A QUASI-DECOMPOSABLE ABELIAN GROUP WITHOUT PROPER ISOMORPHIC QUOTIENT GROUPS AND PROPER ISOMORPHIC SUBGROUPS

JOHN McCORMICK IRWIN AND TAKASHI ITO
A QUASI-DECOMPOSABLE ABELIAN GROUP WITHOUT PROPER ISOMORPHIC QUOTIENT GROUPS AND PROPER ISOMORPHIC SUBGROUPS

JOHN M. IRWIN AND TAKASHI ITO

All of the groups in this paper are abelian p-groups without elements of infinite height. A group is said to be quasi-indecomposable if whenever H is a summand of G then either H or G/H is finite. The p-socle of G is the subgroup consisting of all the elements x in G such that $px = 0$.

In this paper it is shown that there are conditions that can be imposed on the socle of G which are sufficient for G to (a) have no proper isomorphic subgroups; (b) have no proper isomorphic quotient groups; and (c) be quasi-indecomposable. Furthermore, it is shown that groups which make these results meaningful actually exist.

Let the cardinality of a group G be either \aleph_0 or greater than $c = 2^{\aleph_0}$. Then, as is well known, G has a proper isomorphic subgroup and a proper isomorphic quotient group. However P. Crawley [3] showed that the cardinality c is exceptional. He gave an example G_0 of cardinality c which has a standard basic subgroup and no proper isomorphic subgroups. After Crawley's example appeared, it was clear that a group, of cardinality c and with a standard basic subgroup, supplies examples of groups with strange but interesting properties. In fact R. S. Pierce [7] gave an example G_1 which has no proper isomorphic subgroups and no proper isomorphic quotient groups. And he gave also in [7] an example G_2 which is quasi-indecomposable, that is, every direct summand H of G_2 is either finite or G_2/H is finite.

The relationship between the above three properties (no proper isomorphic subgroups, no proper isomorphic quotient groups and quasi-indecomposability) of a group G with the cardinality c and a standard basic subgroup seems to authors an interesting problem. In this paper we shall give some results about this problem. In our approach the topological structure of the p-socle of the torsion completion of G will be used in an essential way. Theorem 1 tells us that the situation of the p-socle of G in the p-socle of the torsion completion of G gives us sufficient conditions for these three properties of G. In some sense it shows a relationship between the three properties. Theorem 2 shows the existence of a group which has all three properties. Theorem 3 shows the existence of a group which has no proper isomorphic subgroups and no proper isomorphic quotient groups but which is quasi-decomposable.

Now we want to add a simple proof of the following fact which
was mentioned in the opening of this section.

Let G be an infinite reduced p-group with $\text{card } G = \aleph_0$ or $\text{card } G > c$. Then G has a proper isomorphic subgroup and a proper isomorphic quotient group.

Proof. For simplicity we divide the proof into

Case 1. Suppose G is bounded. Then $G = \sum_{k=1}^{\infty} B_k$ where B_k is a direct sum of cyclic groups of order p^k, $B_k = \sum C(p^k)$. Now clearly one of these B_k's is infinite and throwing out a cyclic summand of B_k yields the desired subgroup and quotient group.

Case 2. Suppose $\text{card } G = \aleph_0$ and G is unbounded. Then $G = H \oplus K$ where H is an unbounded direct sum of cyclic groups (Exercise 19 (a), p. 143 in [4]). It is easy to find a proper subgroup A of H which is isomorphic to H and a non-zero subgroup B of H such that $H/B \cong H$. Whence we obtain our proper isomorphic subgroup $A \oplus K$ and our proper isomorphic quotient group G/B.

Case 3. Suppose G is unbounded with $\text{card } G > c$, and $B = \sum_{k=1}^{\infty} B_k$ is a basic subgroup where $B_k = \sum C(p^k)$. Then $G = B_1 \oplus B_2 \oplus \cdots \oplus B_n \oplus G_n$ for all n (Theorem 29.3 in [4]). But as is well known (card $B_k \geq \text{card } G > c$ so that some B_k must be infinite. Now throwing out a cyclic summand of B_k yields the result as in Case 1 and the proof is complete.

2. **Sufficient conditions for the three properties.** Let $p > 1$ be a fixed prime number, $C(p^n)$ be a cyclic group of order p^n, Σ be the direct sum of cyclic groups $C(p^n)$, Π be the direct product of cyclic groups $C(p^n)$ and C be the torsion group of Π, that is, Σ is the standard basic group and C is the torsion completion of Σ.

The p-socle $C[p]$ of C is a vector space over the prime field of characteristic p and can be topologized as a totally disconnected compact topological group, because Π is clearly a totally disconnected compact topological group with respect to the product topology of compact discrete topologies and the p-socle $C[p]$ of C is the closed subgroup \{ $x \mid x \in \Pi$, $px = 0$ \} of Π. Actually $U_n = \{ x \mid x \in C[p] \text{ and } h(x) \geq n \} = (p^n C)[p]$ $(n = 1, 2, \ldots)$ are open compact subgroups of $C[p]$ and $\{ U_n \}$ is a fundamental system of 0-neighborhoods in $C[p]$. These two structures on $C[p]$ which are a vector space and a totally disconnected compact group are used in an essential way in this paper.

Every continuous group homomorphism T on $C[p]$ defines compact subgroups $E_n(T) = \{ x \mid x \in C[p] \text{ and } Tx = qx \} (0 \leq q < p)$ and the compact subgroup $E(T) = E_0(T) \oplus E_1(T) \oplus \cdots \oplus E_{p-1}(T)$. We can define naturally two types of continuous group homomorphism on $C[p]$ as follows. T is a **singular** homomorphism if $E(T)$ is an open compact subgroup of $C[p]$. For instance a continuous projection on $C[p]$ is
singlar. T is a strongly singular homomorphism if for some $q \in E_q(T)$ is an open compact subgroup. If a continuous group homomorphism T on $C[p]$ has a dense subgroup which is invariant under T and on which T is one to one, T is called a semi-isomorphism on $C[p]$.

We have the following theorem which is fundamental to the ideas in what follows.

Theorem 1. Let G be a pure subgroup of C which contains Σ and $G[p]$ be the p-socle of G.

1. If $G[p]$ is not invariant under any nonsingular onto homomorphism on $C[p]$, then G has no proper isomorphic quotient groups.

2. If $G[p]$ is not invariant under any nonsingular semi-isomorphism on $C[p]$, then G has no proper isomorphic subgroups.

3. If $G[p]$ is not invariant under any nonstrongly singular projection on $C[p]$, then G is quasi-indecomposable.

Proof. Suppose φ is a homomorphism of G into G. The purity of G in C implies $\varphi(G[p] \cap U_n) \subset U_n$ for all $n = 1, 2, \ldots$. This means that the restriction of φ to $G[p]$ is continuous on $G[p]$. Since $G[p] \supset \Sigma[p]$ and $\Sigma[p]$ is dense in $C[p]$, $\varphi |_{G[p]}$ has a unique continuous homomorphism extension T on $C[p]$. Clearly $G[p]$ is invariant under T and $T(U_n) \subset U_n$ for all $n = 1, 2, \ldots$. If this T is singular, then there exists a positive integer N such that

$$T(U)_N \subset U_N \subset E(T).$$

Then we have the following decomposition of $G[p]$,

$$G[p] = (G[p] \cap U_N) \oplus R_N = (E_q(T) \cap G[p] \cap U_N) \oplus (E_{q-1}(T) \cap G[p] \cap U_N) \oplus \cdots \oplus (E_{q-N}(T) \cap G[p] \cap U_N) \oplus R_N,$$

where R_N is a finite subgroup of $G[p]$.

Because $C[p]/U_N$ is finite and $G[p]/G[p] \cap U_N$ is isomorphic to a subgroup $C[p]/U_N$, so the dimension of $G[p]/G[p] \cap U_N$ as a vector space over the prime field of characteristic p is finite. Hence there exists a finite subgroup R_N of $G[p]$ such that $G[p] = (G[p] \cap U_N) \oplus R_N$. The decomposition of $G[p] \cap U_N$ can be shown as follows. For each x in $G[p] \cap U_N$, x is the sum of $z_q \in E_q(T) \cap G[p] \cap U_N$ for $0 \leq q \leq p - 1$. Then we have $\varphi^\nu(x) = \sum_{q=0}^{p-1} T^\nu z_q = \sum_{q=0}^{p-1} q^\nu z_q$ for $0 \leq \nu \leq p - 1$. Since the determinant of Vandermonde's matrix is not zero mod p, each z_q is a linear combination of $x, \varphi(x), \ldots, \varphi^{p-1}(x)$. This means $z_q \in E_q(T) \cap G[p] \cap U_N$ for $0 \leq q \leq p - 1$.

Proof of (1). Suppose φ is an onto homomorphism of G. Then
the continuous extension T of $\varphi|_{G[p]}$ is clearly an onto homomorphism of $C[p]$ and $G[p]$ is invariant under T. By our assumption T must be singular, so we have the above decomposition of $G[p]$. Put $Q_N = (E_1(T) \cap G[p] \cap U_N) \oplus (E_2(T) \cap G[p] \cap U_N) \oplus \cdots \oplus (E_{p-1}(T) \cap G[p] \cap U_N)$, clearly $\varphi(Q_N) = Q_N$ and φ is an isomorphism on Q_N, and

\[(E_0(T) \cap G[p] \cap U_N) \oplus R_N \cong G[p]/Q_N = \varphi(G[p])/\varphi(Q_N) \cong \varphi(R_N)\]

but $\dim \varphi(R_N) \leq \dim R_N < +\infty$. This implies that $E_0(T) \cap G[p] \cap U_N = \{0\}$ and R_N is isomorphic to $\varphi(R_N)$ by φ. Therefore $\varphi|_{G[p]}$ is an isomorphism on $G[p]$. Let $0 \neq x \in G$ and the order of $x = p^n > 1$, then $0 \neq \varphi(p^{n-1}x) = p^{n-1}\varphi(x)$, so $\varphi(x) \neq 0$. Thus φ must be an isomorphism on G.

Proof of (2). Suppose φ is an isomorphism of G into G. We have to show $\varphi(G) = G$. The continuous extension T of $\varphi|_{G[p]}$ is a semigroup and $G[p]$ is invariant under T. By our assumption T must be singular, so we have the same decomposition of $G[p]$ as above.

First of all we can see $\varphi(G[p]) = G[p]$. Automatically

\[E_0(T) \cap G[p] \cap U_N = \{0\},\]

because φ is one to one, therefore $G[p] = Q_N \oplus R_N \cong \varphi(Q_N) \oplus \varphi(R_N) = Q_N \oplus \varphi(R_N) \subseteq G[p]$ but $\dim R_N = \dim \varphi(R_N) < +\infty$, this implies $\varphi(G[p]) = G[p]$. Next we can see $\varphi(G) \supseteq G[p^2]$. The group $H = \{x \mid x \in G$ and the first $N-1$ coordinates in x are zero\} is a direct summand of G and

\[H[p^2] = G[p] \cap U_N = Q_N\]

\[= (E_1(T) \cap Q_N) \oplus (E_2(T) \cap Q_N) \oplus \cdots \oplus (E_{p-1}(T) \cap Q_N)\].

We can take a finite group L such that $G = H \oplus L$. We have to show first $\varphi(G) \supseteq H[p^2]$. For arbitrary x in $H[p^2]$, $px = \sum_{q=0}^{p-1} z_q$ for some $z_q \in E_q(T) \cap Q_N$ ($1 \leq q \leq p - 1$), then each z_q is a linear combination of $p\varphi(x)$, $p^2\varphi(x)$, \cdots, $p^{p-1}\varphi(x)$. This means that there exist $x_q \in G[1 \leq q \leq p - 1]$ such that $z_q = p\varphi(x_q)$ for $1 \leq q \leq p - 1$. Therefore $px = \sum_{q=1}^{p-1} p\varphi(x_q)$, so $x - \varphi(\sum_{q=1}^{p-1} x_q) \in G[p]$, but $G[p] = \varphi(G[p])$ implies $x \in \varphi(G)$. Now $\varphi(G) \supseteq G[p^2]$ can be shown. For $x \in G[p^2]$ there exists a positive integer M and integers r_i, $0 \leq r_i \leq p - 1$ (at least one of them is not zero) such that $\sum_{i=0}^{M} r_i p^i \varphi(x) \in Q_N = H[p^2]$, because $G[p]/Q_N$ is finite dimensional. Since $\varphi(Q_N) = Q_N$, we can assume $r_n = 1$ without loss of generality. Then we find $z \in H[p^2]$ such that $p \sum_{i=0}^{M} r_i p^i \varphi(x) = pz$. But $H[p^2] \subseteq \varphi(G)$ has been shown, so $z = \varphi(z')$ for some $z' \in G$, therefore $x + \sum_{i=0}^{M} r_i p^i \varphi(x) - \varphi(z') \in G[p] = \varphi(G[p])$, this implies $x \in \varphi(G)$. Now we can see $\varphi(G) \supseteq G[p^n]$ for all $n = 1, 2 \cdots$ by induction. Namely in general $\varphi(G) \supseteq G[p^n]$ and the special form of φ on Q_N imply $\varphi(G) \supseteq H[p^{n+1}]$. And $\varphi(G) \supseteq H[p^{n+1}]$ and the finiteness of L imply $\varphi(G) \supseteq G[p^{n+1}]$.\]
Proof of (3). Suppose G is the direct sum of two subgroups G_1 and G_2 and φ is the projection onto G_1. The continuous extension T of $\varphi |_{G_1[p]}$ is also a projection defined on $C[p]$, therefore $C[p] = E_\alpha(T) \oplus E_\gamma(T)$ and $G[p] = (E_\alpha(T) \cap G[p]) \oplus (E_\gamma(T) \cap G[p])$. Since $G[p]$ is invariant under T, T must be strongly singular by our assumption about $G[p]$. Suppose $E_\alpha(T)$ is open, then $E_\alpha(T)$ is finite, hence $G[p] = E_\alpha(T) \cap G[p]$ is finite. The finiteness of $G[p]$ implies the finiteness of G_2.

The following is a direct corollary of Theorem 1.

Corollary. Let G be a pure subgroup of C which contains Σ. If $G[p]$ is not invariant under any nonstrongly singular homomorphism on $C[p]$, then G has the three properties stated in (1), (2) and (3) in Theorem 1. Namely G has no proper isomorphic quotient group and no proper isomorphic subgroup, and G is quasi-indecomposable.

3. Existence theorem

Theorem 2. There exists a pure subgroup G of C which contains Σ and satisfies three properties;

1. G has no proper isomorphic quotient groups,
2. G has no proper isomorphic subgroups,
3. G is quasi-indecomposable.

And an arbitrary pure subgroup H of C such that H contains Σ and $H[p] = G[p]$ satisfies above three properties.

This theorem comes from the corollary of Theorem 1 and following two lemmas. Lemma 1 is known as the purification property, so we omit the proof of Lemma 1 (see more general form in [6]).

Lemma 1. For an arbitrary subgroup Q between $\Sigma[p]$ and $C[p]$ there exists a pure subgroup G of C such that G contains Σ and $G[p] = Q$.

Lemma 2. For any family $\{T_\lambda | \lambda \in \Lambda\}$ of nonstrongly singular homomorphisms on $C[p]$ there exists a subgroup Q between $\Sigma[p]$ and $C[p]$ such that Q is not invariant under any $T_\lambda (\lambda \in \Lambda)$.

The existence of such Q can be shown by transfinite induction which is Crawley's idea in [3]. We need following lemma which is also essentially Crawley's.

Lemma 3. Suppose T is a nonstrongly singular homomorphism on $C[p]$. Then there exists a one-parameter family $\Delta(T) = \{x_t | 0 \leq t \leq 1\}$ of elements in $C[p]$ such that four elements x_0, x_1, Tx, and Tx, are
linearly independent for arbitrary \(s \neq t \).

Proof. The proof can be divided into two cases (a) and (b).

(a) \(T \) is singular but not strongly singular. In this case, by Baire's category theorem (\(C[p] \) is a complete metric space) there are at least two \(q \) and \(q' \) such that both \(E_q(T) \) and \(E_{q'}(T) \) are infinite compact groups, so card \(E_q(T) = \text{card} \ E_{q'}(T) = c \) (for instance, see [5], p. 31). Therefore \(\dim E_q(T) = \dim E_{q'}(T) = c \). Let \(\{y_t | 0 \leq t \leq 1\} \) be a basis of \(E_q(T) \) and \(\{y'_t | 0 \leq t \leq 1\} \) be a basis of \(E_{q'}(T) \). Then \(\mathcal{A}(T) = \{y_t + y'_t | 0 \leq t \leq 1\} \) is the desired family.

(b) \(T \) is not singular. In this case, by Baire's category theorem \(U_n/E(T) \cap U_n \) are infinite compact groups for all \(n = 1, 2, \ldots \), so as above \(\dim U_n/E(T) \cap U_n = c \). Hence \(U_n = (E(T) \cap U_n) \oplus D_n \) with \(\dim D_n = c \) for all \(n = 1, 2, \ldots \). Take \(0 \neq x_0 \in D_1 \), then \(x_0 \) and \(Tx_0 \) are linearly independent. Let \(\{z_0, z_1, \ldots, z_{2^\lambda - 1}\} \) be the group generated by \(x_0 \) and \(Tx_0 \), then by the continuity of \(T \) we can find \(U_M \) such that \(z_i + U_M + T(U_M) \) (where \(i \leq 2^\lambda - 1 \)) are mutually disjoint. For this \(M \) we take a basis \(\{y_t | 0 \leq t \leq 1\} \) of \(D_M \). Then \(\mathcal{A}(T) = \{x_0 + y_t | 0 \leq t \leq 1\} \) is the desired system. Because, suppose \(n_i(x_0 + y_t) + n'_i(Tx_0 + Ty_t) = n_i'(x_0 + y_t) + n'_i(Tx_0 + Ty_t) \) for \(i \neq t \) when \(n_i, n_i', n'_i \) are integers, then \(n_i x_0 + n_i Tx_0 + n_i y_t + n'_i T y_t = n_i' x_0 + n'_i T x_0 + n_i' y_t + n'_i T y_t \), and \(n_i x_0 + n_i Tx_0 \) must be some \(z_i \) and also \(n'_i x_0 + n'_i T x_0 \) must be some \(z_i \), but \(z_i = z_j \) by our choice of \(U_M \). This implies \(n_i = n_i' \mod p \) and \(n_i = n_i' \mod p \), therefore we have \(n_i y_t + n_i T y_t = n_i y_t + n_i T y_t \), whence \(n_i (y_t - y_t) = -n_i T(y_t - y_t) \). However \(0 \neq y_t - y_t \in D_M \) and \(D_M \cap E(T) = 0 \), hence \(n_i = n_i' = 0 \mod p \).

Proof of Lemma 2. \(\{T_\lambda | \lambda \in \Lambda\} \) is given, then card \(\Lambda \) is at most \(c \) (note that the cardinality of the set of all continuous homomorphisms on \(C[p] \) is at most \(c \), because \(C[p] \) is a separable compact group). We assume that \(\Lambda \) is a well ordered set of ordinal numbers which are less than \(\Omega \), where \(\Omega \) is the first ordinal number whose cardinality is \(c \). Choose \(e \in C[p] \) but \(e \in \Sigma[p] \), then we can construct a family of subgroups \(R_\lambda (\lambda \in \Lambda) \) by transfinite induction as follows:

(a) \(\Sigma[p] = R_0 \supseteq R_1 \supseteq R_2 \supseteq C[p] \) if \(0 \leq \lambda < \mu \) (\(\lambda, \mu \in \Lambda \)),

(b) \(\text{card} R_\lambda \leq \text{card} \lambda \cdot \aleph_0 < c \) for all \(\lambda \in \Lambda \),

(c) \(e \in R_\lambda \) but there exists \(\lambda \in \Lambda \) such that \(e - T_\lambda x_\lambda \in R_\lambda \).

Suppose \(R_\lambda \) has been constructed for all \(\lambda < \mu \in \Lambda \). Let \(R'_\mu = \bigcup_{\lambda < \mu} R_\lambda \). Then card \((\text{card} (\text{card} R'_\mu) \leq \text{card} \mu \cdot \aleph_0 < c \), where \([e] \) is the group generated by \(e \). The property of \(\mathcal{A}(T_\mu) \) in Lemma 3 guarantees the existence of \(x_0 \in \mathcal{A}(T_\mu) \) such that \(([e] + R'_\mu) \cap ([x_\lambda] + \{T_\mu x_\lambda\}) = 0 \). Then \(R_\mu = R'_\mu + \{x_\lambda\} + [e - T_\mu x_\lambda] \) is the desired subgroup. Let \(Q = \bigcup_{\lambda \in \Lambda} R_\lambda \), then by (a) \(Q \) is a subgroup of \(C[p] \) which contains \(\Sigma[p] \) and by (c) \(Q \) is not invariant under any \(T_\lambda (\lambda \in \Lambda) \).
4. A quasi-decomposable group without proper isomorphic quotient groups and proper isomorphic subgroups.

Theorem 3. There exists a pure subgroup G of C which contains Σ and satisfies properties:

(1) G has no proper isomorphic quotient groups,
(2) G has no proper isomorphic subgroups,
(3) G has a decomposition $G_1 \oplus G_2$ such that G_1 and G_2 are not bounded.

The following lemma is essential for our proof of this theorem.

Lemma 4. For any family $\{T_\lambda | \lambda \in \Lambda\}$ of nonsingular homomorphisms on $C[p]$ there exists a subgroup Q between $\Sigma[p]$ and $C[p]$ such that Q is not invariant under any $T_\lambda (\lambda \in \Lambda)$ but invariant under the canonical projection P_e onto even coordinates.

The outline of the proof of this lemma will be given later.

Proof of Theorem 3. Every element of C has countable coordinates as an element of the product space $\prod_{n=1}^\infty C(p^n)$; $x \in C$ is called an even (odd) element if all odd (even) coordinates are zero. For a subset A of C $A'(A^o)$ means the set of all even (odd) elements in A. Then clearly $C = C^e \oplus C^o$ and $\Sigma = \Sigma^e \oplus \Sigma^o$. By Lemma 4 there exists a subgroup Q between $\Sigma[p]$ and $C[p]$ such that Q is not invariant under any nonsingular homomorphisms on $C[p]$ but is invariant under P_e, therefore $\Sigma'[p] = \Sigma[p]^e \subset Q^e \subset C[p]^e = C'[p]$, $\Sigma^o[p] = \Sigma[p]^o \subset Q^o \subset C[p]^o = C^o[p]$ and $Q = Q^e \oplus Q^o$. With exactly the same proof as that of Lemma 1 we can show that there exists a pure subgroup $G_i(G_2)$ of $C^e(C^o)$ which contains $\Sigma'(\Sigma^o)$ and $G_i[p] = Q'(G_i[p] = Q^o)$. Clearly G_i and G_2 are not bounded. Let $G = G_1 \oplus G_2$, then G is a pure subgroup of C which contains Σ and $G[p] = G_i[p] \oplus G_2[p] = Q^e \oplus Q^o = Q$. By Theorem 1 G has the properties (1) and (2) in Theorem 3.

The outline of the proof of Lemma 4. In order to prove Lemma 4 we can apply a similar method to the construction of Q in Lemma 2. However before doing it we have to prepare some reformation of Lemma 3. Precisely our reformation is as follows, hereafter we shall use notations $A^e = P_e(A)(A^o = (I - P_e)(A))$ for a subset A of $C[p]$ and $x^e = P_e x (x^o = x - P_e x)$ for an element x in $C[p]$.

For an arbitrary nonsingular homomorphism T we can find a one-parameter family $\Delta(T) = \{x_t | 0 \leq t \leq 1\}$ of elements in $C[p]$ which has one of the following six properties: $1^e, 2^e, 3^e, 1^o, 2^o$ and 3^o.

1° $x_t, Tx_t \in C[p]^*$ for all $0 \leq t \leq 1$ and four elements x_s, x_t, Tx_s, and Tx_t are linearly independent for arbitrary $s \neq t$.

2° there exists $q, 0 \leq q \leq p - 1$ such that $x_t \in C[p]^0$ and

$$Tx_t - qx_t \in C[p]^*$$

for all $0 \leq t \leq 1$ and four elements $x_s, x_t, Tx_s - qx_s$, and $Tx_t - qx_t$ are linearly independent for arbitrary $s \neq t$.

3° $x_t \in C[p]^e$ for all $0 \leq t \leq 1$ and six elements $x_s, x_t, (Tx_s)^0, (Tx_s)^e$, $(Tx_t)^0$ and $(Tx_t)^e$ are linearly independent for arbitrary $s \neq t$.

1°, 2° and 3° are dual properties 1°, 2° and 3° by exchanging odd for even.

In the proof of this we have some difficulty coming from non-commutativity of nonsingular homomorphism and P_\ast. The proof in our original manuscript needs a long computation, in this paper we omit our detailed computation according to referee's suggestion but authors can supply the detailed proof to interested readers.

Using above $\mathcal{A}(T)$ the existence of Q in Lemma 4 can be shown as follows. Let $\{T_\lambda | \lambda \in A\}$ be a given family of nonsingular homomorphisms on $C[p]$. We assume that A is a well ordered set of ordinal numbers which are less than the first ordinal number whose cardinality is c. Choose $c \in C[p]$ but $c^0, c^e \notin \Sigma[p]$. By transfinite induction we can construct the following family of subgroups $R_(\lambda \in A)$:

(a) $\Sigma[p] = R_0 \subset R_1 \subset R_\lambda \subset C[p]$ if $0 \leq \lambda < \mu (\lambda, \mu \in A)$,

(b) card $R_\lambda \leq $ card $\lambda \cdot \kappa_c < c$ for all $\lambda \in A$,

(c) R_λ is invariant under P_λ for all $\lambda \in A$,

(d) c^0 and $c^e \in R_\lambda$ but there exists $x_\lambda \in R_\lambda \cap \mathcal{A}(T_\lambda)$ such that $c^0 - T_\lambda x_\lambda$ or $c^e - T_\lambda x_\lambda$ or $c - T_\lambda x_\lambda \in R_\lambda$ for all $\lambda \in A$.

Suppose R_λ has been constructed for all $\lambda < \mu \in A$. Let $R_\mu = \bigcup_{\lambda < \mu} R_\lambda$. Then $\text{card } R_\mu \leq \text{card } \lambda \cdot \kappa_c < c$ and R_μ is invariant under P_λ and c^0 and $c^e \in R_\mu$. Let $\mathcal{A}(T_\mu)$ be one having one of properties $1° \sim 3°$ and $1° \sim 3°$. Suppose $\mathcal{A}(T_\mu)$ has property $1°$, then we can find $x_\mu \in \mathcal{A}(T_\mu)$ such that $(R_\mu' + [c^e] + [c^e]) \cap (\{x_\mu\} \bigoplus [T_\mu x_\mu]) = \{0\}$. Let

$$R_\mu = R_\mu' + [x_\mu] + [c^0 - T_\mu x_\mu] ,$$

then clearly R_μ satisfies above (a), (b) and (c). And c^0 and $c^e \in R_\mu$ also holds. Suppose $c^e \in R_\mu$, then $c^0 = x + nx_\mu + m(c^0 - T_\mu x_\mu)$ for some $x \in R_\mu'$ and some integers n and m, so $x + (1 - m)c^0 = nx_\mu - mT_\mu x_\mu$, but by our choice of $x_\mu, nx_\mu - mT_\mu x_\mu = 0$ and $x + (m - 1)c^0 = 0$. This implies $n = m = 0 \text{ mod } p$ and $c^e = x \in R_\mu'$ which is a contradiction. Suppose $c^e \in R_\mu$, then $c^e = x + nx_\mu + m(c^0 - T_\mu x_\mu)$ for some $x \in R_\mu'$ and some integers n and m, but x_μ and $T_\mu x_\mu \in C[p]^e$, so $c^e = x \in R_\mu'$ which
is also a contradiction. Suppose \(\triangle(T_\mu) \) has property 2°, then we can find \(x_\mu \in \triangle(T_\mu) \) such that \((R'_\mu + [c^\circ] + [c^\circ]) \cap ([x_\mu] \oplus [T_\mu x_\mu - qx_\mu]) = \{0\} \). Let \(R_\mu = R'_\mu + [x_\mu] + [c^\circ - T_\mu x_\mu + qx_\mu] \), then clearly \(R_\mu \) satisfies above (a), (b) and (c). And \(c^\circ \) and \(c^\circ \in R_\mu \) also holds. Suppose \(c^\circ \in R_\mu \), then \(c^\circ = x + nx_\mu + m(c^\circ - T_\mu x_\mu + qx_\mu) \) for some \(x \in R'_\mu \) and some integers \(n \) and \(m \), but \(x_\mu \in C[p]^0 \) and \(T_\mu x_\mu - qx_\mu \in C[p]^* \), hence we have \(c^\circ = x^\circ + nx_\mu \), that is, \(-x^\circ + c^\circ = nx_\mu \). Our choice of \(x_\mu \) implies \(nx_\mu = 0 = -x^\circ + c^\circ \), so we have \(c^\circ = x^\circ \in R'_\mu \) which is a contradiction. Suppose \(c^\circ \in S_\mu \), then \(c^\circ = x + nx_\mu + m(c^\circ - T_\mu x_\mu + qx_\mu) \) for some \(x \in R'_\mu \) and some integers \(n \) and \(m \). Hence \(-x + (1 - m)c^\circ = nx_\mu - m(T_\mu x_\mu - qx_\mu) \), but by our choice of \(x_\mu \) we see \(-x + (1 - m)c^\circ = 0 = nx_\mu - m(T_\mu x_\mu - qx_\mu) \). This implies \(n = m = 0 \mod p \), so \(c^\circ = x \in R'_\mu \) which is also a contradiction. Suppose \(\triangle(T_\mu) \) has property 3°, then we can find \(x_\mu \in \triangle(T_\mu) \) such that \((R'_\mu + [c^\circ] + [c^\circ]) \cap ([x_\mu] \oplus [(T_\mu x_\mu)^0] \oplus [(T_\mu x_\mu)^*]) = \{0\} \). Let

\[
R_\mu = R'_\mu + [x_\mu] + [c^\circ - (T_\mu x_\mu)^0] + [c^\circ - (T_\mu x_\mu)^*].
\]

Then \(R_\mu \) clearly satisfies (a), (b) and (c). (a) and (c) \(c^\circ \) and \(c^\circ \in R_\mu \) can be seen as follows. Suppose \(c^\circ = x + nx_\mu + m(c^\circ - (T_\mu x_\mu)^0) + m'(c^\circ - (T_\mu x_\mu)^*) \) for some \(x \in R'_\mu \) and integers \(n \), \(m \) and \(m' \), then

\[
c^\circ = x^\circ + nx_\mu + m(c^\circ - (T_\mu x_\mu)^0),
\]

so \(-x^\circ + (1 - m)c^\circ = nx_\mu - m(T_\mu x_\mu)^0 = 0 = -x^\circ + (1 - m)c^\circ \) by our choice of \(x_\mu \). Hence \(m = 0 \) and \(c^\circ = x^\circ \in R'_\mu \) which is a contradiction. We can see also \(c^\circ \in R_\mu \) for same reason. And \(x_\mu \) and \(c - T_\mu x_\mu \in R_\mu \) is clear. The construction of \(R_\mu \) for \(\triangle(T_\mu) \) having one of properties 1° ~ 3° is exactly similar by exchanging odd for even.

Let \(Q = \bigcup_{i \in I} R_i \). Then the above properties (a) ~ (d) for all \(R_i \) guarantee that \(Q \) is a subgroup between \(\Sigma[p] \) and \(C[p] \) not invariant under any \(T_i(\lambda \in A) \) but invariant under \(P_i \).

References

Received August 22, 1967.

WAYNE STATE UNIVERSITY AND
HOKKAIDO UNIVERSITY
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jorge Alvarez de Araya, A Radon-Nikodým theorem for vector and operator valued measures</td>
<td>1</td>
</tr>
<tr>
<td>Deane Eugene Arganbright, The power-commutator structure of finite p-groups</td>
<td>11</td>
</tr>
<tr>
<td>Richard Eugene Barlow, Albert W. Marshall and Frank Proschan, Some inequalities for starshaped and convex functions</td>
<td>19</td>
</tr>
<tr>
<td>David Clarence Barnes, Some isoperimetric inequalities for the eigenvalues of vibrating strings</td>
<td>43</td>
</tr>
<tr>
<td>David Hilding Carlson, Critical points on rim-compact spaces</td>
<td>63</td>
</tr>
<tr>
<td>Allan Matlock Weber Carstens, The lattice of pretopologies on an arbitrary set S</td>
<td>67</td>
</tr>
<tr>
<td>S. K. Chatterjea, A bilateral generating function for the ultraspherical polynomials</td>
<td>73</td>
</tr>
<tr>
<td>Ronald J. Ensey, Primary Abelian groups modulo finite groups</td>
<td>77</td>
</tr>
<tr>
<td>Harley M. Flanders, Relations on minimal hypersurfaces</td>
<td>83</td>
</tr>
<tr>
<td>Allen Roy Freedman, On asymptotic density in n-dimensions</td>
<td>95</td>
</tr>
<tr>
<td>Kent Ralph Fuller, On indecomposable injectives over artinian rings</td>
<td>115</td>
</tr>
<tr>
<td>George Isaac Glauberman, Normalizers of p-subgroups in finite groups</td>
<td>137</td>
</tr>
<tr>
<td>William James Heinzer, On Krull overrings of an affine ring</td>
<td>145</td>
</tr>
<tr>
<td>John McCormick Irwin and Takashi Ito, A quasi-decomposable abelian group without proper isomorphic quotient groups and proper isomorphic subgroups</td>
<td>151</td>
</tr>
<tr>
<td>Allan Morton Krall, Boundary value problems with interior point boundary conditions</td>
<td>161</td>
</tr>
<tr>
<td>John S. Lowndes, Triple series equations involving Laguerre polynomials</td>
<td>167</td>
</tr>
<tr>
<td>Philip Olin, Indefinability in the arithmetic isolic integers</td>
<td>175</td>
</tr>
<tr>
<td>Ki-Choul Oum, Bounds for the number of deficient values of entire functions whose zeros have angular densities</td>
<td>187</td>
</tr>
<tr>
<td>R. D. Schafer, Standard algebras</td>
<td>203</td>
</tr>
<tr>
<td>Wolfgang M. Schmidt, Irregularities of distribution. III</td>
<td>225</td>
</tr>
<tr>
<td>Richard Alfred Tapia, An application of a Newton-like method to the Euler-Lagrange equation</td>
<td>235</td>
</tr>
</tbody>
</table>