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Recently Hill has shown the existence of an abelian p
group with the property that each infinite subgroup can be
embedded in a direct summand of the same cardinality but
the group is not a direct sum of countable groups. Megibben
has since observed that this phenomenon occurs in a larger class
of abelian groups. In this note we show that such pathology
is present in modules for a rather wide class of rings. In
fact, the lack of such phenomena for a particular class of
modules serves as a characterization for left perfect rings.
Our results also yield some facts concerning pure injective
modules.

All rings in this paper are associative with identity and all mod-
ules are unital.

2 A characterization of left perfect rings* Bass [l] calls a ring
R left perfect if each left i?-module has a protective cover (protective
cover is the dual of injective envelope). Among several other charac-
terizations of left perfect rings, Bass proves that R is left perfect if
and only if R has the descending chain condition on principal right
ideals. Hence, assuming that R is not left perfect, we can obtain a
strictly decreasing sequence of principal right ideals of the form

aJR ZD aλa2R 3 z> aλ anR ZD .

We set P = Πn<ωRen, where Ren = R for each n, and we denote by
S the submodule of finitely nonzero sequences in P. We shall use the
notation Σ?=m r ^> f° r m = n> to denote a vector in P whose ith co-
ordinate is zero for i > n and i < m and whose ith coordinate is rfr
for m <L i <*n. We define elements

c(-> = Σ (αm cφi eP for m = 1, 2, . . . .

Let A be the submodule of P generated by S and the elements c{m)

for m = 1, 2, •••. With this notation established, we prove the fol-
lowing lemma.

LEMMA 2.1. Let R be a ring that is not left perfect and let A
and S be defined as above. Then A is free and S is not a direct
summand of A.

Proof. First we note that if n < m, then
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(*) cin) = S ( α . at)βi + (*»„••• α»-i)c(™>

and in particular

c<»> = α%(ew + c(w+1)) for ra = 1, 2, . . . .

Now suppose that A = S 0 # . Then c(%) = s» + bn where sn e S and
bn Φ 0 e B. From property (*) above, we have that, for n > 1,

c

Therefore

s

• = Sin + fal

1 + 6 l = C U ) =

= sln +

• α»-i)

(αx c

(α, c

c(%) where

^-i)(« + K)

K-l)8n + (tti

sίneS .

• αn-i)ϊ

Hence sx = s ln + (ax an_^)sn and δj. = (αx an^)bn for each n > 1.
Therefore c(1) = sx + (^ an_^)bn for n = 2, 3, . Since sx has only
finitely many nonzero coordinates, it follows that there is a positive
integer r such that α̂  ar = αt arar+1y. But this implies that
aγ αri2 = £&!-•• ar+1R which is a contradiction. Thus S is not a
summand of A.

To show that A is free, let yn — en + c(w+1) for w = 1, 2, . Since
c(%) = αΛi/Λ by property (*) above, it follows that A is generated by
{Vn\n<ω- Suppose that rxyγ + + τnyn = 0 where rt e R. Then

nc ( 2 ) + τ2c
{3} + + rnc

{n+1} = — r ^ — r2e2 — . . . — rwβw .

Since the first coordinate of the left hand side is zero, it follows that
r1 — 0. A repetition of the preceding argument shows that rx — r2 =
. . . = rn = 0. This implies that A is free with {yn}n<ω for a basis.

We observe from [1] that a left iϋ-module is torsionless if and
only if it can be embedded as a submodule of a direct product of
copies of R. We shall call a left iϋ-module G fc^-separable provided G
is flat, torsionless and that each countably generated submodule of G
is contained in a countably generated direct summand of G (this de-
finition parallels the definition given by L. Fuchs [4] in the context
of y^ rfree groups). We now prove the main result of this section.
The proof is modeled after that of HilΓs [5].

THEOREM 2.2. A ring R is left perfect if and only if each
^^separable left R-module is a direct sum of countably generated
modules.
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Proof. If R is left perfect, then by Theorem 3.2 [2] any flat
left module is projective. Since an ^-separable left module is flat,
it follows from Kaplansky's theorem [6] that each ^-separable left
β-module is a direct sum of countably generated modules.

Now suppose that R is not left perfect. This implies by Theorem
P [1] that R has a strictly decreasing sequence

aλR Z) axa2R u z> αx anR Z) •

of principal right ideals. Set P* = Πa<ΩRea where Rea = R for each
a < Ω (Ω denotes the first uncountable ordinal). We construct a left
submodule G of P* such that G — \Ja<Ω Ga where {Ga}a<0 is a monotone
increasing chain defined as follows: Go = 0, Gι = Rex and suppose that
Ga has been defined for each a < β such that the following conditions
hold:

( i ) If a is a limit ordinal, a < β, Ga = \Jΐ<a Gr.
(ii) If a - 1 and a - 2 exist, Gα = Ga^ φ jRe^.
(iii) If a ~ 1 exists and is a limit, there is a monotone increasing

sequence σa(n) of ordinals less than a — 1 such that 0"α(w) — 2 is de-
fined for each n and such that oa(n) converges to a — 1. Then e«w) ==
Σi^m (α» «ΐ)βσα(ΐ) for m = 1, 2, and Ga is generated by Ga^ and

(iv) If | 0 m denotes the natural projection of P* onto Πλ<rReλ and
if 7 + 1 < a < /S, then ρr+1(Ga) = Gr+1.

(v) Ga is not a direct summand of Gα+1 if α: is a limit ordinal.
(vi) Ga is flat for a < β.
If β is a limit ordinal we set Gβ = U«</9 Gα and if both /S — 1 and

β — 2 exist we set Gβ = Gβ^,@ Rββ^. It is straightforward in either of
the above two cases to show that (i)-(vi) hold for the collection [Ga]a<β.
Now suppose that β — 1 is a limit ordinal. Define σβ(n) and c{

β

m) so
that (iii) is satisfied and define Gβ to be the submodule generated by
G _̂L and {cj,c)}Λ<ω. Suppose that 7 + 1 < β and consider ρr+ι(Gβ). To
show that (iv) is satisfied, it clearly suffices to show that pr+ί(c{

β

m)) e Gΐ+ί.
But this is a direct consequence of the fact that c{

β

m) = ̂ iZm (am a^ea (i)

and that σβ(i) > 7 + 1 for all i larger than some integer i0. To see
that (v) holds, let Λβ be the set of ordinals {σβ(l), σβ(2), •••} and let
Iβ be the ordinals less than β that are not in Aβ. Let B = Gβ f] Πx Reλ,
A = Gβ Π ΠΛβReλ and let S denote the finite sequences in ΠIβ Reλ. It
is routine to show that G ^ δ φ i and that Gβ_, = J5 φ S. We ob-
serve that (up to isomorphism) our A and S here are the same as the
A and S, respectively, in Lemma 2.1. It follows that Gβ^ is not a
direct summand of Gβ. We also see that Gβ^ is flat since B is neces-
sarily flat and since A is free. Thus the collection [Ga]a^β satisfies
(i)-(vi) and hence we obtain G = \Ja<ΩGa where {Ga}a<0 satisfies (i)-(vi).
Note that G is torsionless since G is a submodule of P*. G is flat
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from (vi) since a direct limit of flat modules is flat. Property (v)
implies that G is not a direct sum of countably generated modules.
Finally, property (iv) guarantees that ρr+1, when restricted to G, is a
projection of G onto Gr+ί. Thus G is ^-separable.

From the above proof, we obtain the following corollary.

COROLLARY 2.3. A ring R is left perfect if and only if each
^rseparable left R-module is protective.

3* Some remarks on pure injective modules over artinian
rings* An interesting consequence of our Lemma 2.1 is that the direct
sum of i^0 copies of a ring R (as a left iϋ-module) is not a direct
summand of the corresponding direct product of ^ 0 copies of R if R
is not left perfect. In this section we wish to consider in part the
question of when the direct sum of infinitely many copies of R (as a
left i2-module) is a direct summand of the corresponding direct product
of copies of R. More generally, we consider the problem of determin-
ing when protective modules are pure injective modules in the sense
of Warfield [7]. For commutative Noetherian rings we obtain a com-
plete answer to both of the above questions. A submodule A of a
left i?-module B is called a pure submodule provided, for any right
module Λf, the natural homomorphism M§QA—>M§§B is injective.
A module Q is called pure injective, if for every module B and pure
submodule A, each homomorphism of A into Q extends to a homomor-
phism of B into Q. Hence, if a pure injective module Q is a pure
submodule of a module J5, then Q is a direct summand of B. Our
main theorems of this section follow the next lemma.

LEMMA 3.1. If R is a left artinian ring, then any pure sub-
module of a left protective R-module is a direct summand.

Proof. Suppose that A is a pure submodule of a left projective
module P and suppose that M is an arbitrary right i2-module. From
the exact sequence

0 - Tor?(ΛΓ, P)-> Torf (ΛΓ, P/A)-> M(g)A — ikf(g)P,

we obtain that Torf (M, PI A) = 0 since the homomorphism ilί® A—* M ® P
is injective. Hence P/A is a flat left 22-module. By Theorem P [1],
P/A is projective and thus A is a direct summand of P.

In what follows, Σ A% will denote the finitely nonzero vectors in
the direct product
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THEOREM 3.2. If R is a commutative artinian ring, then each
projective R-module is pure injective. Moreover, if R is a commuta-
tive Noetherian ring and if each projective R-module is pure injective,
then R is artinian.

Proof. First suppose that R is a commutative artinian ring. It
suffices to show that each free i?-module is pure projective. By Pro-
position 9 [7], R is pure injective as a module over itself. Let F =
Xαi2 be an arbitrary free 2?-module and let P denote the direct pro-
duct P = ΠaR containing F. It is elementary to see that F is a pure
submodule of P and that P is pure injective since R is pure injective.
By Theorem 3.4 [2], P is also a projective .β-module. Hence, by
Lemma 3.1, F is a direct summand of P and therefore is pure injective.

Now suppose that R is a commutative Noetherian ring for which
each projective module is pure injective. Let S and A be as in Lemma
2.1. Note that S = Σ * o ^ a n d t h a t S g i g Π#0R. Therefore S is
pure in A and is therefore a direct summand of A. Hence Lemma
2.1 yields that R is a perfect ring. Since R is also Noetherian, we
have that R is artinian.

COROLLARY 3.3. If R is a commutative artinian ring, then the
direct sum Σa R is a direct summand of the direct product ΠaR for
each cardinal number a. Moreover, if R is a commutative Noetherian
ring and if Σ^ o R is a direct summand of Π^QR, then R is artinian.

We conclude our consideration of pure injective modules with an
answer to the converse problem answered in Theorem 3.2, that is, we
classify those rings for which every pure injective ϋ?-module is pro-
jective. Our solution here needs no initial assumptions on the ring.

THEOREM 3.4. A ring R has the property that each pure injective
left R-module is projective if and only if R is semi-simple and ar-
tinian.

Proof. The sufficiency is clear. Hence suppose that R has the
property that each pure injective left iί-module is projective. Since
each injective left module is pure injective, it follows that each in-
jective left iϋ-module is also projective. By Theorem 5.3 [3] of Faith
and Walker, we have that R is quasi-Frobenius. Since each left R-
module can be embedded as a pure submodule of a pure injective
left i?-module by Corollary 6 [7], we have that any left i2-module is
isomorphic to a pure submodule of a projective module. Since a quasi-
Frobenius ring is left artinian, it follows by Lemma 3.1 that each
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left i2-module is protective. It is well-known that such a ring is a
semi-simple artinian ring.
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