ON PRIME DIVISORS OF THE BINOMIAL COEFFICIENT

EARL F. ECKLUND JR.
ON PRIME DIVISORS OF THE BINOMIAL COEFFICIENT

E. F. ECKLUND, JR.

A classical theorem discovered independently by J. Sylvester and I. Schur states that in a set of \(k \) consecutive integers, each of which is greater than \(k \), there is a number having a prime divisor greater than \(k \). In giving an elementary proof, P. Erdős expressed the theorem in the following form:

If \(n \geq 2k \), then \(\binom{n}{k} \) has a prime divisor \(p > k \).

Recently, P. Erdős suggested a problem of a complementary nature:

If \(n \geq 2k \), then \(\binom{n}{k} \) has a prime divisor \(p \leq \frac{n}{2} \).

The problem is solved by the following theorem.

Theorem. If \(n \geq 2k \), then \(\binom{n}{k} \) has a prime divisor

\[p \leq \max \left\{ \frac{n}{k}, \frac{n}{2} \right\}, \text{ with the exception } \binom{7}{3}. \]

Throughout the paper, \(p \) denotes a prime. J. Rosser and L. Schoenfeld [2] have obtained fairly precise estimates for \(\theta(x) = \sum_{p \leq x} \log(p) \) and \(\pi(x) = \sum_{p \leq x} 1 \).

1. \[\frac{x}{\log x} \left(1 + \frac{1}{2 \log x} \right) < \pi(x) \quad \text{for } x \geq 59. \]
2. \[\pi(x) < \frac{x}{\log x} \left(1 + \frac{3}{2 \log x} \right) \quad \text{for } x > 1. \]
3. \[\pi(x) < \frac{1.25506x}{\log x} \quad \text{for } x > 1. \]
4. \[\theta(x) < 1.01624x \quad \text{for } x > 0. \]
5. \[x - 2.05282 \sqrt{x} < \theta(x) < x \quad \text{for } 0 < x \leq 10^8. \]

Using these results, we are able to prove the theorem.

First we establish the following lemmas.

Lemma 1. If \(\binom{n}{k} \) has no prime divisors \(p \leq n/2 \), then

\[\binom{n}{k} \leq e^{\theta(n) - \theta(n-k)} \leq n^{\pi(n) - \pi(n-k)}. \]

Lemma 2. For \(k \geq 59 \),
LEMMA 3.

\[\binom{n}{k} \leq \prod_{n-k < p \leq n} p \leq \prod_{n-k < p \leq n} n. \]
Hence

\[\binom{n}{k} \leq \binom{n}{n-k} \leq n^{\pi(n) - \pi(n-k)}. \]

Proof of Lemma 1. \((\binom{n}{k}) \leq \prod_{n-k < p \leq n} p \leq \prod_{n-k < p \leq n} n. \) Hence

\[\binom{n}{k} \leq e^{\theta(n) - \theta(n-k)} \leq n^{\pi(n) - \pi(n-k)}. \]

Proof of Lemma 2. From (1) and (2), we have

\[n^{\pi(n) - \pi(n-k)} < n^{\log n [1 + 1/(2\log n)]} - (n-k) / \log(n-k) \leq n^{\log n [1 + 1/(2\log n)]} - \frac{n-k}{\log(n-k)} \]
\[< e^{\log n [1 + 1/(2\log n)]} - (n-k) / \log(n-k) \]
\[< e^{\log n + k + 2/(2\log n)}. \]

Lemma 3 is proved by induction on \(n \) for all values of \(k \).

The proof of the theorem is by contradiction. Three cases are considered. The general case is a Sylvester-Schur type argument. The other cases involve deducing contradictions from appropriate upper and lower bounds on the inequalities, (6), of Lemma 1.

Proof of the theorem. Assume \(\binom{n}{k} \) has no prime divisors

\[p \leq \max \left\{ \frac{n}{k}, \frac{n}{2} \right\}. \]

1. \(k < n^{2/3} \).

\[\binom{n}{k} = \frac{n \cdot (n-1) \cdots (n-k+1)}{k \cdot (k-1) \cdots 1} \geq \left(\frac{n}{k} \right)^k. \]

By sieving all multiples of 2, and 3, we have

\[\pi(n) - \pi(n-k) \leq \frac{k}{2} \quad \text{for } k \geq 4. \]

Therefore from (6), we have \((n/k)^k \leq n^{k/2} \). Thus the assumption is false if \(4 \leq k < n^{1/2} \). By sieving all multiples of 2, 3, and 5, we have

\[\pi(n) - \pi(n-k) \leq \frac{k}{3} \quad \text{for } k \geq 60. \]

Thus from (6), we have \((n/k)^k \leq n^{k/13} \). Hence the assumption is false if \(60 \leq k < n^{2/3} \).
2. \(n^{3/3} \leq k \leq n/16 \). Let \(\tilde{n} = [n/2] \), and \(\tilde{k} = [k/2] \); where \([x]\) denotes the integral part of \(x \). If \(p > k \) and \(p \) divides \(\left(\frac{\tilde{n}}{\tilde{k}} \right) \), then \(p \) divides \(\left(\frac{n}{k} \right) \) and \(p \leq n/2 \). By assumption, there are no such primes. Therefore, \(\left(\frac{\tilde{n}}{\tilde{k}} \right) \) has no prime divisors \(p > 2\tilde{k} + 1 \). Thus \(\left(\frac{\tilde{n}}{\tilde{k}} \right) < \tilde{n}^{\log \tilde{k}} \cdot e^{\log^{2} \tilde{k} + 1} \) (see paper of M. Faulkner [1]). From (3), (4), and (8), we have

\[
\frac{2^{2\tilde{k} - 1}}{\sqrt{\tilde{k}}} < \tilde{n}^{\log \tilde{n} / \log \tilde{k}} \cdot e^{\log^{2} \tilde{k} + 1}.
\]

Taking logarithms, we obtain

\[
3.45\tilde{k} - 0.70 - \frac{1}{2} \log (\tilde{k}) < 2.52\sqrt{\tilde{n}} + 1.02(2\tilde{k} + 1),
\]

which is a contradiction for \(\tilde{k} > 32 \). Therefore the assumption is false if \(n^{3/3} \leq k \leq n/16 \) when \(k \geq 65 \).

3. \(n/16 < k \leq n/2 \). Consider \(n/16 < k \leq n/8 \). By (6), (7) and (8), we have

\[
\frac{2^{4k - 1}}{\sqrt{k}} < e^{n/\log n + k \log k}.
\]

Taking logarithms, we obtain

\[
2.76k - 0.70 - \frac{1}{2} \log (k) < \frac{n}{\log n} + \frac{k}{2 \log n};
\]

which is false for \(k \geq 1901 \). By (5), (6), and (8), we have

\[
\frac{2^{4k - 1}}{\sqrt{k}} < e^{k + 2 \log \sqrt{k}}.
\]

Taking logarithms, we obtain

\[
2.76k - 0.70 - \frac{1}{2} \log (k) < k + 2.6\sqrt{15k};
\]

which is false for \(k \geq 25 \). Thus the assumption is false if \(n/16 < k \leq n/8 \) when \(k \geq 25 \). By similar arguments, we show the assumption is false is \(n/8 < k \leq n/4 \) when \(k \geq 32 \); and if \(n/4 < k \leq n/2 \) when \(k > 105 \).

We have proved the theorem for \(k \geq 4 \) with the exception of a finite number of cases. The cases \(k = 1, 2, \) and \(3, \) are easily resolved; and the remaining cases have been checked with the aid of an IBM 1620 computer in the following manner:

The values which were checked are \(4 \leq k \leq 60 \) with \(2k \leq n \leq k^{2} \), and \(61 \leq k \leq 105 \) with \(2k \leq n \leq 4k \).

For the \(i \)-th prime, \(p_{i} \), the exponent to which \(p_{i} \) occurred in the “numerator”, \(n(n - 1) \cdots (n - k + 1) \), and in the “denominator”, \(k! \),
of \(\binom{n}{k} \), \(\alpha_i \) and \(\beta_i \) respectively, were determined; and the values of \(p_i, n, \) and \(k \), were reported if the difference, \(\alpha_i - \beta_i \), was positive. Cross-checking was done manually. The first ten primes proved sufficient to verify the theorem in these cases.

This concludes the proof of the theorem.

In closing, I would like to thank Professor M. Faulkner for her gracious assistance.

REFERENCES

Received July 8, 1968.

WESTERN WASHINGTON STATE COLLEGE
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. R. PHELPS
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA
UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON
CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY
TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Langworthy Chalmers</td>
<td>On boundary behavior of the Bergman kernel function and related domain functionals</td>
<td>243</td>
</tr>
<tr>
<td>William Eugene Coppel</td>
<td>Peirce decomposition in simple Lie-admissible power-associative rings</td>
<td>251</td>
</tr>
<tr>
<td>Edwin Duda</td>
<td>Compactness of mappings</td>
<td>259</td>
</tr>
<tr>
<td>Earl F. Ecklund Jr.</td>
<td>On prime divisors of the binomial coefficient</td>
<td>267</td>
</tr>
<tr>
<td>Don E. Edmondson</td>
<td>A modular topological lattice</td>
<td>271</td>
</tr>
<tr>
<td>Phillip Alan Griffith</td>
<td>A note on a theorem of Hill</td>
<td>279</td>
</tr>
<tr>
<td>Marcel Herzog</td>
<td>On finite groups with independent cyclic Sylow subgroups</td>
<td>285</td>
</tr>
<tr>
<td>James A. Huckaba</td>
<td>Extensions of pseudo-valuations</td>
<td>295</td>
</tr>
<tr>
<td>S. A. Huq</td>
<td>Semivarieties and subfunctors of the identity functor</td>
<td>303</td>
</tr>
<tr>
<td>I. Martin (Irving) Isaacs and Donald Steven Passman</td>
<td>Finite groups with small character degrees and large prime divisors. II</td>
<td>311</td>
</tr>
<tr>
<td>Carl Kallina</td>
<td>A Green’s function approach to perturbations of periodic solutions</td>
<td>325</td>
</tr>
<tr>
<td>Al (Allen Frederick) Kelley, Jr.</td>
<td>Analytic two-dimensional subcenter manifolds for systems with an integral</td>
<td>335</td>
</tr>
<tr>
<td>Alistair H. Lachlan</td>
<td>Initial segments of one-one degrees</td>
<td>351</td>
</tr>
<tr>
<td>Marion-Josephine Lim</td>
<td>Rank k Grassmann products</td>
<td>367</td>
</tr>
<tr>
<td>Raymond J. McGivney and William Henry Ruckle</td>
<td>Multiplier algebras of biorthogonal systems</td>
<td>375</td>
</tr>
<tr>
<td>J. K. Oddson</td>
<td>On the rate of decay of solutions of parabolic differential equations</td>
<td>389</td>
</tr>
<tr>
<td>Helmut R. Salzmann</td>
<td>Geometries on surfaces</td>
<td>397</td>
</tr>
<tr>
<td>Annemarie Schlette</td>
<td>Artinian, almost abelian groups and their groups of automorphisms</td>
<td>403</td>
</tr>
<tr>
<td>Edgar Lee Stout</td>
<td>Additional results on modules over polydisc algebras</td>
<td>427</td>
</tr>
<tr>
<td>Lajos Tamássey</td>
<td>A characteristic property of the sphere</td>
<td>439</td>
</tr>
<tr>
<td>Mark Lawrence Teply</td>
<td>Some aspects of Goldie’s torsion theory</td>
<td>447</td>
</tr>
<tr>
<td>Freddie Eugene Tidmore</td>
<td>Extremal structure of star-shaped sets</td>
<td>461</td>
</tr>
<tr>
<td>Leon Jarome Weill</td>
<td>Unconditional and shrinking bases in locally convex spaces</td>
<td>467</td>
</tr>
</tbody>
</table>