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The main result is

THEOREM. If A is a simple Lie-admissible power-associative
ring with characteristic prime to six, and if A has an idem-
potent e relative to which A has a Peirce decomposition such
that AQO=O, then either e is a unity element of A or A ~ B,
where B is a three-dimensional algebra having a basis {e, x, y}
such that e2 = e, ex—x9 ye=y, xy— —yx—e and xe—ey=x2=^y2=0.

If A is a simple Lie-admissible power-associative ring then A be-
longs to a class of rings which includes associative rings, Lie rings,
commutative power-associative rings, Jordan rings, anti-flexible rings,
rings of type (7, d) and others. Lie rings do not have idempotent
elements, and simple (7, d) rings with an idempotent eφl have been
shown [2, 3, 4, 5, 6, 8] to be associative. Thus if A has an idem-
potent element e Φ 1 then A belongs to a class which includes rings
of the associative, commutative power-associative, and antiflexible
types. Assuming that A has an idempotent e satisfying,

( 1 ) (β, β, x) = (e, x, e) = (x, e, e) = 0 ,

suffices to establish a Peirce decomposition,

where Aiά = {x e A | ex = ix, xe = jx} for ί, j = 0,1. This assumption
eliminates the possibility that A is commutative, for then A10 = AOi = 0,
so [2] A = An φ -̂oo and simplicity implies that A = Au, hence e is
a unity element for A.

The class of rings under consideration does contain members which
are not associative. Kosier [7] has given examples of simple Lie-
admissible power-associative finite-dimensional algebras, the so-called
anti-flexible algebras. These have the property that A = An + Aoo in
every Peirce decomposition.

There are no rings with unity element, 1, which possess a Peirce
decomposition with respect to an idempotent e Φ 1 in which A0Q — 0.
This is because 1 — eeA00.

The algebra B of our theorem was introduced in [9]. It has the
property that i5{~) is a simple Lie algebra.

The associator, (a?, y, z) = (xy)z — x(yz), and the commutator,
[x, y] = xy — yx, are functions which, defined on any ring, are linear
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in each variable and related by the identity,

( 2 ) [xy, z] + [yz, x] + [zx, y] = (x, y, z) + (y, z, x) + (z, x, y) .

A Lie-admissible ring satisfies,

(3) [xy - yx, z] + [yz - zy, x] -t- [zx - xz, y] = 0 ,

and a power-associative ring whose characteristic is prime to two
satisfies

(4) [xy + yx, z] + [yz + zy, x] + [zx + xz, y] = 0 ,

hence in the ring A the function

#(£, y, z) = (x, y, z) + (y, z, x) + (z, x, y)

= [xy, z] + [yz, x] + [zx, y]

is identically zero. Also, the fourth-power-associativity identities
(x2, x, x) — 0 and (x, x, x2) — 0 may be linearized to yield functions
P(a, 6, x,y) = Σi (ab, x, y) and Q(a, δ, x, y) = Σ (α> δ» ̂ 2/) which are
identically zero. The Σ here in both cases indicates a sum to be
taken over the twenty-four permutations of α, 6, x and #.

We will use as well as juxtaposition in denoting products, with
juxtaposition taking precedence. Thus a-bc = a(bc).

LEMMA. Let A be a ring whose characteristic is prime to six
and in which the functions H, P and Q vanish identically. Suppose
A contains an idempotent e relative to which A has a Peirce decom-
position. If amn denotes the component of an element a in the
module Amn then

( 5 )

( 6 )

(7)

( 8 ) xuyv = (xuy^ij + (XiiVi^jj e Ai3- + A5i ,

( 9 ) VijXu = (xuVidόJ e AJJ ,

(10) yHx{i = (yjiXa)^ + (y5ixn)55 e AH + Ajό ,

(11) XuVji = (VjiXiύjj e Ajj ,

(12) x^yij = yijXij e An + Aj3 ,

(13) xi3 yάi e A« + A i y ,

(14) xnyn e Au + A,-,- ,

i + V*

= 0 ,

1



LIE-ADMISSIBLE POWER-ASSOCIATIVE RINGS

[Alj, AH + AH + AJJ] = 0 ,

[Ai3AH, Au\ = 0 ,

[AjtAjj, Ai5\ = 0 ,

[A3ΊAid, A3i] = 0 ,

253

+ +

(15)

(16)

(17)

(18)

(19)

(20)

(21)

and

(22)

Proof of the lemma. Identities (5), (6) and (7) are derived in [1]
using only the fact that the functions H, P and Q vanish identically.
All of the identities are obtained by relatively straightforward substi-
tution of elements into H, P and Q. Due to the excessive length of
many of the computations involved we leave the proofs to the reader.

Since our theorem hypothesizes that Aoo = 0 the multiplicative pro-
perties stated in (8) through (14) of the preceding lemma can be more
compactly exhibited in our case by the module multiplication table:

(23)

We will henceforth make free use of the properties shown in this
table. Note also that (12) can be written

(24) [A10, A10] - [Aoι, Aoι] = 0 ,

and (15) can be written

(25) [A?o, An + AQl] - [Ail9 An + A10] = 0 .

Prom (16) we have

(26) [A01A10, An] = 0 ,

and (19) through (22) specialize to

(27) an-x10y10 = x^y^aιx = (l/2)(αn.τ10.?/10 + any10-xι0) ,

(28) an x01y01 = x01y0r(in = (l/2)(xolan-yOί + yolan-xol) ,

An

^•10

Άoi

An

An

0

^ " • 0 1

- " 1 0

AlQ

An

An

AQI

0

An

An
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(29) an(xιoyQί + y0ιx10) = anx10 yQ1 + yolan-x1Q

a n d

(30) (a?lo2/oi + S/oΛoKi = 2/oi αiΛo + ^

respectively.
We assume throughout that β is not a unity element for A. We

will show

(31) (A, Au, An) = (Allf A, Au) = (Au, Au, A) = 0 .

The submodule Au is a subring of A, and for i Φ j , two of the
associators in Hi^x^y^a^) = fe,^,^-) + (yn,aij,%n) + (a>ij,Xn,Vn) = 0,
are equal to zero, hence all three are equal to zero. Thus it suffices
to show that Au is associative.

We assert that the submodule / = (Au, A l l f An) + (Au, An, An)An

is an ideal of A. We will use the fact that the function T(α, x,y,b) =
(ax, y, b) — (α, a?2/, 6) + (α, a;, 2/5) — α(&, y, b) — (α, a?, y)b is identically
zero in any nonassociative ring. Thus 0 = T(amn, xn, yn, δ^ ), with
m + /^ = / ί + i = 2 implies that An(An, An, An) g /, and with m + w = 2,
i + i = 1, implies that (An, An, An) Ai:f = 0, using the fact that
(Au, Au, A o ) = 0. If m + n = 1 and i + j = 2 then we get
Amn(An, Au, An) = 0. Thus (An, Au, An)A + A(An, Au, Au) is in /.
Furthermore,

(An, An, AJAn ASίίAn, Au, An), An, A) + (Au, An, A n )AS J ,

so IA^I. Finally,

+ A(AU, An, A U )-A U S/ + l A n S l ,

and it follows that A / C / . Hence J is an ideal of A. If A = I then
e is a unity element for A, which contradicts our assumption. There-
fore / = 0 and in particular (Au, An, An) = 0, which proves (31).

We assert next that A2

1Q = A2

Q1 = 0. First we prove that J= A2

10 +
A2

10A1Q is an ideal of A. We have

^ Ί 1 0 A 1 0 £ΞΞ A 1 0 A n

 : = : 0 , J±Q1A.10 = .A 1 0A 0 1 ^ -AnΆoi = : "

by using (25), and AnAlQ = AϊoAu C AJ0 by (27). Thus A^0A + AA2

l0 e J .
Moreover, (A?0A10)An S A10An = 0, and, by using (31), An(A?0A10) =
(AuAJo)A10 S A?0A10 S J . Letting α u = 1̂0̂ 10 in (29) we have

uίOvίO(xιoyQ1 + yQ1x1Q) = (ulovlo xlo)yoι + (?/or^10^10)^10 .

But 2/01-̂ lô io = ^io^lo 2/oi = 0 by using (25), so
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(ί^lO^iO * *^lθ)2/θl ~ ^ΊO^lOV ^lO^/oi ~Γ 2/θl^lθ) ^ - " 10-"-ll = «*

and therefore A2

l0Aί0 A01ξ^J. Finally, H(u10v10, x10, y01) = 0 implies

Thus / is an ideal of A.
Since A is simple either J = 0 or J = A. If J= A then A?o — A1U

AnA10 — Aί0 and A01 = 0. Thus we may write

e = Σ ^ } ^ }

But

and

0 = H(X10, X10, y10) = l^io, ?/ioJ
= = ^io2/io 1

o> 2/io > # 1 0 ) ~f~ v2/io > ^10 >

0 = (l/4)P(aj 1 0, x1Q, y10,

— (^10 > 2/io > 2/io) + 2 ( ^

^^io2/io 2/io^io ~r 2/io^io "«̂ io

so using the fact that Ai0 is in the center of the associative subring
An, we obtain xl0y

2

10 — — 2(xl0y10)
2. It follows that

o^o = 0

since xz

1Q = a?lo flj?o = 0. But then we have

3ί + l

= 0 ,

since every term in the multinomial expansion must contain, for some
j , a factor (x^y^Y = 0. From this contradiction we conclude that
J = 0, hence A?o = 0. Then also A2

01 = (A*01)
2 = 0, where A is a ring

which is anti-isomorphic to A.
We may now replace (23) with the table,

(32)

We will continue to make free use of these multiplicative properties
in the sequel. Of special interest are the identities,

^•10

^ • 0 1

An

An

0

^ • 0 1

-^•10

•^•10

0

An

-^-01

0

An

0

(33)

and

2/oi * — Zoι
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(34) 2/ioSoi Bio = -Soi»io 2/io i

obtained by using the function H and (32).
We show next that the subring An is itself a simple ring.
Let Bn be any nonzero ideal of An and consider the submodule,

L = Bn + BnAί0 + A01Bn + A0i-BnA10

+ A.01ijn Λ.1O + (AQί .o 11.

We will show that L is an ideal of A.
Evidently, ABn + BnA^L. Also BnA10*AnSA10An = 0; and by

(31), An-BnA10 = AuBn-A^a^AoSL. By (24),

Noting that BnAio ΛiSΛi-Bn Λo + BπSL by (29), and A0ι BnA10QL
by the definition of L, we see that A BnA10 + BU41O A S L . More-
over, A-AQ1Bn + 40 1Bu A g L from the left-right symmetry of our
identities. Similarly, verification that the fourth and sixth terms in
in the definition of L yield elements of L when multiplied on the left
or right by an element of A implies the same result for the fifth and
seventh terms.

By (28), [ 4 o l . 5 A , 4 ] S [ M o , 4 ] = 0. Since (AorBnAlo)AnQL
by definition of L, it follows that An(AQί-BnAL0)ξΞ:L also. Clearly,
A10(AorBnA10)SA10An = 09 and by (34), {A
Also (A01-BnA10)A01<^AnA01 = 0, and by (30) and (33),

AQ1(Aϋl BnA10)^A01(Bn + Aί0 A01B

Thus A(A0ί-BnA10) + (AϋrBnA10)ASL.
Since [A01 jBnA10, An] £ [A01A10, An] = 0 it suffices to show that

(A01-BnA10)An A and A-An(A01 BnA10) are in L. By (31),

and A An(A01 5n^l10) = AAn (Λi 5UA1O) C A(AOi 5nA10) S ^ . This com-
pletes the verification that L is an ideal of A.

Since A is simple and 0 Φ Bn S ί' we must have L = 4̂, hence
BnA10 = A10 and AOίBn = A01.

If bneBn then bn(anx10) y01 + τ/01&n-̂ iAo e 5 n and

by (29). Taking the difference of these two elements and using (31)
gives (2/oiδii)αn a?lo — VoAra^x^eBn. Since A01Bn = A01 it follows that

If the intersection of all proper ideals of An is the zero ideal,
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then (A01, Au, A10) = 0. Hence, by (31) and (33),

= 2/oi(^oi * ^ n ^io/ ~ ^oiv^ii^io * Voi) 'y

I . e . , #oivfyu» ^iot l/oi) ^ ^

Since the set Nn of elements of An which annihilate A01 is an
ideal of An, and since 0 = A01Nn Φ A01, it follows that Nn = 0, hence
(Au, A10, A01) = 0. Thus i 1 0 i 0 i = (5n4io)Λi = #n(A10A01) S # u and, by
using (29), A01Λ10 = (AQ1Bn)A10^ BnAιoΆOί + BnQBn. This implies that
the ideal L is given by L = 2?n + 5nA1 0 + A0 1JBU. Since A is simple,
•Bn = -An and -An is simple.

The other possibility is that An contains a unique minimal ideal,
Mn. If (A01, An, A1Q) = 0 we may proceed as above. Thus assume
that there exists a nonzero element δ n of the form (y01, an, x10). Since
(A01, An, A10) SBn for every nonzero ideal Bn of An, we see that
bneMn. Moreover bn is in the center of A u by (26). Since Mn is
minimal, Mn — bnAn. If bncn = 0 then, since ΛuΛfπ = AQ1, A01cn =
-AoiAuftnCϋ = 0. Thus c116Λr

11 = 0; i.e., no nonzero element of An an-
nihilates 6n. Hence 6^ ^ 0 and Mn = &nAn. Then there exists 6n e A u

such that bn — b2

ndn, or 6n(e — δπCΪπ) = 0. It follows that e = bndne Mn

hence M u = A u is simple in this case also.
By (31), (33), and (26), zol(xιoyoran) = (zorxloyol)an= ~(yorzolx1Q)an^

2/oi, «n) = °̂  o r (A10, An, An) S Nn = 0. Then (30) reduces to yolxlo an =
yQί-anx1QJ which, in view of (26), implies that A01A10 is an ideal of An.
If A01A10 = 0 then (34) implies that A10AQ1 annihilates A10, hence A10A01~
0. But then we easily see from (32) that both A10 and A01 are ideals
of A, hence A10 = A01 = 0, which implies that e is an unity element
for A = An. From this contradiction we conclude that A0ίA10 = Aιu

hence by (26), An is commutative and therefore a field.
Let An = Φe. To prove that A01 is one-dimensional over Φ, choose

0 Φ zoι G Aoi such that zoιAιQ = A u = Φe. Suppose 201#10 = e. Then for
every y01 e A01 we have, by (33), y01 = — zol*xloyOi = azQ1 for α e Φ. Also
A1D = Ajj is one-dimensional over Φ.

We now have An = Φe, A10 = Φ# and A01 = Φy. Since (34) gives
(#2/ + yx)x = 0 and xy + yxeΦe, we must have αy + 2/E = 0. Without
loss of generality we may take xy — — yx — β, which completes the
proof of the theorem.

This paper is based on a portion of the authors doctoral disser-
tation written under the direction of Professor Erwin Kleinfeld, to
whom the greatest appreciation is expressed. Thanks are also due the
referee who indicated modifications in the original proof allowing for
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an extension to rings of the theorem originally proved only for finite-
dimensional algebras.
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