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All of the group in this paper are abelian p-groups without
elements of infinite height. A group is said to be quasi-
indecomposable if whenever H is a summand of G then either
H or G/H is finite. The p-socle of G is the sub-group consisting
of all the elements x in G such that px — 0.

In this paper it is shown that there are conditions that
can be imposed on the socle of G which are sufficient for G
to (a) have no proper isomorphic subgroups; (b) have no proper
isomorphic quotient groups; and (c) be quasiindecomposable.
Furthermore, it is shown that groups which make these results
meaningful actually exist.

Let the cardinality of a group G be either ^ 0 or greater than
c = 2**°. Then, as is well known, G has a proper isomorphic subgroup
and a proper isomorphic quotient group. However P. Crawley [3]
showed that the cardinality c is exceptional. He gave an example Go

of cardinality c which has a standard basic subgroup and no proper
isomorphic subgroups. After Crawley's example appeared, it was clear
that a group, of cardinality c and with a standard basic subgroup,
supplies examples of groups with strange but interesting properties.
In fact R. S. Pierce [7] gave an example Gι which has no proper
isomorphic subgroups and no proper isomorphic quotient groups. And
he gave also in [7] an example G2 which is quasi-indecomposable, that
is, every direct summand H of G2 is either finite or G2/H is finite.

The relationship between the above three properties (no proper
isomorphic subgroups, no proper isomorphic quotient groups and quasi-
indecomposability) of a group G with the cardinality c and a standard
basic subgroup seems to authors an interesting problem. In this paper
we shall give some results about this problem. In our approach the
topological structure of the p-socle of the torsion completion of G will
be used in an essential way. Theorem 1 tells us that the situation
of the p-socle of G in the p-socle of the torsion completion of G gives
us sufficient conditions for these three properties of G. In some sense it
shows a relationship between the three properties. Theorem 2 shows the
existence of a group which has all three properties. Theorem 3 shows
the existence of a group which has no proper isomorphic subgroups and
no proper isomorphic quotient groups but which is quasi-decomposable.

Now we want to add a simple proof of the following fact which
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was mentioned in the opening of this section.
Let G be an infinite reduced p-group with card G = V$o or card

G > c. Then G has a proper isomorphic subgroup and a proper
isomorphic quotient group.

Proof. For simplicity we divide the proof into
Case 1; Suppose G is bounded. Then G = Σ*=i-B* where Bk is a

direct sum of cyclic groups of order pk, Bk = Σ C(pk). Now clearly one
of these Bk's is infinite and throwing out a cyclic summand of 1?A yields
the desired subgroup and quotient group.

Case 2. Suppose card G = ^ 0 and G is unbounded. Then G =
H($K where if is an unbounded direct sum of cyclic groups (Exercise
19 (a), p. 143 in [4]). It is easy to find a proper subgroup A of H
which is isomorphic to H and a non-zero subgroup B of H such that
H/B ~ H. Whence we obtain our proper isomorphic subgroup A φ K
and our proper isomorphic quotient group G/J5.

Case 3. Suppose G is unbounded with card G > c, and B = ΣΓ=i-B*
is a basic subgroup where Bk = Σ C(pk). Then G = ^ © J52 φ φ
Bn®Gn for all w (Theorem 29.3 in [4]). But as is well known (card
B)*° >̂ card G > c so that some 2?% must be infinite. Now throwing
out a cyclic summand of Bn yields the result as in Case 1 and the
proof is complete.

2* Sufficient conditions for the three properties* Let p > 1
be a fixed prime number, C{pn) be a cyclic group of order pn, Σ be
the direct sum of cyclic groups C(pn), Π be the direct product of
cyclic groups C(pn) and C be the torsion group of /7, that is, I7 is
the standard basic group and C is the torsion completion of Σ.

The p-socle C[p] of C is a vector space over the prime field of
characteristic p and can be topologized as a totally disconnected
compact topological group, because Π is clearly a totally disconnected
compact topological group with respect to the product topology of
compact discrete topologies and the p-socle C[p] of C is the closed
subgroup {x I x e /7, px — 0} of Π. Actually Un = {x \ x e C[p] and
h(x) ^ n} = (pnC)[p] (n = 1, 2 •) are open compact subgroups of C[p]
and {Un} is a fundamental system of 0-neighborhoods in C[p\. These
two structures on C[p] which are a vector space and a totally dis-
connected compact group are used in an essential way in this paper.

Every continuous group homomorphism T on C[p] defines compact
subgroups Eg(T) = {x \ x e C[p] and Tx = qx) (0 <£ q < p) and the compact
subgroup E(T) = EΌ(Γ) φ ^ ( Γ ) φ φ EP^(T). We can define
naturally two types of continuous group homomorphism on C[p] as
follows. T is a singular homomorphism if E(T) is an open compact
subgroup of C[p\. For instance a continuous projection on C[p] is
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singular. Γis a strongly singular homomorphism if for some q Eq(T)
is an open compact subgroup. If a continuous group homomorphism
T on C[p] has a dense subgroup which is invariant under T and on
which T is one to one, T is called a semi-isomorphism on C[p].

We have the following theorem which is fundamental to the ideas
in what follows.

THEOREM 1. Let G be a pure subgroup of C which contains Σ
and G[p] be the p-socle of G.

(1) // G[p] is not invariant under any nonsingular onto
homomorphism on C[p], then G has no proper isomorphic quotient
groups.

(2) // G[p] is not invariant under any nonsingular semi-
isomorphism on C[p], then G has no proper isomorphic subgroups.

(3) If G[p] is not invariant under any nonstrongly singular
projection on C[p], then G is quasi-indecomposable.

Proof. Suppose φ is a homomorphism of G into G. The purity of
G in C implies φ(G[p] Π Un) c Un for all n = 1, 2, . This means that
the restriction of φ to G[p] is continuous on G[p], since G[P]ZDΣ[P]

and Σ[p] is dense in C[p], φ \ Gίp] has a unique continuous homomorphism
extension T on C[p]. Clearly G[p] is invariant under T and T(Un) c Un

for all n = 1,2, . If this T is singular, then there exists a positive
integer N such that

T(UN)aUNaE(T).

Then we have the following decomposition of G[p],

G[p] = (G[p] Π UN) ®RN = (E0(T) n G[p] n UN)

n G[p] n uN) φ θ (EP-i(T) n G[p\ n uN) e RN ,

where RN is a finite subgroup of G[p].
Because C[p]/UN is finite and G[p]/G[p] Π UN is isomorphic to a

subgroup C[p]/UN, so the dimension of G[p]/G[p] Π Z7jy as a vector
space over the prime field of characteristic p is finite. Hence there
exists a finite subgroup RN of G[p] such that G[p] = (G[p] Π E/*) φ J?^.
The decomposition of G[p] Π UN can be shown as follows. For each
x in G[p] ΠUN x is the sum of zqeEq(T) (0 ̂  q < p); x = Σ S ^
Then we have φ\x) = Σ p J Tzq = ΣjrJ g^ff for 0 ^ v ^ p - 1. Since
the determinant of Vandermonde's matrix is not zero mod p, each zq

(0 ^ q ^ p — 1) is a linear combination of x, φ(x), , ̂ ^(a;). This
means zq e Eq(T) f] G[p] Γ) UN for 0 ^ q ^ p - 1.

Proof of (1). Suppose φ is an onto homomorphism of G. Then
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the continuous extension T of φ\0[Pi is clearly an onto homomorphism
of C[p] and G[p] is invariant under T. By our assumption T must
be singular, so we have the above decomposition of G[p]. Put QN =

(E^T) n G[P] n uN)®(E2(T) n G[p] n uN)@ ®(EP^(T) n Gfo] n uN),
clearly φ{QN) = QN and φ is an isomorphism on QN, and

(#0(T) n G[p] n L7*) 0 β * = G[P]/QN = φ(G[p])/φ(QN) = φ{RN)

but dim φ{RN) ^ dimRN < +00. This implies that E0(T) Γ) G[p] f)UN =
{0} and JB^ is isomorphic to <p(RN) by φ. Therefore φ\GίP-\ is an
isomorphism on G[p]. Let O ^ c e e G and the order of x = p π > 1,
then 0 9̂  ^(p™"1^) = p%~1^(α;), so <p(cc) Φ 0. Thus <p must be an isomor-
phism on G.

Proof of (2). Suppose <p is an isomorphism of G into G. We have
to show φ(G) = G. The continuous extension T of φ \ Gίp] is a semi-
isomorphism and G[p] is invariant under T. By our assumption T
must be singular, so we have the same decomposition of G[p] as above.
First of all we can see φ{G[p\) = G[p]. Automatically

E0(T) n G[P] n J7ff = {0},

because <p is one to one, therefore G[p] = QN(& RN = Ψ{QN) 0 <P{RN) =
QN@<P(RN) C G[p] but dim J?Λ, = d i m ^ ^ ) < + 00, this implies φ(G[p]) =
G[p]. Next we can see φ(G) 3 G[p2]. The group H = {x \ x e G and the
first N — 1 coordinates in 77 are zero} is a direct summand of G and

Π UN - Q^

n QN) 0 (S2(T) n QN) 0 0 (tfp-ΛΓ) n QΛ0 .

We can take a finite group L such that G = H@L. We have to show
first 9?(G) z> Jϊ[p2]. For arbitrary # in iϊ[p 2] px = Y^zl zq for some
zqeEq(T) Γ\QN (1 ^ q ^ p — 1), then each zq is a linear combination
of pφ(x), pφ2(x), , pφv~ι(x). This means that there exist xqeG
(1 ^ q <; p — 1) such that 2ff = pφ(xq) for 1 ^ g ^ p — 1. Therefore
P£ = Έ/qZ[pφ{xq), so x - ^(Σ?=ί»g)eGb], but G[p] = φ(G[p]) implies
^ G ^ ( G ) . Now φ(G)i)G[p2] can be shown. For xeG[p2] there exists
a positive integer M and integers ri9 0 ^ r4 ^ p — 1 (at least one of
them is not zero) such that YJ^ripφ\x) e QN = £Γ[p], because G[p]/QΛr
is finite dimensional. Since <p(QΛr) = QΛΓ, we can assume r0 = 1 without
loss of generality. Then we find z e H[p2] such that p Σ £ o r^(x) = p«.
But Jϊ[2>2] c φ(G) has been shown, so z = φ{z!) for some zf e G, therefore
» + ^iίiTiψ^x) — 9>(2;) e G[p] = φ(G[p\), this implies x e φ(G). Now we
can see φ(G) =) G[p%] for all n = 1,2 by induction. Namely in general
cp(G)=)G[p%] and the special form of φ on QN imply ^(G) z>
And ^ ( G ) D J Ϊ b % + 1 ] and the finiteness of L imply φ(G) Z) G[pn+1]
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Proof of (3). Suppose G is the direct sum of two subgroups Gι

and G2 and φ is the projection onto Gγ. The continuous extension T of
φ\GίPl is also a projection defined on C[p], therefore C[p] = £f

0(T)φ£r

1(Γ)
and G[p] = (EQ(T) n G[p]) φ (E^T) n G[p]). Since G[p] is invariant
under T, T must be strongly singular by our assumption about G[p].
Suppose E^T) is open, then E0(T) is finite, hence G2[p] = E0(T) Π G[p]
is finite. The finiteness of G2[p] implies the finiteness of G2.

The following is a direct corollary of Theorem 1.

COROLLARY. Let G be a pure subgroup of C which contains Σ.
If G[p] is not invariant under any nonstrongly singular homomor-
phism on C[p], then G has the three properties stated in (1), (2) and
(3) in Theorem 1. Namely G has no proper isomorphic quotient group
and no proper isomorphic subgroup, and G is quasi-indecomposable.

3* Existence theorem

THEOREM 2. There exists a pure subgroup G of C which contains
Σ and satisfies three properties;

(1) G has no proper isomorphic quotient groups,
(2) G nas no proper isomorphic subgroups,
( 3 ) G is quasi-indecomposable.

And an arbitrary pure subgroup H of C such that H contains Σ and
H[p] = G[p] satisfies above three properties.

This theorem comes from the corollary of Theorem 1 and following
two lemmas. Lemma 1 is known as the purification property, so we
omit the proof of Lemma 1 (see more general form in [6]).

LEMMA 1. For an arbitrary subgroup Q between Σ[p] and C[p]
there exists a pure subgroup G of C such that G contains Σ and
G[p] = Q.

LEMMA 2. For any family {Tλ \XeΛ} of nonstrongly singular
homomorphisms on C[p] there exists a subgroup Q between Σ[p] and
C[p] such that Q is not invariant under any Tλ(XeΛ).

The existence of such Q can be shown by transfinite induction
which is Crawley's idea in [3]. We need following lemma which is
also essentially Crawley's.

LEMMA 3. Suppose T is a nonstrongly singular homomorphism
on C[p], Then there exists a one-parameter family j(T) = {xt 10 rg t^ 1}
of elements in C[p] such that four elements xsy xt, Txs and Txt are
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linearly independent for arbitrary s Φ t.

Proof. The proof can be divided into two cases (a) and (6).
(a) T is singular but not strongly singular. In this case, by

Baire's category theorem (C[p] is a complete metric space) there are
at least two q and q' such that both Eq(T) and Eq,(T) are infinite
compact groups, so card Eq{T) — card£y(Γ) = c (for instance, see
[5], p. 31). Therefore dim Eq(T) = dimEq,(T) = c. Let {yt | 0 ^ ί ^ 1}
be a basis of £7,(7) and {#{ | 0 ^ ί ^ 1} be a basis of Eq,(T). Then
j ( T ) - {i/t + y\ I 0 ^ t ^ 1} is the desired family.

(b) T is not singular. In this case, by Baire's category theorem
UJE(T) Π Un are infinite compact groups for all n = 1, 2 , so as
above dim UJE(T) ΓiUn = c. Hence £/„ = (^(Γ) n Un)@Dn with dim
Dn = c for all w = 1, 2, . Take 0 ^ ajoeA> then ^0 and jΓα?0 are
linearly independent. Let {z0, z19 , z^} be the group generated by
a?0 and IX, then by the continuity of T we can find UM such that
Zi+ UM+ T{UM) (0 ^ i ^ p2 - 1) are mutually disjoint. For this M
we take a basis {yt | 0 ^ t ^ 1} of Z)i¥. Then J(T) - {a?0 + yt I 0 ^ ί ^ 1}
is the desired system. Because, suppose n^Xo + yt) + ^(ΓXQ + ϊ7?/^ =
wl(#o + ?/s) + wJ(Γa?0 + 2V.) for s Φ t where nlf n2, n[ and n\ are integers,
then n,x0 + ^2Γ^o + nλyt + ^ T ^ = nja?o + n'2Tx0 + wJi/, + n'3Tya, and
^^o + ^2^0 must be some z€ and also n[x0 + ^ ^ o must be some zj9

but ^ = Zj by our choice of UM. This implies ^ = n[ mod 29 and
n2 = ^ m o d p , therefore we have w ^ + w2Γ2/t = ntys + n2Tys, whence
î(2/ί -Vs)= - n2T(yt - τ/s). However 0Φyt-yse DM and Z)3/ Π E(T) =

{0}, hence ^ = ^2 = 0 mod p.

Proof of Lemma 2. {Tλ\XeΛ} is given, then card Λ is at most
c (note that the cardinality of the set of all continuous homomorphisms
on C[p] is at most c, because C[p] is a separable compact group). We
assume that A is a well ordered set of ordinal numbers which are less
than Ω, where Ω is the first ordinal number whose cardinality is c.
Choose eeC[p] but egΣ[p], then we can construct a family of sub-
groups Rλ(X £ A) by transfinite induction as follows:

( a ) Σ[p] = Ro c Rλ c Rμ c C[p] if 0 ^ λ < μ (λ, μ e Λ),
( b ) card Rλ ^ card λ ^ 0 < c for all XeA,
( c ) e g JŜ  but there exists xλ e Rλ Π zί(^) such that e — T?xλ e Rλ.

Suppose Rλ has been constructed for all λ < μ e Λ. Let β;, = \Jλ<μRχ.
Then card ([e]+ J?y ^ card//-3ζ o<^, where [e] is the group generated
by e. The property of j(Tμ) in Lemma 3 guarantees the existence
of xtoej(Tμ) such that ([e] + R'μ) Π ([α?t0] + [2>«J) = {0}. Then ^ =
Rμ + [̂ ίo] + [e — TμxtQ] is the desired subgroup. Let Q = {JXBARX*

then by (a) Q is a subgroup of C[p] which contains Σ[p] and by (c)
Q is not invariant under any T^(λ6yl).
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4* A quasi^decomposable group without proper isomorphic
quotient groups and proper isomorphic subgroups*

THEOREM 3. There exists a pure subgroup G of C which contains
Σ and satisfies properties;

( 1 ) G has no proper isomorphic quotient groups,
( 2 ) G has no proper isomorphic subgroups,
( 3 ) G has a decomposition Gx 0 G2 such that Gx and G2 are not

bounded.

The following lemma is essential for our proof of this theorem.

LEMMA 4. For any family {Tλ\XeΛ} of nonsingular homomor-
phisms on C[p] there exists a subgroup Q between Σ[p] and C[p] such
that Q is not invariant under any Tλ(X e A) but invariant under the
canonical projection Pe onto even coordinates.

The outline of the proof of this lemma will be given later.

Proof of Theorem 3. Every element of C has countable coordi-
nates as an element of the product space Π»=i C(pn)\ x e C is called
an even (odd) element if all odd (even) coordinates are zero. For a
subset A of C Ae(A°) means the set of all even (odd) elements in A.
Then clearly C = Ce 0 C° and Σ = Σe 0 Σ°. By Lemma 4 there exists
a subgroup Q between Σ[p] and C[p] such that Q is not invariant under
any nonsingular homomorphisms on C[p] but is invariant under Pe,
therefore Σe[p] = Σ[p]e c Q δ c C[p]e = Ce[p], Σ°[p] = Σ[p]°c QoaC[p]° =
C°[p] and Q = Qe 0 Q°. With exactly the same proof as that of Lemma
1 we can show that there exists a pure subgroup Gi(G2) of Ce(C°)
which contains Σe(Σ°) and G\p] = Qe(G2[p] = Q°). Clearly Gλ and G2

are not bounded. Let G = Gλ 0 G2, then G is a pure subgroup of C
which contains Σ and G[p] = G\p] 0 G2[p] = Qe 0 Q° = Q. By Theorem
1 G has the properties (1) and (2) in Theorem 3.

The outline of the proof of Lemma 4. In order to prove Lemma
4 we can apply a similar method to the construction of Q in Lemma
2. However before doing it we have to prepare some reformation of
Lemma 3. Precisely our reformation is as follows, hereafter we shall
use notations Ae = Pe(A)(A° = (I - Pe)(A)) for a subset A of C[p] and
xe = Pex(x° = x — Pex) for an element x in C[p\.

For an arbitrary nonsingular homomorphism T we can find a
one-parameter family j(T) = {xt |0 ^ t ^ 1} of elements in C[p] which
has one of the following six properties; 1°, 2°, 3°, 1% 2e and 3%
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1° xt, Txt e C[p]° for all 0 ^ t ^ 1 and four elements xSJxu Txs

and Txt are linearly independent for arbitrary s Φ t,
2° there exists q,0 ^ q tί P — 1 such that xt e C[p]° and

Txt - qxt e C[p]e

for all 0 ^ t ^ 1 and four elements x8, xt, Txs — qxs and Txt — qxt

are linearly independent for arbitrary s Φ t,
3° xt e C[p]° for allO^t^l and six elements x8, xu (Txs)\ (Txs)%

(Txt)° and (Txt)
e are linearly independent for arbitrary s Φ t.

1% 2e and 3e are dual properties 1°, 2° and 3° by exchanging odd
for even.

In the proof of this we have some difficulty coming from non-
commutativity of nonsingular homomorphism and Pe. The proof in
our original manuscript needs a long computation, in this paper we
omit our detailed computation according to referee's suggestion but
authors can supply the detailed proof to interested readers.

Using above A(T) the existence of Q in Lemma 4 can be shown as
follows. Let {Tλ \X e A} be a given family of nonsingular homomorphisms
on C[p}. We assume that A is a well ordered set of ordinal numbers
which are less than the first ordinal number whose cardinality is c.
Choose ceC[p] but c°,c* $Σ[p]. By transfinite induction we can
construct the following family of subgroups Rλ(XeΛ);

( a ) Σ[p] = Ro c Rλ c Rμ c C[p] if 0 ^ λ < μ(X, μ e A),
(b ) card Rλ <; card λ ^ 0 < c for all XeΛ,
(c ) Rλ is invariant under Pe for all XeΛ,
( d ) c° and ce $ Rλ but there exists xλeRλf] //(Tλ) such that

c° - Tλxλ or ce - Tλxλ or c - Tλxλ e Rλ for all XeΛ.

Suppose Rλ has been constructed for all X < μ e A. Let R'μ =
\Jλ<μRχ. Then c a r d i ^ ^ cardλ ^ 0 < c and R\ is invariant under Pe

and c° and ce QR\. Let j(Tμ) be one having one of properties 1° ~ 3°
and le ~ 3e. Suppose j(Tμ) has property 1°, then we can find xμ e j(Tμ)
such that (R'μ + [c°] + [ce]) Π ([xμ] 0 [Tμxμ]) = {0}. Let

Rμ = R'μ + [xμ] + [c° - Γ ^ ] ,

then clearly Rμ satisfies above (a), (b) and (c). And c° and ce £Rμ also
holds. Suppose c° e Rμ, then c° = x + nxμ + m(c° — ΓΛ^) for some xeRμ

and some integers n and m, so — x + (1 — m)c° = ^x^ — mTμxμ, but
by our choice of xμ, nxμ — mTμxμ = 0 and x + (m — l)c° = 0. This
implies n = m = 0 mod p and c° = # e i?|L which is a contradiction.
Suppose ce eRμ, then ce = a? + nxμ + m(c° — ΓΛx^) for some x e Rμ and
some integers n and m, but x̂  and T̂ α;̂  G C[p]°, so ce = x e Rμ which
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is also a contradiction. Suppose j(Tμ) has property 2°, then we can
find xμ e j(Tμ) such that (R'μ + [c°] + [ce]) n ([xμ] 0 [ T Ά - Qxμ]) = {0}.
Let JB;, = Rμ + [a^] + [ce — T ^ + gα5/t], then clearly Rμ satisfies above
(a), (b) and (c). And c° and ce£Rμ also holds. Suppose c°eRμ, then
c° = x + m> + m(ce — Tμxμ + gx^) for some xeR'μ and some integers n
and m, but ^ e C[p]° and T ^ — qxμ e C[p]e, hence we have c° = x° + wa ,̂
that is, — x° + c° = rar,,. Our choice of xμ implies nxμ = 0 = — x° + c°,
so we have c° = x° e i2'̂  which is a contradiction. Suppose ce e Sμ, then
ce = x + wâ  + m(ce — Tμxμ + gx«) for some x e Rμ and some integers
n and m. Hence — α? + (1 — m)ce = w ^ — m(Tμxμ — qxμ), but by our
choice of x^ we see — x + (1 — m)ce = 0 = wx̂  — m(Tμxμ ~ qxμ). This
implies n = m = 0 mod p, so ce = x e R'μ which is also a contradiction.
Suppose /ί(Tμ) has property 3°, then we can find xμej(Tμ) such that
(R'μ + [o°] + [ce]) Π ( K ] Θ [ ( ϊ 7 ^ ) 0 ] φ [( !>,) ' ]) - {0}. Let

Rμ = R'μ + [^] + [c° - ( Γ ^ ) 0 ] + [ce - ( Γ Λ ) 1 .

Then Rμ clearly satisfies (a), (b) and (c). And c° and ceίRμ can be
seen as follows. Suppose c° = x + wα^ + m(c° — (Tμxμ)°) + m'(ce — (Γ^x^)6)
for some xe Rμ and integers n, m and m', then

so - x° + (1 - m)c° = nxμ - m(Tμxμ)°. This implies nxμ - m(Tμxμ)° =
0 = — χ° + (1 — m)c° by our choice of α;;ί. Hence m = 0 and c° = x° e i2',
which is a contradiction. We can see also ce g i2/f for same reason.
And xμ and c — TμxμeRμ is clear. The construction of Rμ for ^/(ϊ7^)
having one of properties le ~ 3e is exactly similar by exchanging odd
for even.

Let Q = \JλeiRλ Then the above properties (a) — (d) for all Rλ

guarantee that Q is a subgroup between ^[p] and C[p] not invariant
under any Tλ(XeΛ) but invariant under Pe.
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