). As we pointed out in the comments preceeding (4.3), no two
of these are isomorphic.

5. Quasi-projective quasi-injectives. In §4 we saw that the
correspondence X — fR/l;x(X), T(Rf) = S(X) takes indecomposable
quasi-injectives to indecomposable quasi-projectives over a left artinian
ring R. The following theorem shows that this correspondence also
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takes quasi-projective quasi-injectives to quasi-injective quasi-projec-
tives.

THEOREM 5.1. Let R be a left artinian ring with primitive
tdempotents e and f. Suppose there exist two-sided ideals J and K

wn R such that

reoram(J) = Re/Ke .
Then

FRIfT = lprem(K) .

Proof. Throughout this proof we shall use (1.1), its right-left dual
dual version and (2.3) without reference. Let ¢ and f be primitive
idempotents in R, let £ = E(T(Rf)) and E’ = E(T(eR)), and suppose

rz(J) = Re/Ke

for some two-sided ideals J and K in R. Then we must have J.Re/Ke =0
and K. rE(J) =0 so that Je = JRe e Ke and fK c lfR(rE(J)) —
Lin(re(fJ)) = fJ. Thus

(J+ K)e = Ke and f(J + K) = fJ.
Moreover we have
re(J + K) = ry(f(J + K)) = re(fJ) = ru(J)
and
le(J + K) = 1:((J + K)e) = 1;(Ke) = 1:(K) .

If eeJ + K then ReS(J+ K)e = Ke, rz(fJ) = rg(J) =0 and fJ =
Lir(rs(fJ)) = 1:£(0) = fR. So that

FRIfJ = 0 =l (Re) = Iz (Ke) = l;(K) .

If feJ+ K then fRSAJ + K) = fJ,rx(J) = r(fJ) = re(fR) = 0
and Re = Ke. So again

fRIfJ =0 =1;(K).
If neither e nor f is contained in J + K let
R=R/(J+K),e=¢e+ (J+K), f=f+(J+K).
Then as R-modules

Re = Re/Ke, fR = fR/fJ
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and, by (4.5) and its right-left symmetric version,
E(T(Rf)) = rz(J), E(T(¢R)) = I;(K) .
But now we have, over R.
Re = E(T(EY)) .

So, according to (3.1), S(fR) = T(eR) and fR is injective over R.
That is, as R modules

fR = E(T(eR)) .
Therefore
fRIfJ = Iz (K)
over K.

COROLLARY 5.2. Let R have both minimum conditions. In the
one-to-one correspondence between indecomposable left quasi-injectives
and indecomposable right quasi-projectives

[X] <= [fR/1;(X)], T(Rf) = S(X) ,

X is quasi-projective (projective) if and only if fR/lx(X) is quasi-
injective (imjective).

Proof. If R is both left and right artinian than (5.1) and its
converse are true. Thus a left indecomposable quasi-injective X with
S(X) = T(Rf) is quasi-projective if and only if X = Re/Ke, ¢ primitive,
K an ideal, if and only if fR/l;x(X) = L) (K), e primitive, K an
ideal, if and only if fR/l;x(X) is quasi-injective. To see that X is
projective if and only if fR/l,,(X) is injective take K = 0.

In conclusion we apply (5.1) to get several characterizations of
generalized uniserial rings. Let us say that a module over an artinian
ring R is uniserial in case it has a unique composition series of sub-
modules. One can easily check that an R-module is uniserial if and
only if each of its nontrivial upper (equivalently, lower) Loewy factors
is simple. Thus the upper (lower) Loewy series for a uniserial module
is its unique composition series. The ring R is generalized uniserial
in case each of its indecomposable projective modules is uniserial. One
can show directly that generalized uniserial rings satisfy each of the
conditions in the next two theorems by using Nakayama’s theorem
[13, Th. 17] that each indecomposable module over a generalized
uniserial ring is an epimorph of an indecomposable projective.

THEOREM 5.38. Let R be a left artinian ring. Then the following
are equivalent.
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(a) R 1is generalized uniserial.

(b) Every indecomposable R-module is quasi-projective.

(¢) Every indecomposable R-module is quasi-injective.

(d) Every indecomposable quasi-injective R-module is quasi-
projective.

(e) Every indecomposable quasi-projective R-module is quasi-
injective.

(a) = (b) According to Nakayama [13, Th. 17] each indecompos-
able left (right) module M over a generalized uniserial ring is isomor-
phic to Re/N*e(eR/eN*) for some primitive idempotent ¢ and some non-
negative integer k. But such a module is quasi-projective according
to [19].

(b) = (d) Trivially.

(d) = (e) Let f be a primitive idempotent in R and J a two-sided
ideal. Then by assumption and [19] the indecomposable quasi-injective
left module 75 zs)(J) = Re/Ke, ¢ primitive, K an ideal. Now apply-
ing (5.1) we have fR/fJ = lgzr.r)(K) is quasi-injective. Thus each
right indecomposable quasi-projective is quasi-injective over R. In
particular the indecomposable quasi-injective module fR/l;z(N*) has a
simple socle for each % with Z;5(N*) == fR. Thus R is right artinian
and, by symmetry, each indecomposable left quasi-projective is also
quasi-injective.

(e) = (a) We noted above that if fR/l,z(N*), f primitive, is quasi-
injective then I;,(N*™)/1;(IN*) is simple or zero.

(b) = (¢) This proof is just like (d) = (e).

(¢) = (e) Trivially.

As far as we know the next theorem and (3.6) provide the first
characterizations of generalized uniserial rings in terms of the category
of left modules over a ring.

THEOREM 5.4. The following statements about a left artinian
ring R are equivalent.

(a) R s generalized uniserial.

(b) Every indecomposable left R-module is both quasi-projective
and quasi-injective,

(¢) Every indecomposable left R-module s uniserial.

(d) For each primitive idempotent e in R, Re and E(T(Re)) are
uniserial.

Proof. (a)= (b) This is a consequence of (5.3).
(b) = (c¢) See the proof of (e) = (a) in (5.3).
(¢) = (d) Trivially.
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(d) = (a) We shall show that if f is a primitive idempotent in a
ring R that satisfies (d), fR/fN*, k =1 is quasi-injective and hence
has fN*'/fN* simple or zero. Let E = E(T(Rf)). Then T(rz(NF%))
is simple so that ry(N*) is an epimorph or Re for some primitive
idempotent ¢ in B. Since Re is uniserial we must have rz(N*) = Re/Ke
where K is some power of N. Now by (5.1) fR/fN* = lyzr)(K) is
quasi-injective and the theorem is proved.

In closing we remark on the obvious question that arises from
(5.4). Is an artinian ring R necessarily generalized uniserial if each
of its indecomposable injectives is uniserial? The answer is, of course,
yes if R is a finite dimensional algebra. However, the best we can
say in the general case is that (2.4) implies that the Loewy factors
of the indecomposable projectives over such a ring must be homogeni-
ous; and by (4.1) the only fRf — R-submodules of fR, f primitive, are
those of the form fN* k=20,1, .--.

Added in proof. G. Azumaya has a more general result than
Lemma (4.5) in Theorem 17 of A duality theory for injective modules,
Amer. J. Math, 81 (1959), 249-278.
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