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This paper is primarily concerned with the theory of the
arithmetic isolic integers. The following results are obtained :

(1) No nonfinite member of the arithmetic isolic integers
A*(A) can be defined in 4*(A) even by an infinite number of
arithmetic formulas (Theorem 4),

(2) The arithmetic isols 4A(A) cannot be defined in A*(A4)
even by an infinite number of arithmetic formulas (Theorem 7),

(3) We exhibit some nonstandard models of arithmetic
contained within 4*(A4) (Theorem 10),

The first result above follows from recent work of Nerode
in the theory of isols, while the second strengthens his results
to obtain the desired conclusion,

The ring of arithmetic isolic integers A*(A) was introduced by
Nerode in [5] where he showed that A*(A4) is elementarily equivalent
to a reduced power @Q of the ring of integers and where he adapted
the method of Feferman and Vaught [1] to 4*(4). In [6] Nerode
gave a procedure for finding isols and isolic integers which satisfy
extensions to isols of recursively enumerable relations. The work
which follows here both uses these results and, in some cases,
strengthens them. We use the definitions and notation of [4], [5],
and [6].

It is possible that a nice structure theorem for A*(A) can be
proved ; Nerode has asked whether A*(A) is isomorphic to @, the
reduced power of the integers just mentioned (see remarks following
Corollary 5 below). E. Ellentuck has obtained such a result for the
ring of Dedekind finite cardinals in the models of a particular exten-
sion of Zermelo Fraenkel set theory without the axiom of choice.
However even if such a result is obtained for A*(A4), since A(A)
cannot be defined in 4*(4) by an infinite number of arithmetic
formulas, it will still not be possible to arithmetically define in this
way the substructure corresponding to A(A).

1. We adopt the notation of [4], [5], and [6]. As in [5] and
[7], @ = Z*/D, where Z is the ring of integers and D, the filter of
cofinite subsets of w.

THEOREM 1. Suppose {®p;}:<. s a collection of arithmetic formulas
i the wariables ¥ = (Vy, v, ¥y, «++) and the collection is finitely
satisfiable in Q. Then there exist A, Be Q¥ such that
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(i) for all i, Q F pi(4)

(ii) for all i, Q E pi(B)

(iii) for all j, if A;e E* then A; = B; and if A;¢ E* then
B;¢ E* and A; # B;.

We give only a sketch of the proof. In [2] it is shown that
@ is w,-saturated. From this we get Aec@Q® satisfying (i). B is
constructed from A. If A;eE*, B;=A4;. If A;eQ — E*, B; is
gotten from A; by a permutation of the coordinates. The permuta-
tion is simply to ensure that B; = A; and, from the Feferman—Vaught
method of [1], the permutation of coordinates does not affect satis-
faction in Q.

LeMMA 2. Suppose @(v,---,v,) s an arithmetic formula with
n free variables, A;e A*(A) for 1 < ¢ < m,

A e E*, and A*(A)E p(4,, -+, 4,).
Then there exist B;e A*(A) for 1 <1 < n, with
B +A, and A*A) E B, --+,B,).
Proof. Assume the conclusion is false. Then we have

A*(A) & (Bz) -+ (Bz )@@, «+ %) A (%) +++ (Ya)
( @Yy =+, Yu) = ¥ = 2))]

In [5] Nerode proved that @ = 4*(4). Hence this statement is also
true in Q. For 2 =1 to n, let A'e @ be the x; whose existence is
thus asserted. It follows from Theorem 1 that Ale E*. So the
arithmetic sentence (Ex,) --- (Ex,)p(4], 2, -+, 2,) is true in @ and
hence in 4*(4). So by our assumption A, = A}e E*, a contradiction.

As a consequence of the results in § 3 of Nerode [5] we obtain
almost at once the following result. Corresponding to any arithmetic
formula ¢ there is another formula + which is a disjunction of con-
junctions of equations and their negations, each such equation being
of the form f..,, =0 with f an arithmetic function whose free
variables are among those of ¢, and such that for

Xed*(4), A%4) E p(X) — 4%(A) E ¢(X) .

LEMMA 3. Suppose {p:}ico s a collection of arithmetic formulas
with free variables among ¥ = (v, vy, Uy, *++), and suppose any finite
subset of this collection s satisfiable in A*(A). Then the collection
18 satisfiable in A*(A).
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Proof. To each ¢, there corresponds a +; as above. Let us write
+; as V;.,,Ci where the C}’s are the various conjunctions of ;. Since
the o,’s are finitely satisfiable in 4*(A), so are the ,’s. We claim there
is a ke .J, such that the collection {vr;};cu_i U {C}} is finitely satisfiable
in A*(A). If not then for each j € J, there is a finite S; & w — {0} such
that {y.};cs; U {C{} is not satisfiable in 4*(4). Let S =U,.,,S;. But
{¥i}ies U {ar}is satisfiable and hence there is some disjunct C; of
such that {y;};.s U{C}} is satisfiable and thus {y.};.s, U{CS} is satis-
fiable, which is a contradiction. So {C{} U {¥:i}icw_ioy is finitely satis-
fiable in 4*(4). Apply the same procedure to +r, in this last collec-
tion, getting {Cp} U {C}} U {¥i}icu_w,y finitely satisfiable. By induction
we obtain in this way a collection {C%,.,, with C° one of the dis-
juncts of +;, and the collection finitely satisfiable in 4*(A). Simul-
taneously satisfying this collection would clearly also simultaneously
satisfy {®;}ic.. So the problem is now reduced to the following.
Given a collection {fi = 0lico U{¢iy # 0}icu, variables among
T = (v, v,V +++), €ach f and ¢ an arithmetic function, and the
collection finitely satisfiable in A*(A): show that the whole collection
is satisfiable in A*(A4).

Let X, E* be the subset of E*“ consisting of the finitely nonzero
sequences and let R{(T?) consist of those xe X, E* such that fi(z) = 0
(¢¥(x) = 0). We shall use Theorem 2.1 of Nerode [4], in the arithmetic
case. A first application of this theorem enables us to infer from
the finite satisfiability of {fi., = 0} in 4*(A) that the collection
{R%};., generates a proper filter F'* in the lattice L* of finitary
arithmetic relations (see [6]). So by Theorem 4.7 of [6] in the
arithmetic case, there is an X e 4*(A)” such that

F* :{RGL*IXGRA*(A)}.

With another application of Theorem 2.1 of [4] we get XeRi
if and only if fi ., (X)=0. Since for all 7, Rie F'*, X satisfies
{fi = 0}ico. Does it also satisfy {gi., # 0} ? Suppose not; then
there is some ¢ such that ¢%(X) = 0. Then, as above, Xe T} ,..
Hence T'ec F'*. So there exist R, -.., R» such that

Ron... N R»n< T,

Thus X,E* = R -+ UR» U T¢. Yet another application of Theorem
2.1 of [4] shows that the set {fil,, =0, -+, firy =0, gh., = 0}
cannot be satisfied in 4*(A4), which contradicts the hypothesis. Thus
X satisfies {fi4 = 0}ico U {90y # 0}ico, a8 required.

The next theorem is the analogue in 4*(4) of Theorem 1.
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THEOREM 4. Suppose {p;}ic. 18 a collection of arithmetic formulas
in the variables ¥ = (v, v, Vs +-+) and the collection s finitely
satisfiable in A*(A). Then three exist X, Y € A*(A)® such that

(i) for all i, A*(A) E ¢pi(X)

(i) for all i, 4*(A) E oY)

(iii) for all j, if X;e E* then X; =Y; and if X;¢ E* then
Y,¢E* and X; = Y.

Proof. As in Lemma 3 we obtain X’e 4*(4)” and a collection
K, = {fiau(v) = 0}icy U {giu(v) # 0}, which X’ satisfies and if any
X" satisfies K, than X" satisfies (i) above. For the variables
A = (Uogy Uy, Uy +++), let K, be the collection gotten from K, simply
by replacing each v; by w;. Then (X', X') e (4*(A4)")* satisfies K, U K,
(where o(Z, Z') for (Z, Z') e (A*(A)*) means replace v; by Z; and wu;
by Z!). Using the lattice L* of finitary arithmetic relations on
(X,E*), let R, and R! denote respectively the arithmetic relations
corresponding to fi(») =0 and f%u) = 0. Proceeding in the usual
way (see [6]) we let F™* be the filter generated by the Ri’s and RY’s
and get (X, Y)e (U*(A4)*):. With methods like those of Lemma 8 we
show that X satisfies (i) above and Y satisfies (ii). Because for each
i, X! = a for a in E* if and only if

{(v,w) e (X ,E*)"|v; = a} and {(v,u)e (X E*)"|u; = a}

are in F'*, it follows that if X/ is in E* then X/ =X, =Y, and if
X!¢ E* then X;¢E* and Y,¢ E*. Assume ¢ is such that X/ ¢ E*.
We claim X; = Y,. Suppose not. Let T = {(v,u) e (X E*)*|v; = u}.
Then (X, Y)e T, and hence T'e F'*, Proceeding as in Lemma 3
there exist f%, -+, fi», f71, «-., fi= such that

{f/f*l(A)(,v) =0,--- f/li*rfA)(v) = O:fAj*l(A)(u) =0,-- -,f,,jl("A)(u) =0, v; # u;}

cannot be satisfied in 4*(4). Thus for an appropriate finite set of
@’s we have that A,p;(v) A Awpu(u) A (v; # u;) cannot be satisfied
in 4*(4). But (X', X') satisfies A,@;(v) A Awpi(w) and X! ¢ E*. So
by Lemma 2 we can find X" e A*(4)” such that (X", X") satisfies
A2 A Awpi(w) and X! = X{. But then (X’, X”) satisfies

Aipi(v) A Awpr(u) A (v; # ;)
a contradiction. Thus X; = Y.(T ¢ F'*), completing the theorem.

COROLLARY 5. No member of A*(A) — E* can be defined in
A*(A) even by an infinite number of arithmetic formulas.

We conclude this section with another application of the methods
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used above. Nerode has asked whether @ = A4*(4). (In [5] he
showed @ = 4*(4) and both have power 2%.) The answer is not
trivially yes because by the following example, pointed out to the
author by M. Morley, the theory of @ (and hence of 4*(4)) is not
categorical in any infinite power. Let p,, p,, 2, +++ be a sequence of
distinct positive primes, and ¢, ¢, @, +-+ a list of all the other
positive primes. Consider {p; divides z};c, U {g¢; does not divide x};.,.
This countable collection of arithmetic formulas is clearly finitely
satisfiable in Q. Since @ is w,-saturated, the collection is simul-
taneously satisfiable in Q. But there are 2% such types realized in
Q. So by a result of Ehrenfeucht, the theory of @ is not categoriecal
in any infinite power.

In [7] it is shown that, assuming the continuum hypothesis,
Q = A*(A) if and only if A*(A) is saturated. Using the method of
Lemma 3 it can be shown that A4*(A) is saturated if and only if for
every collection {fi. = 0}ico U {gir1) # 0}icw, Where the f’s and ¢'s are
arithmetic functions having exactly one free variable and possibly
constants from 4*(A4), if the collection is finitely satisfiable in A*(A)
then it is satisfiable in A4*(A).

2. We shall prove shortly that A(A) cannot be defined in A*(A)
by an infinite number of formulas. In particular, one formula will
not define 4(A) within 4*(A). The former result requires a strengthen-
ing of the proof of Theorem 3.1 of [6]. But the latter can be proved
as a corollary of that theorem.

THEOREM 6. A(A) cannot be defined in A*(A) by means of one
arithmetic formula (and hence by means of a finite number of such
Sormulas).

Proof. We prove something a little stronger. Suppose o(z) is
an arithmetic formula of one free variable, Xe A(4) — E, and
A*(A) & p(X). We shall find Y e 4*(A) — (4(4) U — 4(A)) such that
A*(A) E o(Y).

By the remark preceding Lemma 3, we have

Fhw@ =0A oo ASfrn(@) =0A ghw@®) =0 A o0 Agh(®) #0

satisfied by X, and if any X’e A*(A) satisfies this conjunction then
A*(A) E »(X’). In particular for each j, 1 <5 < m,
FhnX)=0A oo A frn(X)=0A ghu(X)#0.

Since X e A(A) — E, we can apply the first part of Theorem 11.1 of
[3] to get the existence of an infinite number of members of E which
are solutions in E* to
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) =0A oo A fx)=0A gi(x) 2 0.

We can now find a finite set S, S & E*, cardinality of S = 2, such
that for each j,1 <j < m, there is an a;€ S satisfying (*) in E*.
Of course Se L* (see [6], using only one coordinate). Let F* be the
filter of L* generated by S. By Theorem 4.7 of [6] there is a
Y e 4*(A) such that F* = {Re L*|Ye Ry,}. Since Se F*, Ye S,
For each 7, 1 <7 =<mn, we also have S <& {xeE*|fix)=0}= T
So YeTi.. Again by Theorem 2.1 of [4] we have fi (YY) =0,
1<¢<n We claim g4, (Y)+=0, 1<j<m. Say, for some 7,
w0y (Y)=0. So for U’ = {xe E*|g’(x) = 0}, again by Theorem 2.1
of [4], Ye Uj,,. Hence U'e F* and U2 S. Thus

ErE@)@xeSV g =0).

Again by Theorem 2.1, A*(4) &= (XWX €S0 V ¢iu(X) =0). But
a; € A%(A), a;€ Sp and giu(a;) # 0, a contradiction. Thus for all
Jy, 127 =m, g5(Y)#0. Hence 4*(A) = »(Y). We claim Y ¢ E*.
If Y =oackFE* then, for U=1{a}, YeUpp, and hence Ue F* and
U 2 S which contradicts S having cardinality = 2. So Y ¢ E*. But
YeSu4. Now by Corollary 5.10 of [4] (in the arithmetic case),
Yed*(4) — (4(4) U — A(4)).

The next theorem is the major result of this paper. We use
the definitions and notation of [6] but always in the arithmetic rather
than the recursive case. Further, for simplicity we take L* to be
the lattice of arithmetic subsets of E* (since only one variable is
needed) and L the lattice of arithmetic subsets of E® Consequently
we ignore the notion of “ support”.

THEOREM 7. The arithmetic isols A(A) cannot be defined in the

arithmetic isolic integers A*(A) by an infinite number of arithmetic
formulas.

Proof. We prove a slightly stronger result. Suppose {@;}:<, are
arithmetic formulas of one free variable, X e 4(4) — E, and for each
1, A*(A) = p(X). Then we will find YeA*(4) — (4(A) U — 4(4))
such that for each 7, 4*(4) E @,(Y).

By the remark preceding Lemma 3 we get a collection

{fin@) = 0}ico U {9%0(®) # 0Lico

with the f’’s and ¢’’s arithmetic functions of one variable, such that
X satisfles the collection and if any X'e 4*(A) satisfies the collection
then for each 7, 4*(4) £ @(X’). Let T & E be the set of nonnega-
tive integer solutions to fi(z) = 0. Since fh(X) =0 for all j, the
intersection of any finite number of T?’s is infinite (see [3]). Let
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F* be the filter in L* consisting of all Re L* such that R contains
the intersection of some finite number of T¢’s, except perhaps for a
finite set. If U‘ is the set of all integer solutions to ¢g/(x) = 0 then
Uig¢ F* because, by results of [3] again, since X satisfies every
fioo(@) = 0 and also this particular g, (x) = 0, we have that every
finite intersection of T'#’s contains an infinite subset of E not in U-’.
Let R’, R, R?, --- be an enumeration of F* and W° W*, W2 ... an
enumeration of L* — F*, Asin Theorem 4.7 of [6], let F = {R"|R € F'*};
F' is a realizability filter in L enumerated by (&")", (B)", (R)", «--.
We can now prove a lemma essentially the same as Lemma 3.3 of [6],
but using (R%)” in place of T, (W"" in place of S?, and (L* — F*)*
in place of L — F. (Note that {(W)"},., is mot an enumeration of
L — F.) Assume this has been done. (The same proof will work.)

We now wish to prove a lemma corresponding to Lemma 3.2 of
[6] but with a stronger conclusion. So we shall define inductively
(two at a time) {x};c,, #*€ E*. Let P, P, P,, --- be an enumeration
of the one-one partial arithmetic functions of one variable. We
shall also inductively define a set G & £ which will contain “ integers
to be avoided.”

From the definition of F* it follows that for each m < w,
RN ---NR")— W™ contains an infinite subset of E. We as-
sume that 2°, #', - -, ' have been defined, that G"' is the finite
part of G defined so far, and that for any index s of the form
(xo’ bO)’ (xl, bl)’ cee, (x2n——1, bZn—l) we have (as)(! nG—t=qo. (G—-l — @).
Choose ze(R° N «+- N R™) — W* and Ze(R° N --- N R™*) — Wt
such that z > 2’. These choices are possible because these sets
contain an infinite number of positive integers. Define 2*" e E? to
satisfy : (i) @i — " = 2, (i) max (z**, #¥*') < min (x}*, #?*), and (iii)
for any index s with an initial segment of the form (2° 89, ---,
(x**, b*"), we have (a,), N G** = . Taking into account the induc-
tion hypothesis on G*, such a " exists since there are an infinite
number of members of E*? satisfying (i) and (ii) and since G** is finite,
almost all of these satisfy (iii). Now let V = U.(a,), where the
union is taken over all indexes s of the form (x°, 0%, ---, (x**, b°).
Then there exists "¢ E* such that: (i) a*+ — g+ =2/, (i)
max (23", #1") < min (x}**, £;**), and (iii) for any index s of the form
(2 0%, -+, (@™, b**) we have P,((B,)) N V= @. Again such a
™+ exists because V is a finite set and of the infinite number of
ways to satisfy (i) and (ii), almost all will satisfy (iii). And we have
g e (RN« =+ N (R™N — (WA g2 e (RN ()« -« N (RN — (WemyA,
Since z > 2/, we have x* — g > ¥+t — g+ and thus

xfﬂ+1 — xfn > w§n+1 — xgn .

Let s be an index of the form (x°, %, ---, (x**!, >+, Then (B,),
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has cardinality «i**' — 2} and (8,), has the smaller cardinality
x3*+t — g2, For this s three cases may then occur.

Case 1. P, is not defined on all of (8,)..

Case 1I. P, is defined on all of (8,). and P,((B.)) & U.(B.),
where the union is taken over all indexes » of the form (x°, 0%, ---,
(z*"*4, p*»+'), In this case, since P,((8,).) has larger cardinality than
(B.),, there is an » # s and an integer % such that w e P,((8.).) N (8,)..

Case III. Cases I and II do not hold. In this case, again since
P,((8,),) has larger cardinality than (8,),, there is a

AS Pn((lgs)l - Ur(lBr)o .

Define G™ to consist of G together with the %’s which come from
indexes s satisfying Case III. Then for any index s of the form
(=%, 8°), ««-, (™, b*™*+') we have (a,), N G" = ¢ (using part (iii) of the
definition of «***!), This completes the inductive definitions of
{x;};co and G. We have at least the conclusions of Lemma 3.2 of
[6] with (R)" replacing T°, (W?%" replacing S* and (L* — F*)*
replacing L — F.

Proceeding now as in [6] we obtain the infinite sequence (z°, %°),
(x', ¥, - -+ whose initial segments are the indexes

ty = (wO, ,!/0)’ Tty (xdy yd) ’

and such that a =a, Va, vV ---. Let ¥ =<ay —<a,). We can
now prove (as in [6]) lemmas corresponding to Lemmas 3.4 and 3.6
of [6]. Assume this has been done. We claim «, and «, are
arithmetically isolated sets. If one of them is not, then proceeding
as in Lemma 3.5 of [6] we could show that «, and «, are both
arithmetically enumerable. Let ¢,c¢,¢, -+ and e¢,e,e, -+ be
arithmetic enumerations of «, and «, respectively. Let H consist of
all pairs of sets of the form

({COy ccty 02n+2}7 {eOy Sty em})’ n = 0, 1: 2! .

Then « is attainable from the arithmetic {2}-frame H. But {2} ¢ F™.
So {2} = W* for some 4 and by our version of Lemma 3.4 of [6], «
could not be attainable from H, a contradiction. So

Y = lap — {ape4(4) .

We wish to show Y¢A(A4) U — 4(4). This is equivalent to
showing that {a,y £ {a,> and {a,> £ {a,y. Suppose {a,y <<ay. If
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W is the set of nonpositive integers then W¢ F* and so W= W*
for some 4. But W" = {(z, «,) € E*| %, < .}, and since {a,) < <a,>
we must have {a,) — {a>€ Wy, a contradiction. Now assume
{a,y =z <a>. So there is a one-one partial arithmetic function of
one variable, call it P,, such that P, is defined on @, and P,() & «,.
Recall the definitions of 2* and z**. For the index ¢,,,, Case I
could not have held since P, is defined on all of «,. If Case II held
then we have the u as described there. But by property (3.10) of
[6] it follows that although we P,(a,), u could not be in @, So
Case II could not have held and Case III must have held. So there
is a ue P,(a,) N G. But by the construction of G, any ue G could
not be in any (a,,), and thus u ¢ «,, a contradiction. So

{ay £ <y, and Ye 4%(A4) — (A4(4) U — 4(4)) .
Now by Theorem 2.1 of [4] (arithmetic case),
YeTiuw— fiun(Y)=0.

But T/e F*, and thus Ye Ti,. So for all j <, fi.,(Y)=0.
Suppose ¢i,(Y) = 0. By the same theorem, Y e Ul < ¢%.,(Y) = 0.
So Ye Ujy. But we showed U?¢ F*; thus U’ is some W' and so
Y¢ Ujy. Hence gi.,(Y) # 0 and the proof is complete.

COROLLARY 8. If F*, a filter in L*, cannot be generated by a
singleton set, them there is a Y e A*(A) — (4(A) U — A(A)) which
realizes F™*,

Proof. First of all, if F* is generated by some singleton set
{a} for a ¢ E*, then by Theorem 4.7 of [6], a is the one and only
member of A*(A) which realizes F*. Now assume F* cannot be
generated by a singleton set. Again by Theorem 4.7 of [6], there
is an X e A*(4) which realizes F*. If Xe E* it would follow that
F* is generated by {X}. So XeA*(4) — E*. If

Xed¥(4) — (4(4) U — 4(4)),

we would be done. If not, then using this X we can proceed as in
the theorem to get Y e A*(A) — (4(4) U — A(A)) realizing F'*.
We remark that the corollary holds also in the recursive case.

3. In this section we prove the analogue for A*(4) of one of
the major results of [7].

DEFINITION 9. A subset S of A*(A) is said to be indecomposable
if for every arithmetic relation R(x,, ---, z,) and every X, ---, X, € S,
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either (X, +++, X,) € Ruy Or (X, +++, X,) € Ry (R is the complement
of R).

If we apply Theorem 4.7 of [6], using just one variable and
taking an ultrafilter F™, then the X e A4*(4) so realized is inde-
composable (that is, {X} is indecomposable). So indecomposable subsets
of A*(A) exist, and maximal indecomposable subsets properly contain E*,

THEOREM 10. Maximal indecomposable subsets of A*(A) are proper
elementary extensions of E*.

Proof. Let S be a maximal indecomposable subset. By the
remarks above we need only show that S is an elementary extension
of E*,

We shall first show that S is closed under arithmetic functions
extended to A4*(4). Suppose X, ---,X,e8S and f(z,---,%,) is an
arithmetic function. Let fu.. (X, -+, X,) = Xe4*(4). Consider
S’ =S U {X}. If it is not indecomposable, there are Y,,---,Y,eS
and an arithmetic relation R(x,, «--, %,4,) such that

(X, Y,---, Ym) gRA*(A) U R/I*(A) .
The following statement is true in E*: (x,) -« (@,)(@) () *+* (Un)

[f(xly "',CU”) = x/\R(f(xly "',xn)y Y, "'sym)'_)R(xs Yy "'yym)] .

And, of course, the same statement is true with R replaced by RE.
Since f is an arithmetic function and R and R are arithmetic rela-
tions we can apply Theorem 2.1 (ii) of [4] in the arithmetic case.
This gives:

A*(A) = NRA*(A)(Xy Yl! *t %y Ym)—_’ ~ RA*(AJ(f‘A‘(A)(XU ° '1Xn)’ Yly ) Ym)

and the same statement with R replaced by R. Define an arithmetic
relation R'(xy, «««, 2, ¥y, ***, Yn) — B(f(@, + =+, 2,), Y1, **+, Yn). (Note
that Rl(xu crty Ly Yuy 000y ym) - R(f(xlr ct xn)y Yiy ooy ym)') Then
R'A*(A)(XU ) Xny Yu M) Y'm) « RA*(A)(.]“A*(A)(XU Tty Xn)y Ijn tt Ym)'
Combining now we get (X, --+, X,, Y, -+, Y,.) € Rls,y U Rlu,. Since
X,---,X,,Y,---,Y,e8S, this contradicts the indecomposability of
S. Hence S’ is indecomposable and since S is maximal, S’ = S and
XeS. So S is closed under extended arithmetic functions.

The theory of arithmetic has definable Skolem functions. So
every statement of arithmetic is equivalent to a universal statement
in which the matrix is in disjunctive normal form, \Vv A P, where P
is of the form % +v=w,uv=w, or w*v and u,v,w can be
variables, integers, or arithmetic Skolem functions of variables.
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Suppose ¢ is a true statement of arithmetic. We claim ¢ is true in
S, with Skolem functions which are the extensions to A4*(A) of the
arithmetic Skolem functions for ¢. ¢ has the form (x,) -+ (z,)[V©~.E;]
where each R; is a conjunction of P’s as described above. So assume
X, -, X,e8S. Suppose (X,, -+, X,) & (R)p for 1=1 to m — 1.
Then by the indecomposability of S, (X, -+, X,) € (B)swu for i =1
to m — 1 and thus (X, -+, X,) € (N"3'E;) - But because ¢ is true
in E*, we have N i'R; < R,. Thus (X, ---, X,) € (Rn)swu. Hence
there is some R;, call it R, such that (X, ---, X,)€ Ry. Let P be
one of the conjuncts in R. Then (X, -:-,X,)€Puu. But a triple
from A4*(A) which is in the extension of the addition relation in E*
satisfies the addition relation in A*(A); similarly for multiplication
and inequality. And since extension commutes with composition,
each P in R is satisfied in A4*(A) when X, is substituted for the
variable z;. But by the earlier part of this proof, f. . (X, ---,X,)e S
for the Skolem function f(x,, -:+,2,). Thus ¢ is true in S. Since
@ was any statement true in arithmetic we have the converse and
hence S is an elementary extension of E*, as required.

Suppose S is a maximal indecomposable subset of A*(4). Let T
be a subset of S, T =2 E*, and let T be the closure of 7 in S under
arithmetic functions extended to A*(4) (S being closed under such
functions). From the proof of the theorem, these functions were
exactly the Skolem functions for S. Hence T is an elementary ex-
tension of E* and T and S are elementarily equivalent. (Clearly T
is contained in every maximal indecomposable S which contains 7T.)
In particular, if X e 4*(A) is indecomposable, then

{fr0(X) | f is a one-place arithmetic function}

is an elementary extension of E*, which 4s E* if X is finite and
which properly extends E* if X e A*(4) — E*.

The author wishes to acknowledge valuable conversations on the
subject of this paper with Professor A. Nerode. He also acknowledges
helpful suggestions from the referee.
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