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In 1948 A. A. Albert defined a standard algebra U by the
identities (x, ¥,2) + (&, 2, %) — (2,2, %) = 0 and

(@, ¥, wz) + (w, ¥, 22) + (2, ¥, wx) = 0.

Standard algebras include all associative algebras and com-
mutative Jordan algebras. The radical & of any finite-dimen-
sional standard algebra U is its maximal nilpotent ideal. It
is known that any semisimple standard algebra is a direct
sum of simple ideals, and that any simple standard algebra
is either associative or a commutative Jordan algebra,

In this paper we study Peirce decompositions and deriva-
tions of standard algebras, We prove the Wedderburn principal
theorem for standard algebras of characteristic 2 (announced
in 1950 by A. J. Penico for characteristic 0); if 2/ is separable,
then ¥ = & + 9N where © is a subalgebra of %, & = UA/N, For
standard algebras of characteristic 0 we prove analogues of
the Malcev-Harish-Chandra theorem and the first Whitehead
lemma, and we determine when the derivation algebra of 2
is semisimple,

Let A be a nonassociative algebra over a field F' of characteristic
# 2. In [2] Albert called % a standard algebra in case the identities

(1) (®,¥,2) + (z,2,9) — (x,2,9) =0
and
(2) (=, y, wr) + (w, y, ¥2) + (2, y, wxr) = 0

are satisfied, where (z, y, 2) denotes the associator
(%, y,2) = (2y)z — @(y2) .

Clearly every associative algebra is a standard algebra. In every non-
associative algebra one has the identity

@, y,2) + (2,2,9) — ,2,9) = [2y, 2] — [, 2]y — «[y, 2]

where [x, y] denotes the commutator [z, y] = 2y — yx. Hence (1) is
equivalent to

(3) [y, 2] = [, 2]y + 2@ly, 2] ,

so that every commutative algebra satisfies (1). Thus every commuta-
tive Jordan algebra of characteristic +# 2 is a standard algebra.
If the characteristic is = 3, then (2) implies
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(4) (xyyyxz):()-

We shall define % to be a standard algebra in case (1), (2) and (4)
are satisfied. Condition (4) is redundant except for characteristic 3.
Put z =2 in (1). Then

(5) @, y,2) =0

for all z,y in ; that is, A is flexible. Hence, as Albert proved,
every standard algebra is a noncommutative Jordan algebra [18, p.
140] and is therefore power-associative, The linearized form of (5) is

(x,y,z)+(z,y,x)=0.

Using flexibility, it is easy to see that, if an identity element 1 is
adjoined to a standard algebra, the result is a standard algebra.
Interchange x and z in (2), and subtract, in order to obtain

(6) (w,y, 2, 2]) =0

for all w, 2z, y,z in A. Defining a nonassociative ring to be accessible
in case (1) and (6) are satisfied, Kleinfeld proved in [8] that any
simple accessible ring (of arbitrary characteristic) is either associative
or commutative, implying that any simple standard ring is either
associative or a commutative Jordan ring.

Albert had proved the latter result for finite-dimensional simple
standard algebras in [2]. In that paper he also proved that any
finite-dimensional standard nilalgebra of characteristic = 2 is nilpotent.
Let the radical of a finite-dimensional standard algebra 2 of charac-
teristic # 2 be its maximal nilpotent (= solvable = nil) ideal %, and
call A semisimple in case I = 0. Then /N is semisimple. Albert
showed, for standard algebras of characteristic 0, that 9N coincides
with the radical of the commutative Jordan algebra 2+, in which
multiplication is defined by

(7) x-y:%(xy—i—ym),

and that any semisimple standard algebra 2 is the direct sum
(8) A=6,DC.D--- DG,

of simple ideals &,.

The restriction to characteristic 0 is not necessary, as may be
seen as follows. A modal algebra is a power-associative algebra A
with 1 over F such that every element of % is of the form al + z
where « is in F' and z is nilpotent, and ¥ is not of the form A =
F1 4+ M for N a nilsubalgebra of A. Now every nodal algebra has a
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homomorphic image which is a simple nodal algebra [17, p. 117]. But
any simple standard algebra is either associative or a commutative
Jordan algebra, and therefore cannot be a nodal algebra. Since A,
is a standard algebra for any scalar extension K of the base field,
A, is without nodal subalgebras, and Theorems 3 and 4 of [17] imply
that, for characteristic = 2, : coincides with the radical of A+ and
that any semisimple standard algebra % is a direct sum (8) of simple
(associative or commutative Jordan) ideals.

In [13] Penico announced the Wedderburn principal theorem for
standard algebras of characteristic 0, together with the essential por-
tions of our Lemma 1 and Theorem 3 which appear in §4. However,
his proofs of these results, which are generalizations to standard
algebras of his theorems in [12] for commutative Jordan algebras,
have never been published.

Albert proved in [2] several identities which will be useful in
this paper. Using flexibility, we may rewrite (2) as

(9) (wm,y,z)—('w,y,:lcz)+(wz,y,x):0,
or as
(10) (wxy Y, Z) + (.’I?Z, Y, ’LU) - (f(}, Y, ’LUZ) =0.

Using (6) and flexibility, (10) may be rewritten as
(11) (my Y, ZW) - (xzy Y, w) + (z, Yy, x’l/l)) =0.

In terms of right and left multiplications of 9, (9) and (11) are
equivalent to

(12) Ry(wz) = Rnyz =+ Rx(Ryz - Rsz) + Rz(Ryx - Rny)
and
(13) L., = L,L., + L.L,, — L,L,) + L(L., — L,L,)

for all z, v, z in any standard algebra 2. Then (12) and (13) imply

(14) R, = 3R.R,. — 2R?
and
(15) Ls=8LL,— 2L}

for all x in 2A.

2. The Peirce decomposition. Let % be a standard algebra
over F of characteristic % 2. Since ¥ is a noncommutative Jordan
algebra, we have a Peirce decomposition
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A=A + Ay + A
relative to any idempotent ¢ in U, where
A, ={acW|ea = ae = 1a}, 1=0,1,
and
Ay ={acU|ea + ae = a} .

It is known [11, p. 118] that %A, and A, are orthogonal subalgebras of
A, and that

AN, S A, , WA S, ,
AN, S Ay, WA, S, .

Now (14) and (15) imply that

(R, — IR, — 3I)R, =0
and

(L, — INL,—-%4I)L, = 0.
Hence 2, is the vector space direct sum

Ay = Ay + Ayy + Ay

where
(16) A; ={acW|ea = ta, ae = ja} , t+3=1;75=0,%1).
That is, any standard algebra 2 has the Peirce decomposition
17 A=A + Ay + Ayy + Ay + Ay

relative to the idempotent e. (When ¢ is not the only idempotent
involved, we write 2 (e), A, (¢), etc.) We shall prove that products of
these Peirce spaces are contained in the spaces indicated in the table

below:

(18)
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Put w=z=e 2=2,e¥%, £k=01), y=9y;;e¢%; ¢,7=0,%,1)
in (10) to obtain (x, ¥:;, €) = 0, or (,¥:;)e = ja,y;;, implying
Ay, S (%10 + A) N S‘)I% = Uy,
Uy S Wy
A Ay, & (A, + Ao N S*)I% = Uy «
Putting w=x=¢, y = 2, 2 = y;; in (6), we have
0 = (e, i, [&, ¥is]) = (1 — J)e, @i, ¥i;) = (2 — J)(kxrys; — e(xY:;))
so that
?Io?lxo S @Im + %Io) N %Im =0 ’
%x%m - (2[1 + %10) n %on =0.

We have verified the first and fifth rows of table (18). By flexibility
we have (e, ¥;;, 2;) = 0 and (2 — 7)(¥:;, %, €¢) = 0, from which the first
and fifth columns of (18) may similarly be verified.

Put z2=¢, s =2,;€U;, y=9yucWU. ¢,5,k,1=0,41) in (3) to
obtain [2;¥.,e] = (G —© + | — k)x;;y. Writing

TifYor = Oy + Gy + Q33 + Go + o (a; € Ay aye € W)

we have [2;;¥., ] = — a,, + a,, so that

WU Wa S A, + Ayy + Ay if j—i+1—-k=0,
while

W, Ay, & Ay + Ay if j—14+1-k+#0.

Also (j—i1+1l—k+Day=(( —1+1—k— 1a, =0, implying
%110%{10 = %[019101 =0.
Put w =25, * = Y, ¥y = 2 = ¢ in (9) to obtain

((x;;y)e)e — (v yn)e + (7 — kY5 — Doy, =0,

or
- _All_a%‘% + (j - k)(J - l)(aq + (227 + a%% + Qoy + ao) =0,
Hence
Uil & Ay it (G-kG -0,
while

W S A+ Wy + A + Ay if G-kG-D)=0.
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Then

WeAyy S Wy + ) NAyy =0,
WUy S (A, + Ay + A) N QL+ Ay + Ay + A) = A, + Ay,
QI%%?LO S (%10 + %01) n %%% =0 ’
Wyyyy S @+ Apy + A 0@ + W + A + %) = L, + %A,
%y % S Wo + A) N Ayy =0,
Ly S (U + Ay + %) (1 @ + W o+ Ao+ A) = L+ L,
9,[01%[%% S (W + Ay N %%% =0.

It remains to be shown that

(19) A, S A, + A implies A A, & A,
and
(20) A A, = A+ A, implies A, E A,

Let 2,4, =0, +a, ®+#7; 1,7 =0,1). Putting w=2=e, y =2,
z =y, in (6), we have 0 = (¢, ;;, [¢, ¥;]) = (7 — 9)(ia, + ta, — @), or
(¢t — Da, + ta, = 0 since 7 * 5. Hence a, =0 if 7 = 1, while a, = 0 if
7 = 0; that is, (19) and (20) hold. This completes the verification of
table (18).

Relative to a set of pairwise orthogonal idempotents e, e, «+-, e,
in a standard algebra 2, the Peirce decomposition (17) may be refined.
However, the notation is unavoidably cumbersome. The only Peirce
decomposition relative to a set of pairwise orthogonal idempotents
which we shall actually use is the less complicated one which is known
for noncommutative Jordan algebras [11, p.188]. We may restrict
ourselves to the case where 9 contains 1 =¢ +¢,+ -+ + ¢, and
write f; =1 — e¢;. Then U is the vector space direct sum

i<7
where
As; = A(e;) = Ao(f2) (=11,
and

?Iij = s‘)/[ji = ?I%(ez) N %%(ej) (,L * .7’ i)] = 1: °t t) .

(There can be no confusion with 2[;; in (16), since here both subscripts
are taken from the set 1, 2, -.-, ¢, whereas in (16) at least one is not.)
We have, for distinet %, 7, k, I the known properties:

A, = Ay, %ii%jj = S‘)Iz'is‘)ljk = ?’[jk?’[ii =0,
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21ii?’r'ij g ?Iij ’ QIijs‘)lii g %ij ’

S‘)Iijs*)xjk S E)Iik y ?Iijmkl =0 y

The subalgebra 2 (e; + e;) is
(22) Ae; + €;) = Wy + Ay + Ay,

and e; + ¢; is its identity element.

MecCrimmon’s results on noncommutative Jordan algebras with a
set e, €, «++, e, (t = 3) of connected idempotents may be applied to
standard algebras. An element x in U (with 1) is called regular
[10, p. 943] in case there exists y in A satisfying

xy =yr =1, 2y = yu

Then e; and e¢;(i # j) are said to be connected with indicator ¢ = 0
(resp. @ = 1/4) in case there is an element x in

Wio(e) + Waile)) N Aiole;) + Aaile))

(resp. « in Ays(e;) N Ayy(e;)) which is regular in the subalgebra
A + Ay + Ay, [11, p. 190].  MceCrimmon has proved [11, p. 191] that,
in case 1 = ¢, + ¢, + -+ -+ ¢, is the sum of { = 3 connected orthogonal
idempotents with indicator ¢ = 0 (resp. ¢ = 1/4), then U is associative
(resp. a commutative Jordan algebra).

The radical R;; of A,; is

(23) Wi =W, NN

where 9t is the radical of 2. For this is true in the commutative
Jordan algebra A+ [7, §7.6, -Lemma 1]. Since we have seen in §1
that the radical of 2+ is N+, we have N,; = NE =WHEN N = A, NN

If a standard algebra 2 is associative, then it is well known that
the Peirce space Ay, relative to any idempotent ¢ is 0. We remark
that this readily implies that, if B is an ideal in a standard algebra
A, and if A/B is associative, then Ay, &B. Similarly, if A/B is a
commutative Jordan algebra, then %, + U, < B.

3. Derivations. A derivation D of a nonassociative algebra A
over F' is a linear operator on 2 satisfying

(24) (vy)D = (xD)y + x(yD)

for all =,y in 2. (More generally, if 2 is a subalgebra of an algebra
B over F, a derivation of A into B is a linear mapping D of A into
B satisfying (24) for all z,y in 2.) The set DXA) of all derivations
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of a nonassociative algebra 2 is a Lie algebra, the derivation algebra
D).

In terms of right and left multications of an algebra 2, (24) is
equivalent to

(25) [R,, D] = R,
for all ¥ in 2, and to
(26) (L., D] = L.,

for all « in A. The Lie multiplication algebra {(A) of a nonassociative
algebra 2 is the enveloping Lie algebra of the right and left multipli-
cations of . A derivation D of U is called tnner in case D is in
LR [18, p. 21].

It is well known [18, p. 92] that, in any commutative Jordan
algebra I of characteristic = 2, the operators [R,, R,] are derivations
for all z, v in . Indeed, if & contains 1, then the inner derivations
of & are exactly the operators
(27) > [R”, R,]; v, ¥; in J.
(Since in this paper we shall encounter commutative Jordan algebras
which do not necessarily contain 1, we shall simplify matters here by
reserving the term inner derivation of a commutative Jordan algebra
for the derivations having the form (27).)

If A is a standard algebra, so that the algebra A+ defined by
(7) is a commutative Jordan algebra, then the operators [R}, Rj],
where

Ri= LR + L),
2
are derivations of 2t. Then the inner derivations of A+ are sums of

such operators [Ri, R;]. According to the following theorem, they
are actually derivations of 2.

THEOREM 1. Let U be a standard algebra of characteristic + 2.
Then the following are derivations of U:

(28) R,— L, for all d in 2,
(29) [L., B,]

and

(30) [B. + L., R, + L,] = Rp.py — Lpayy + 4L, R,]

for all z,y in 2.
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Proof. The operators R, — L, are derivations by (3). Hence
[R.,,R,— L] =R, and [L,, R, — L,] = L,,; by (25) and (26). Since
IR, L,] =[L., R,] by flexibility, we have

(31) [Rm Ry] = R[x,y] + [Lx: Ru] )
(32) [Lw Ly] = - L[z,u] + [Lx) Ry] ’

and the equality which is indicated in (30). Then (29) is a derivation
of A (resp. A*) if and only if (30) is a derivation of A (resp. A*).
But we already know that (30) is a derivation of A+*. Hence

(33) [R,+ L,, [L.,R,]] = Ris..o» + Lizz0)

for all z,y,2 in A. Now (6), (1) and flexibility imply that
(@, [w, 2], ) = 0

for all =, y, 2, w in U, or

(34) R[L, R, = L[L., R,] .

Since R, — L, is a derivation of 2, we have

[, 2, ¥), w] = ([, w], 2, ¥) + (%, [z, w], ) + (2, 2, [y, w]) .

But each term on the right side of this equation is 0, so

(35) [(x, 2, v), w] =0

for all x,y, 2z, w in A [8, p. 336], or

(36) L. =R... -

Interchanging w and z in (35), we have [(x, w, ¥), 2] = 0, so that

(37) [L., R,JR, = [L., R,]L, .

Then (33), (34)’ (36) and (37) imply [Rz’ [LzyRy]] = R(x,z,y) - Rz[L,,,R,,]y
so that [L,, R,] is a derivation of 2[.

COROLLARY. Let U be a standard algebra over F of characteristic
# 2. Then any inner derivation of the commutative Jordan algebra
A+ is a derivation of UA.

THEOREM 2. The Lie multiplication algebra L) of any standard
algebra A of characteristic + 2 is

L) = RA) + L&) + [LQ), RA],
where R(N) (resp. L(N)) denotes the set of all right (resp. left)
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multiplications of 2.

Proof. It is sufficient to verify that
L = RQ) + L) + [LEQD), BE0)

is a Lie algebra. Now (31) and (32) imply that [R,, R,] and [L,, L,]
are in & for all o,y in 2. Also Theorem 1 implies that

[B., [L., B]l = Res ey
and
[Ly [ Loy Bl = Lz
are in & for all z,y,2 in 2A by (25) and (26). Finally,
[([La, Bo], [Lo, B, = — [[Rs, [Ley By, Lol — [[[Le, By], Le], Ril
= [Liay Biepn] + Lo,y Bl
is in & for all a,b,z,y in A by the Jacobi identity.

COROLLARY. Let U be a standard algebra with 1 over F of
characteristic # 2. The inner derivations of W are the operators

(38) R, — L, + Z [iny Ryi] , d, v, y; in A,

Proof. Let D= R;+ L; + >,;[L,, R,] in ¥A) be a derivation of
A. Then 0 =1D = d + f, implying D has the form (38). But any
such D is a derivation by Theorem 1.

4. The Wedderburn principal theorem. Our chief result in
this section is a generalization of both the Wedderburn principal
theorem for associative algebras [1, p. 47] and its analogue for com-
mutative Jordan algebras [12; 7, Chapter VII]. We shall use both
of these theorems in its proof. As we have indicated in §1, Penico
has announced this result (Theorem 4) for characteristic 0, together
with the essential portions of Lemma 1 and Theorem 3, in [13].

LEMMA 1. Let B be an ideal of a standard algebra N of charac-
teristic = 2. Then the following are also ideals of 2UA:

(39) AB + B = BA + B,
(40) BB + BB (= B .
Proof. Put t =5,€B, y=0,€B, z=acW in (1) to obtain
(bib)a = bi(b.a) — (ab)b, + a(bb,) + (b,a)b, — b,(ab)
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in AB* + B, implying BUA = AB* + B,  Similarly, ABS BA + B
This establishes the equality in (39). To see that AB* + B* is a left
ideal of A, we put = ceU, y =acWA, w=05,€B, 2 =10,€B in (2).
We obtain

c(a(b,dy)) = (ca)(b.bs) + (b,a)(ch,) — bi(alchy)) + (b2)(bic) —by(a(bic))

in AB* + B?, so that QB + B?) = AB* + B,  Similarly, BA + B?
is a right ideal of 2[, so that (39) is an ideal of 2. To prove that
(40) is an ideal of 2, we first put © =06,€B, y = b,eB, z=acW in
(3) to see that

(41) [, A < B .

Then, putting w =b,€¥B, v = b,€B, y =b,€B, 2z =ac W in (10), we
have ((b,6,)b5)a = (b,b,)(b;a) — ((b:a)b5)b, + (b,)(bsb,) + (b:bs)(b,a) — by(by(b,a))
in BB + BB?, implying (BBV)A = BB + BB, Similarly, A(BB?) =
BB + BB, Put € =b6eB, yeB, 2 =ac in (3) to obtain

(by)a = a(by) + [b, aly + bly, a]
in AEDBB?) + BB* by (41), implying (BBH)A = BB + BB, Similarly,
AB*B) = B*B + BB, This proves that B, defined as B* = BB + BB?,
is an ideal of A.

In any nonassociative algebra 2 the derived series
(42) BODBL D e DBE D ...
of B is defined by
BO = B, P+ = (BD)? |

and B is called solvable in case there is some %k for which B%® = 0.
If B is an ideal of A, the terms of the derived series (42) are not in
general ideals of %U. By Lemma 1 we do obtain from any ideal B in
a standard algebra 2 a descending chain

(43) BODIBL D e DBE D .
of ideals B of A defined by
(44) BO =B, BD = Y(BD) 4+ (BD)? .

Following Jacobson’s terminology for commutative Jordan algebras,
we call (43) a Penico sequence and call the ideal B Penico solvable in
case there is some k for which B%* = 0.

If B is Penico solvable, then B is solvable, since
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BH 2 B for i =0,1,2, -+ .

The converse is known for finite-dimensional commutative Jordan
algebras [12; 7, Chapter V]. We model our proof for standard algebras
on an unpublished concise proof by K. McCrimmon for the commuta-
tive Jordan case.

The multiplication algebra M(A) of any nonassociative algebra
2 is the enveloping associative algebra of the right and left multipli-
cations of . If B, € are ideals of A, then

[C:B] = {Te M) | BT < 6}

is an ideal of M (). Lemma 1 implies that, if B is an ideal of a
standard algebra 2, then

(45) Q= [B:B]
is an ideal of IM(A). Also
(46) BLS B .

THEOREM 3. Any solvable ideal B in a finite-dimensional stand-
ard algebra W over F of characteristic + 2 is Penico solvable.

Proof. It is sufficient to prove that, if B is any ideal of finite
codimension in a (possibly infinite-dimensional) standard algebra %I,
then

(47) B o B if 2n — 1> dim %A/B .

For (47) and the assumed finite-dimensionality of 9 insure that there
is an integer ¢ such that € = € = €* = €™ for every ideal € of 2.
Then B = B for any ideal B, as may be seen by induction:

PE+DE — (%<M>)<t> c (%<kt>)m c (%(k))m = B+

If B is solvable, then B¢ = B* = 0 for some k, and B is Penico
solvable.

In order to prove (47), we adjoin 1 to 2 to obtain 2, = F'1 + ¥,
so that B = A (BP)? in (44). We shall show first that, for any n,

(48) B < B(LEB, W)LEL)™ + B°,

where L(B, 2(,) denotes the set of all left multiplications of 2, cor-
responding to elements of B. For Q in (45) we have

(49) Liy,eQ, LyL,eQ

for all b, in B, Put x =b,€VB, 2 =0b,€B, y = ac, in (13) to obtain
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L. = — Ly, L,L, — Ly L,L,, (mod Q)
by (49), implying
(50) LA, A,) & LB, A,) LQL) LB, A) + Q.

We prove (48) by induction on n. The case n = 0 is clear. Assuming
(48), we have

Bn+2> — %[1(%<"+1>)2
< A (BOB+Y)
= B\HOLEBD, A,)L(A,)
S BOLEB, W) LA LB, A)LEA,) + B°
< B(L(B, A )L,y + B

by (50) and (46), as desired. Put z =a, e, z2=a,eA, vy =b,eB
in (18) to obtain

(51) L(alaz)bg = Lszalaz + Laz(La1b2 - Lszal) + Lal(La2b2 - Lszaz) .

Multiply (51) on the left by L, and on the right by L,, for b,e%,
to obtain

Ly (L, Ly, L, + LoLy,L,)L, €2
by (49). Hence, modulo L,

f(a/ly Qgy =+ *y aZn——l) = LblLalLszag «-- L LbZnL

@2n—1 %on

is an alternating function of a,, a,, -+, a;,_, € ¥, and
fay, +, ay,_) € if a; = a; for some 7 = j .

Also fla, @y, *++, @y,—) is in Qif any @, isin B, If 2n — 1 > dim A/B,
the a; cannot be independent modulo F'1 + B. Hence f(a,, a,, -+, ay_y)
is in Q when 2n — 1 > dim /B, and (48) implies that

B S BA + B = B

This establishes (47), and completes the proof of the theorem.

THEOREM 4 (Wedderburn principal theorem for standard algebras).
Let AN be a finite-dimensional standard algebra over F of characteristic
#+ 2, and let N be the radical of . If A/N is separable, then

(52) A= +N (direct sum)
where & is a subalgebra of A, S = A/N.
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Proof. We may assume that the solvable ideal 9 is == 0. If
N =N, then R = NP =N® = ... = N*® =0 for some k, since N
is Penico solvable by Theorem 3. Hence the ideal 9 of ¥ is properly
contained in ¢, and we may make the usual reduction of the proof
of the theorem to the case * = 0 by an inductive argument based
on the dimension of U [1, p. 47]. We may also make three further
reductions which are typical of proofs of the Wedderburn principal
theorem for other classes of algebras [18, pp. 64-65; 7, Chapter VII].
We may assume that 2 contains 1, and that F is algebraically closed.
Finally we may assume that /9% is (central) simple. For, if A/N =
B, P PB,, B, simple, the identity elements of the B, are pairwise
orthogonal idempotents in 2A+/N+ = (A/N)* and may be lifted to pair-
wise orthogonal idempotents e; satisfying 1 =e¢, + --- + ¢, in the
commutative Jordan algebra 2*. But then the ¢; are pairwise orthogo-
nal idempotents in A. We have seen in (23) that, in the correspond-
ing Peirce decomposition (21), the radical of U, is N, =NNUA,; (1=
1, -.-,7). This is sufficient by the usual argument to reduce the
proof of the theorem to the case where 2[/0 is (central) simple.

We know from §1 that the simple standard algebra /N is either
associative or a commutative Jordan algebra. Let the degree of the
central simple algebra A/ be ¢. Then, by the lifting of idempotents
proved above, 1€ may be written as 1 = ¢, + --- + ¢, for pairwise
orthogonal idempotents ¢; in A (¢ =1, ---,¢). If ¢ =1, then dim A/N =
1, and F1 is the desired subalgebra of . We shall give separate
proofs for the cases ¢t = 2 and ¢ = 3.

Assume that /N is a (central) simple commutative Jordan algebra
of degree 2. Then, since F' is algebraically closed, 2/9t has a basis
11, [vd], -, [vn], m = 2, where [x] denotes the residue class [¢] =
x4+ N of xe, and where

v =111,  [vdlv;] = [0] if o+ (0,5=1,--+,m).

Now 92+ is a commutative Jordan algebra with radical 9t*, and
AH/M+ = (AN = A/N. By a special case of the Wedderburn princi-
pal theorem for commutative Jordan algebras, there are elements
Uy, ++, U, in At such that

(53) =1, uu; =0 forv+#35 (1,5 =1, -+, m).

In the Peirce decomposition (17) of U relative to the idempotent ¢ =
31 4+ w,), we have wu;eWy(e) = A, + Ayy + A, for 7=2,..-,m,
Write

ui:ﬁ—l—si—{—ti (?::2,"',7%)
t; €Ay Since AN is a commutative Jordan

where ;€ Uy, s;€WAyy,
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algebra, we have %, + %, &S N by the final remark in §2. Since
N> = 0, (18) implies that

(54) uu; = 8;8;, €A+ Ay for i, =2, ---,m.

Write s, = 4, = 2¢ — 1. Then

(55) s=1, ss=su=0  (=1-,mi=2,m
and

(56) ss;=¢ + ¢, ceA,ce, (C#J;16,5 =2,---,m).
By (563) and (54) we have 0 = wu; + uu; = s;8; +s;8; for 1 =35 (1,7 =
2,+--,m), so that s;s; = — ¢, — ¢, and [s;, s;] = 2¢, + 2¢,. Then (3)
implies that [s.e, s;] = [s., s;]e + sile, s;], or ¢ + ¢, = 2¢, so that ¢, =
¢, =0, and s;s; = 0 in (56). Then (56) and (55) imply that 1, s, ---, s,

form a basis for a subalgebra of 2 which is isomorphic to 2/9.

Next assume that A/ is a (central) simple associative algebra
of degree 2 over the algebraically closed field F. Then /N is iso-
morphic to the algebra of all 2 x2 matrices over F, and Q)" is a
central simple commutative Jordan algebra of degree 2. By the
Wedderburn principal theorem for commutative Jordan algebras, At
contains elements u,, u,, u,, satisfying (63). We have seen that wu, is
in the Peirce space Uj(e) = Ay, + Ayy + A, relative to the idempotent
e = 3(1 + u,). Write

Wy = Ay + a1y + Aoy a;; € ?Iu(e) .

Since A/N is associative, we have A, &N. Then N =0 and (18)
imply that i = a,a, + a,a,, Where a,a,¢cq, a,a,cW,. But =
1=¢+ (1 —e), so that a,a, = ¢,a,a, =1 — ¢. Hence 2 contains
elements u,, = e, Uy, = Gy, Uy = gy, U, = 1 — ¢ which form the basis
for a subalgebra & with multiplication table w;u,, = 0;,u; (1,7, %k, 1 =
1,2), & = AN as desired.

Finally we assume that 2/t is a (central) simple standard algebra
of degreet > 3. We know that1l = ¢, + --. + ¢, for pairwise orthogo-
nal idempotents ¢; in . We wish to show that the idempotents e;
and e; (¢ # j) are connected (¢,7 = 1, ---,¢t). We know from (23) that
the radical of B = A,; + A;; + A,; = WAi(e; + ¢;) in (22) is B NN, Now
B/(BNARN) = (B + I/ N = QR + AN, + (A/N);; where subscripts
indicate Peirce spaces relative to the pairwise orthogonal idempotents
e, -+, [e.] in 2A/N. But in both the associative and commutative
Jordan cases, the latter algebra is a central simple algebra of degree
2. We have already seen that such a residue class algebra may be
lifted, so we know that B contains a subalgebra with identity e; + e;
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which is a central simple standard algebra of degree 2. In case A/MN
is associative, B contains a matric basis u;; = e;, 4;;, u;;, ;; = ¢;. Then
Ui + Uy € (Wp(e:) + Wn(e)) N Wsoley) + Anle;)) is regular in B since
(4;; + u;)* = e; + e;.  That is, the idempotents e;e; are connected
with indicator @ = 0. By McCrimmon’s results [11, p. 191] which
we mentioned in § 2, the algebra 9 itself is associative. But then
the Wedderburn principal theorem is known to be true. Similarly, if
A/N is a commutative Jordan algebra, B contains u, = e; — €;, Uy, ==+, U,
(m = 2) satisfying ul =¢; + ¢;, uu; = 0 (k = l; k,l =1, ---, m). Then
u, € Ay y(e) N Ayy(e;) is regular in B. That is, the idempotents e;, e;
are connected with indicator ¢ = 1/4, and the algebra U itself
is a commutative Jordan algebra, in which case the Wedderburn
principal theorem is known to hold. This completes the proof of
Theorem 4.

5. The Malcev-Harish-Chandra theorem. For the remainder
of this paper we assume that the field F has characteristic 0. Our
results are generalizations to standard algebras of known theorems
concerning associative and commutative Jordan algebras of charac-
teristic 0.

If D is a nilpotent derivation of a nonassociative algebra 2 of
characteristic 0, then

D? D?

expD=I1+D+ — +

ar Tt

is an automorphism of 2. Two subalgebras of 2 are called strictly
conjugate if one is mapped onto the other by an automorphism of
the form GG, --- G, G, = exp D;, D, a nilpotent derivation.

THEOREM 5. (Malcev-Harish-Chandra theorem for standard alge-
bras). Let A be a finite-dimensional standard algebra of character-
istic 0 with Wedderburn decomposition A = &S + N as in (62), and
let M be a semisimple subalgebra of A. Then I is strictly conjugate
to a subalgebra of &.

Proof. Jacobson has proved this for commutative Jordan algebras
& [6, Th. 9.3], and has remarked that the Campbell-Hausdorff formula

(57) exp D, exp D, = exp (D1 + D, + _12_[D1, D]+ .- >

permits one to give the conjugacy by an automorphism G = exp D,
D in the radical of the multiplication algebra IN(J). We need to
observe that, since the derivations D; which he uses in his proof are
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inner derivations of &, the Campbell-Hausdorffi formula (57) gives
conjugacy by G = exp D where D is an inner derivation of .

Now IN* is a semisimple subalgebra of the commutative Jordan
algebra A+ =&+ + N*. Then IM* is strictly conjugate to a subalgebra
of &+, the conjugacy being given by G = exp D, where D is a nilpotent
inner derivation of 2[*. By the Corollary to Theorem 1, D is actually
a derivation of 9. Hence G is an automorphism of A, and G maps
M onto a subalgebra of &,

COROLLARY. If a standard algebra A of characteristic 0 has
Wedderburn decompositions A =S + N = S, + N, then S, is strictly
conjugate to S.

THEOREM 6. If 9 is a semisimple subalgebra of a finitte-dimen-
sitonal standard algebra B of characteristic 0, then any derivation
of U into B can be extended to an imner derivation

(58) _D - Rd - Ld + Z [LT'L’ Rzz] 3 d, xi, z,,; € % 5
of B.

Proof. This result is known for commutative Jordan algebras
[6, Th. 9.1]. Now 2* is a semisimple subalgebra of the commutative
Jordan algebra B+. Any derivation of 2 into B is also a derivation
of A+ into B*, and can therefore be extended to an inner derivation
D of ®B+. By the Corollary to Theorem 1, D is a derivation of 2.
Since D is a sum of derivations (30), D has the form (568) and is inner
by Theorem 2.

Theorem 6 is equivalent to the first Whitehead lemma for standard
algebras of characteristic 0, which involves the notion of standard
bimodule B or representation (S, T) of a standard algebra. We omit
the definitions which are determined easily from the general definitions
in [18, pp. 25-26]. The first Whitehead lemma may then be stated
as follows: Let U be a semisimple standard algebra of characteristic
0 with representation (S, T') acting in L. Let v be a derivation of A
into B (a “one-cocycle”): v is a linear mapping of U into B satisfying

v(zy) = av(y) + v(@)y = vy T, + v()S,

for all z,y in A. Then, if B is the semidirect sum B = A + B, there
exist x; ¢ W and d,z; € B such that

))(y) = yd - dy + 12 (xiy yy zi) ’

that is, v(y) = yD where D is the inner derivation (58) of 3.
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The restriction to characteristic 0 is not necessary in Theorem 6
and the first Whitehead lemma. With a more complicated hypothesis,
more general results may be obtained by using [4, Th. 2] instead of
[6] in the proof.

We conclude with a generalization of the theorem in [14].

LeEMmA 2. The radical N of any finite-dimensional standard
algebra WA of characteristic 0 is characteristic; that is,

(59) ND =N

Jor every derivation D of U.

Proof. Albert has shown that, for characteristic 0,
(60) N = {«|trace R,, = 0 for all ye A}

[2, p. 581]. Then D ¢ D), x € N imply trace R,,, = trace R,,.p_oiyp =
trace [R,,, D] — trace R,,, = 0 for all y in 2 by (24), (25) and (60).
Hence xD e N, implying (59).

LEMMA 3. Let © be a finite-dimensional semisimple standard
algebra of characteristic 0, 3 be the center of S, the associator
subspace of & (spanned by all associators in &), and & = [S, S| the
commutator subspace of &. Then & 1is the direct sum

(61) =383+ +P.

Proof. Since it is sufficient to show this for each simple com-
ponent, we may assume that & is simple. If & is associative, we
have P = 0, and it is well known that & is the direct sum & = 3 + &'.
If & is a commutative Jordan algebra, we have & = 0, and & = 8 + P
[14, p. 292].

THEOREM 7. Let U be a finite-dimensional standard algebra of
characteristic 0, and D) be its derivation algebra. Then A is semi-
simple with each simple component of dimension == 3 over its center
if and only if D) is semisimple or 0.

Proof. If A =& H - ---PS, is semisimple, each simple com-
ponent &, is either associative or a commutative Jordan algebra, and
D) is the direct sum of the D(&;). The latter are all known to be
semisimple or 0, except when &; is (a commutative Jordan algebra)
of dimension 3 over its center, in which case D(S,) == 0 is abelian.
Therefore, in order to prove the theorem, it is sufficient to show that,
if D) is semisimple or 0, then the radical 3 of A is 0.
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Let ©, be the subspace of D(A) spanned by the derivations (30),
z,y in N. Then D, is a solvable ideal of DA*) [14, p. 292]. But
D, = D) & DAY, so D, is a solvable ideal of D(A). Hence D, = 0.
Let ©, be the subspace of D(A) spanned by the derivations (30), =z
in 2,y in N. Then D, is also a solvable ideal of DRA*) [14, p. 293],
and similarly ©, = 0. That is,

(62) R[x,z] - L[x,z] + 4[Lx’ Rz] - 0 fOI‘ all xr e %I, RE 9} .
Let
(63) D, ={R, — L, |2 N}.

Lemma 2 implies that 9, is an ideal of ®®): [R, — L,,D]=R,, —
L,,eD, for all zeN, De D) by (25), (26) and (63). Also D, is solv-
able. For it is easy to see by induction on k£ that the kth derived algebra
D of D, is spanned by derivations of the form (28) where d is a
product of 2* elements of . Since N is nilpotent, D = 0 for some
k. Hence ®, = 0, implying

(64) R, =1L, for all ze .
Then (62) and (64) imply that
(65) [L.,,R.]=0 for all xe A, zeN.

It follows from (64) and (65) that 9t is contained in the center € of 2.
Let A =& + N be a Wedderburn decomposition (562) of . Then
€ is the direct sum

(66) E=3+%RN
where 3 is the center of &. It follows from (61) and (66) that
A= +P+C.

Now z ¢ RS € implies 2[a,, a,] = [2a,, a.] = 0 and 2(a,, a,, a;) = (za,, a,, a;) =
0 for all a, e, since za,c Y. Hence NS’ = 0, NP = 0, and CS&' = &',
CP =P by (66). Similarly, &N =0, PR =0, GC=S &, PE < L.
Let D be any derivation of the commutative associative algebra €
(into itself). Let D be the linear extension of Dy to A defined by
&'D =PD = 0. Then D is a derivation of %, as may be checked by
the same type of computation as given in [14, p. 294]. That is, every
derivation of € is induced by a derivation of U, and the proof of the
theorem is completed as in [14, p. 294]: D(€) is 2 homomorphic image
of D), so is either semisimple or 0. Then Hochschild’s result for
associative algebras [5, Th. 4.5] implies that € is semisimple, so its
radical ¢ = 0. This completes the proof of Theorem 7.
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The Wedderburn principal theorem does not hold for noncommuta-
tive Jordan algebras (even for characteristic 0, or for 9* = 0), as may
be seen by a 5-dimensional example [18, p. 147; 16, p. 477]. However,
all of the theorems of this paper have valid analogues for alternative
algebras [18, 15]. It would be interesting to know whether there is
a class of nonassociative algebras, containing all alternative algebras
as well as all commutative Jordan algebras, for which the analogous
theorems are true. By virtue of the example cited above, such a
class cannot be as inclusive as the class of all noncommutative Jordan
algebras. It has been suggested that strongly homogeneous algebras
[3, p. 109; 9, p. 356] might constitute such a class. However, the
same example disproves this conjecture. For this particular 5-dimen-
sional algebra is a quadratic algebra in which it is easy to compute
that (xy)™ = y~'x~* for generically independent elements x,y. Hence
the algebra is strongly homogeneous by Theorem 10 of [9]. See [3,
p. 131] for a related conjecture, which is not so easy to settle since
it requires the existence of an unspecified set of identities.
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