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In a previous paper one of the authors considered groups
G with r, b.  (representation bound %) and n < p? for some prime
p. Here we continue this study. We first offer a new proof
of the fact that if » = p — 1 then G has a normal Sylow p-
subgroup. Next we show that if n» = p*2 then p%} | G/0,(G)|.
Finally we consider 7 = 2p —1 and with the help of the
modular theory we obtain a fairly precise description of the
structure of G. In particular we show that its composition
factors are either p-solvable or isomorphic to PSL(2, p), PSL(2,
p — 1) for p a Fermat prime or PSL(2, p + 1) for p a Mersenne
prime,

Now the irreducible characters of PSL(2, p) have degrees (see [10]
p. 128) 1,p,» + 1, (p = 1)/2 for p odd and those of PSL(2, 2*) have
degrees (see [10] p. 134) 1, 2%, 2* = 1. Thus for p > 2 the linear groups
of the preceding paragraph do in fact have r.b. (2p — 1).

The notation here is standard. In addition, if ) is a character
of G we let det x denote the linear character which is the determinant
of the representation associated with y. Also %,(G) denotes the number
of Sylow p-subgroups of G.

LeEMMA 1. Let G be a group with r.b.n. and let N # G be a
subgroup. Suppose G = Uiz, No;N is the (N, N)-double coset decom-
position of G with x,=1. Set a;,=|Nx;N|/|N|=|[N:Nn N*].
Then n = (¢, + a, + -+ + a,)/t.

Proof. Let 6 = (1,)¢ be the character of the permutation repre-
sentation of G on the cosets of N. Then (1) = [G: N, [6,1:] =1
and ||| =1+ ¢. Since [0,1;] =1 we can write

0:1G+b1x1+ ce +bsXs

where the yx; are distinct nonprincipal irreducible characters of G.
Thus since G has r.b.n we have
1+nt=14+n(0|P—1) =1+ n@® + -+ + b)
=1+nb + - +0)=1+bxy) + -+ + byQ)
=01) =1+ (@, +a+ -+ +a)
and the result follows.
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LEMMA 2. Let G be a group with r.b.n.
(i) Let N == G be a subgroup. Then

n=min{{N: NN N*]|xeG — N}.

(ii) Let w be a set of primes and let H be a maximal mw-subgroup
of G. Then either H/A\ G or n = min{[H: HN H*]|x€ G — N(H)}.

Proof. (i) follows immediately from Lemma 1. Now let H be as
in (ii) and suppose H is not normal in G. Set N = N(H) # G. Since
H is a maximal 7-subgroup it follows that H = O, (IN). Thusif 2 G
then H* = O (N®) so HN N*= HN H* and

[N:NNN* =[H: HNN*| = [H: Hn H7] .

Thus the result follows from (i).

Applying Lemma 2(ii) with # = {p} and H a Sylow p-subgroup of
G yields

THEOREM 3. Let p be a prime and let G be a group with r.b.(p — 1).
Then n,(G) = 1.

This result was originally proved in [7] (Theorem E) in a much
more complicated way.

LEMMA 4. Let G have r.b.(p* — 1) and let @, and Q, be p-subgroups
of G with £Q,, @,y mot a p-group. Then n,(C(Q)NCWK.)) =1. If
Surther the Sylow p-subgroups of G are abelian, then

n,(N(Q) N N(Q,)) = 1

Proof. Set W =<Q,, Q,). Since W is not a p-group we see that
n,(W) > 1. We assume now that n,(C) > 1 where C = C(Q,) N C(Q,) =
C(W) and derive a contradiction. Set Z = W N C so that Z is central
in Wand C and let W= W/Z,C = C/Z. Since Z is central we have
easily n,(W) > 1, n,(C) >1 and (WC)/Z= W x C. By Theorem 3
both W and C have irreducible characters of degree = p and hence
W x C has an irreducible character of degree > p°. This is a contra-
diction since G has r.b.(p* — 1) and this property is inherited by
subgroups and quotient groups. If the Sylow p-subgroups of G are
abelian then any p-group normalizing Q; centralizes it. Thus the
second result follows from the first.

THEOREM 5. Let p be a prime and let G be a group with r.b.p*2
Then p* ) |G/O,(G)|.
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Proof. If p =2 then G has r.b.2 and the result follows from
Theorem C of [7]. Thus we can assume that p > 3 and clearly also
that 0,(G) = <{1). Since p* — p — 1 = [p**] for p = 3, Proposition 1.3
of [6] implies that a Sylow p-subgroup P of G is abelian. We assume
that | P| = p* and derive a contradiction. Set n = p*2

Let N = N(P) so that N = G. By Lemma 2(i) there exists
weG— N with n Z[N: NN N*] = [P: PN P”]. Set @ =PN P so
since p* > n and w¢ N we see that [P:Q] = p and hence @ # {1).
Let M = N(Q). Since PA N, P* A\ N* we have @ A (NN N*). Also
QA Pand PZ N®. Hence MNN=2(P, NN N*) so [IN:NNM] =
n/p = p'.

We now make the following crucial observation. If [M: M N M*] <
p* for some x ¢ M then @ and Q" commute elementwise and © € MNM.
To see this suppose that @ and Q° do not commute. Then since the
Sylow p-subgroups of G are abelian, <@, @*) is not a p-group. By
Lemma 4, n, (M NM") =1 so if U=0,(MNM") then U is also a
Sylow p-subgroup of M N M®. Now p*V[M:MnN M*] and Q & M*
clearly so QU is a Sylow p-subgroup of M. Since N,(QU) 2<Q,
Mn M*) we have [M: N,(QU)] < p and hence by Sylow’s theorem
QU A M and n,(M)=1. This is a contradiction since Q = PN P
and P,P*<= M. Thus @ and @° commute and since @ # @Q° and
[P: Q] = p it follows that QQ* = P*' is a Sylow p-subgroup of G.
Thus Q, Q' and Q- are all contained in P. By Burnside’s lemma these
three groups are conjugate in N. Thus Q¥ = Q", Q* = Q* for some
h,ke N. This yields yh='e M, xyk~e M so

v = (eyk"kh"(yh) "' e MNM .

Since @ # <1> we have M = G. Let G = ‘-, Mx;M be the (M, M)-
double coset decomposition of G with x, =1. Set a;, = |Mx,M|/| M|
and suppose that there are precisely » such ¢ # 0 with a; < p* and s
with a; = p*. Then by Lemma 1, p** = n = (r + p%)/(r + s). Clearly
r # 0 here so

P = (r + p')/(r + 8) > p*/(L + 7/s) .

If s = 0 then by the preceding paragraph @ commutes with all its
conjugates. This implies that {Q"|x€G) is a nontrivial normal p-
subgroup of G, a contradiction. Thus s > 1. Also if a; < p* then
Mx;M = MNM by the above. Since we have seen that [N: NN M] <
p'"* we have r < p'* — 1 since the double coset M itself is not counted.
Thus r/s < p'* — 1 and

p3l2 > pZ/(l + 7‘/3) ; p3I2

a contradiction and the result follows.
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We now turn to the main result of this paper.

THEOREM 6. Let p be a prime and let G be a nonabelian simple
group with r.b.(2p — 1). Then p > 2 and we have one of the following.

(i) G ts a p'-group.

(ii) G = PSL(2, p) for p > 3.

(iii) G = PSL(2,p — 1) for p a Fermat prime, p > 3.

(iv) G = PSL(2,p + 1) for p a Mersenne prime.

Proof. Since groups with r.b.3 are solvable (Corollary 6.5 of [8])
we have p > 2. By Theorem 5 since p** = 2p — 1 for p > 2 we have
p*t|G|. If py|G| then G satisfies (i) above. Thus we can assume
now that G has a Sylow p-subgroup P of order p. Let B,(p) denote
the principal p-block of G. We will use freely the structure of B,(p)
and its associated tree as described in [1] and [2]. Since B,(p) contains
a nonprincipal irreducible character ¥ and x(1) < 2p, Lemma 1 of [3]
implies that P is self centralizing. Let N = N(P) and let ¢ = | N/P|
so that e|(p — 1). By Burnside’s transfer theorem ¢ > 1. We assume
now that G 2 PSL(2, p) and G % PSL(2,p — 1) for p a Fermat prime.

Step 1. Let 0 denote an exceptional character in B,(p). Then
the tree of B,(p) must be one of the following.

(1) e=2 Lgo 4 u
p+2 p+
(2) €= 2 1go %1 g
2p—1 2p—2
(3) e = 3 ]_Go %1 Z %2
»—1 2p—3 p—1
(4) €= 4 1go %1 Z %2 xg
p—1 2p—4 2p—1 p+1
(5) e=4 1g0 s g x
2p—1\ 2p—4 p-—1
s
o
p+1
(6) e=>5 oo %1 7 12 13

2p—1~_2p—5 2p—1 p+1’
X4
pil
Here the degree of the character is written below the character
designation.

Since G is nonabelian and simple it follows that every nonprincipal
irreducible representation of G is faithful. Thus by Theorem 2 of [5]
the degrees of the nonprincipal ordinary irreducible characters of G are
all = p — 1 and by Theorem 1 of [4] the degrees of the nonprincipal
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irreducible Brauer characters of G are = 2(p — 1)/3. Now G has
r.b.2p — 1) and the degrees of the ordinary irreducible characters
of B.(p) satisfy x(1) = *=1(p) if x is nonexceptional and 0(1) = Fe(p).
This yields easily (1) =»—1,p+ 1,20 —1 or x =1; and 6(1) =
2p —e,p+eor (1) =e if e=p — 1.

Suppose first that p = 3. Since ¢|(p — 1) we have ¢ = 2 and the
tree is a line with three vertices. Now the center degree is maximal
and the principal character must occur so we have clearly

1go

This is either tree (1) or tree (2) according to which of y, of y, we
consider exceptional.

Now assume that p = 5. Let yeB(p) with y(1) =p — 1 and
suppose that y is modular reducible. We can denote this latter fact
graphically by

where » and s are degrees of modular constituents. Since r + s <
» — 1 we cannot have both »,s = 2(p — 1)/3. This implies that one
of the modular constituents is the principal character and the other
has degree p — 2.

Now let yeB/(p) with (1) = p + 1 and suppose yx is modular
reducible. Say we have

Here by the alternating nature of the tree yx,%.+# 1l; so r,s=
2(p — 1)/3. Since r + s < p + 1 this yields4(p —1)/3<p+1sop =
50r 7. In fact either p =5, r=s=3o0or p=7,r=3s=4. We con-
sider these in turn. Let p = 5. Since e¢|(p — 1) we have ¢ = 2 or 4.
Certainly e¢ # 2 here since B,(p) contains e + 1 ordinary irreducible
characters including 1, and hence ¢ = 4. Thus the degrees of the
nonprincipal ordinary irreducible characters of B,(p) are 4,6 or 9 and
the nonprincipal Brauer characters have degrees = 3. The former fact
implies that y, and y, are modular reducible so the tree having five
vertices is a straight line. This yields easily
X1

X 12 x3
1G o} o o o o
4 6 9 6

and we obtain tree (4). Now let p = 7 sothat e = 2,3 or 6. Clearly
neither y, nor y, can be modular irreducible so the tree has at least
five vertices and hence ¢ = 6. Thus the degrees of the nonprincipal
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ordinary irreducible characters of B,(p) are 6,8 or 13 and the non-
principal Brauer characters have degrees = 4. This latter fact implies
that neither y, nor y, can have degree 6 and hence y,(1) = y,(1) = 13.
Now at least one of y, or yx,, say ., is not adjacent to 1,. Hence all
characters adjacent to y, have degree p + 1 and as we have seen these
are either modular irreducible or have constituents of degree 4. This
shows that all modular constituents of x, have degree divisible by 4,
a contradiction since yx,(1) = 13. Thus this case does not occur. It
now clearly suffices to assume for the remainder of this step that all
¥ € Bi(p) with x(1) = p + 1 are modular irreducible.

Let 6 denote an exceptional character of B,(p) and we consider
the possible branches leaving the vertex associated with 4. Suppose
first that 6(1) = +e(p). The above implies easily that we can only
have

16

X
[e] .
p+1

0D 0D

Now the first branch must occur precisely once and let the second
branch occur a times. Since the tree has ¢ edges we have

l+a=c¢
1+ap+1)=20601).

Now ¢ =2 so a =1 and hence 6(1) > p. Thus (1) = p + ¢ and we
obtain @ = 1, ¢ = 2 and this is tree (1).

Now let 6(1) = —e(p) so that 6(1) = 2p — e. Using the above
information and the alternating nature of the tree we see easily that
the only possible branches leaving the vertex associated with 6 are

0 X
o o
p—1 p—1
[/
o o olg
p—2 p—1
f p X
o o o
p—2 2p—1 p+1
0 X v
o o o
»—3 2p—1\ p+1
AN
o
1¢
[/}
o Zg olg .
2p—2 2p-—1

If the last branch occurs then since 2p — e = 6(1) = 2p — 2 we have
e =2 and this is tree (2). Thus we can assume that only the first
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four branches occur say with multiplicities a, b, ¢, d respectively. Since
there are precisely e edges in the tree we have

a+2b+2c+3d=c¢e
alp—1)4+bp—-2)+cp—2)+dip—3)=601)=2p —e.

Adding these two and dividing by p yields
a+bdb+ct+d=2.

In addition the vertex of 1, occurs precisely once so b + d = 1. Thus
a + ¢ =1 and there are four possibilities which are easily seen to be
trees (3), (4), (5) and (6).

Step 2. Let N = N(P). We consider the restriction of the ordi-
nary irreducible characters of G to N.

Now N = PE is a Frobenius group of order pe with E = (x>
cyclic of order e. N has precisely e linear characters, namely those
of N/P = FE, and the remaining irreducible characters have degree e.
Let 4 denote any sum of irreducible characters of N of degree e.
Clearly 4; = 4(1)/e-p, where p; is the regular character of E. This
yields easily

d(x) =0
(1) 1 if e is odd
det 4(z) =
et 4(x) (=1)*0/ if ¢ is even .

If ¢ is even let 0 denote the linear character of N given by é(x) = —1.

Let +» be an ordinary irreducible character of G with +r ¢ B,(p).
Since P is self centralizing it follows that B,(p) is the unique p-block
of positive defect and hence - belongs to a block of defect 0. Thus
p|41). Since G has r.b.(2p — 1) this yields (1) = p and clearly
vp = Pp. Thus 4y =\ + 4 where \ is linear and 4(1) = p — 1. Now
G is simple so the linear character det 4 must be principal and hence
1 = det y(x) = NM(x) det 4(x). This yields by the above

1, + 4 if e is odd
(2) vy =11y + 4 if ¢ is even and (p — 1)/e is even
0+ 4 if e is even and (p — 1)/e is odd .

Now let y € B(p) and let m(y) denote the number of linear chara-
ters counting multiplicities which occur in y,. Obviously m(y) is the
multiplicity of 1, in y,. Suppose first that y;, ¥; are nonexceptional
ordinary irreducible characters of B,(p) which are adjacent in the tree.
Then y; + x; = @ is a projective character and since @, = @(1)/p-0,
we have easily

m(x:) + m(y;) = [x%1) + xMDl/p .
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Now suppose that y; is adjacent to the vertex of the exceptional charac-
ters {6,}. Clearly m(9,) = m(0,) for all », s so since y; + D750, = @
we have with 6 = 6,

m(x:) + (0 — Dfe-m(0) = [x:(1) + (p — 1)/e-6(1)]/p.

Using the above two equations, the fact that the tree of B,(p) is
connected and the obvious fact that m(l;) = 1 we obtain easily for
irreducible

E—1 if yQ) =kp —1
(3) m(y) = 1k if 1) =kpxe
E+1 if y()=Fkp+1.

There is of course additional information available, for example the
fact that det x(z) = 1 and the position of y in the tree, which further
limits the structure of y,.
Step 3. If tree (1) occurs in step 1, then p is a Mersenne prime
and G = PSLZ2,p + 1).
By assumption ¢ = 2 and the tree of B,(p) has the form
1 0i ¢ x

o

o
p+2 p+1

1go

where 0; represents the (p — 1)/2 exceptional characters with 6 = 4,.
Let {y; |5 =1,2, -+, k} denote the set of irreducible characters of G
not in B,(p).

Let a denote the unique nonprincipal linear character of N. By
(1) and (2) we have

Vv =1y + 45, i) =1 for p =1 (4)

(4) _ , _ _
Piy=0a+ 45, @)= -1 for p=3 (4).

By (3), 6,y = M + 4; and since the §; are all algebraically conjugate \
is the same for all 2. Thus det 6;(x) = 1 and equation (1) yield

Oyv=a+4,, 6(x)=—1 forp=1(4)

5
( ) 0’£N - 1N + Az y 01(37) - 1 fOI‘ p = 3 (4) .

Now yy = aly + ba + 4 with a + b =2 by (8) and since x is a p'-
element @ — b = y(2) = {(») = 6(x) — 1. Thus (5) yields

Av =20+ 4, yx)=—2 for p=1 (4)

6
(6) Iv=1y+a+4, yx)=0 for p=3 (4).

Equations (4), (5) and (6) and Frobenius reciprocity now yield
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(p=D)/2

(lN)"’=10+Zk«lrf, at=2y+ 3, 0, forp=1 (4)
(7) 1 (p=1)/2 .3 1
1) =14y + z:‘ 0, , aGZX‘f‘Zl:“J’j for p =3 (4).

Thus since (1,)%(1) = a®(1l) = [G: N] and | N| = 2p we obtain easily

|G| =p®»*+5p+2), k=(@+5)/2 for p=1 (4)

(8) IGl=p@+1D®+2), k=(®+1)/2 for p=3 (4).

Now using |C(z)| = 3 7(x)7(x), where 7 runs over all ordinary irre-
ducible characters of G, along with equations (4), (5), (6) and (8) we
have

[Clx)|=p+1T7 forp=1(4)

(9) [C)| =p+1 for p=3 (4).

Since (p + 7) f p(p* + 5p + 2) the case p =1 (4) is eliminated. Thus
p =3 (4).

Set S=C(x) so that |S|=p+ 1 and [G:S]= p(p + 2). We
consider (1,)¢. Since this character is rational and the 6, are algebrai-
cally conjugate we have

(p-1)/2 k
(1S)G:10+a le 0i+bx+zllc.7',¢fj'
Set ¢ = >fc;. By considering degrees we have
pp+2)=1+alp+2)(p—-12+bp+1)+cp
and evaluating at z yields
0< (1)) =1+ a(p—1)/2—c¢

by (4), (6), (6) and the fact that xeS. Certainly a < 2. Also b <
x(1)/2 = (p + 1)/2 by Frobenius reciprocity and the fact that y(x) = 0.
Thus a = 0 yields a contradiction. If a =1 then b=0 (p) so b =10
and ¢ = (p + 3)/2 > 1 + a(p — 1)/2 again a contradiction. Thus a = 2
and we have easily

—1)/2

(10) L) =1,+2 3 6 +7

80 (L5)%(x) = p by (5) and (6). By definition of induced character and
the fact that S = C(x) this implies that S contains precisely p distinct
conjugates of x. Since | S| = p + 1 this shows that S is an elementary
abelian 2-group and therefore that S is a Sylow 2-subgroup of G and
p is a Mersenne prime. By Burnside’s lemma the nonidentity elements
of S are all conjugate in N(S) so N(S) > S.
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Set H= N(S) > S. Then (1,)° is a national constituent of (1)¢
and (1,)°1) < p(p + 2)/38. Thus by (10) we have easily

(11) (1I~1)G = 10 + X

Therefore G is a doubly transitive permutation group on the set
where H = G.. for some point « €Q. By (10) ys; contains 1y with
multiplicity one so (11) implies that S has two orbits on 2. Hence
since | S| =|2| —1, S is in fact a regular normal subgroup of G..
Now |H| = p(p + 1) so if P is a Sylow p-subgroup of H, then since
P is self centralizing and |P| =|S| — 1 we see that G is sharply 3-
transitive.

With the structure of H as given above we can clearly identify
2 with GF(p + 1) U {co} in such a way that S is the set of translations

{(z j_ 7n>ire GF(p + 1)} and P is the set {(Szz>|se GF(p + 1),s # 0}.

Let e G with £ = (0 «©)(1) ---. Then % has order 2 and normalizes
P=G@G., so ¥ acts in a dihedral manner on P. If & = ( f?z)) then
for all seGF(p + 1), s+ 0

(sz:a)(f(zz)) - (ffz))(sjz>

S0 f(sz) = s7'f(2). Setting z =1 yields f(s) = s~'. Thus ¥ = <l7z>
and since G = {(H, %) we have clearly G < PSL(2,p + 1). By (8) we
have in fact G = PSL(2, p + 1) and this step follows.

Step 4. Completion of the proof.

We now consider the remaining trees in turn. Let {y,|j =
1,2, ---, k} denote the set of ordinary irreducible characters of G not
in B,(p).

Suppose first that we have tree (2). If »p = 3 this is the same
as tree (1) so we assume that p > 3. From

1¢ X 4 s
o] o
2p—1 2p—2

100

and (3) and det y(x) =1 we have y, = 1, + 4. Let a be the unique
nonprincipal linear character of N so that we have by (38) 6,, =
aly + ba + 4; with @ + b = 2. Since xz is a p’-element a — b = 6,(x) =
x) = x(x) —1=0s0 0;y =1y + @ + 4,. Now by (2) all the 4, occur
in either (1,) or a“ depending on the parity of (p — 1)/2. Since
(1y)°(1) = (1), the above and Frobenius reciprocity imply that the v;
occur in af and hence

(p—1)/2

(1N)G:16+X+ 21: 0; .
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Since |N| = 2p this yields |G| = 2p(p* + 1). Now 6,1)||G| so
(» — 1) | (p* + 1) and this is easily seen to be a contradiction for p > 3.
Now consider tree (3)

1¢ x1 G [/ [ x2
o

1g0 ) o
p—1 2p—3 p—1
By (3), iy = 4; and y,(x) = 0 for ¢ = 1,2. This implies that {(x) =
—1, &(x) =0 so O,(x) = — 1. Now by (3), 6;y = aly + ba + ca® + 4

where a is a nonprincipal linear character and a + b + ¢ = 2. Since
0;(x) = —1 we have easily 6,, = a« + a® + 4. Applying Frobenius
reciprocity to the above and (2) we have

(p—1)/3

k
(lN)G:la“}‘zl:ﬂl'ja a®= 3, 0,

1

and this yields easily
[Gl=p—-12p—3), k=(@2p—5)3.

Using | C(x) | = 337 (x)n(x) along with the above and (2) we obtain | C(z) | =
» — 1. Now clearly « is a real element so |C*(z)| = 2(p — 1) where
C*(x) ={geG|x° =2 or x~'}. Since 2(p — 1) does not divide |G| as
given above, it follows that this tree does not occur.

Suppose tree (4) or (5) occurred. Since x,(1) = p — Land det y,(x) =
1, (1) and (3) imply that (p — 1)/4 is even. Hence by (2), v,y =
1y + 4;. Now there are four linear characters of N and at most two
occur in A, so choose a # 1, such that a does not occur in ,. Thus
a can occur only in y,, or %,y with multiplicity at most two. Hence

[G: N] = a’(1) = 27(1) + 27(1) = 6p .

Now choose £ so that 8 occurs in 6,. Then
(p—1)/4
[G: N] = pB°1) = ; 6:(1) = 2p — H(p — 1)/4 .

Since (p —1)/4 is even and (p — 1)/4 = 2 we have (p — 1)/4 = 4,p = 17
and

6p = a’(l) = B°(1) = 4(2p — 4),

a contradiction.

Finally consider tree (6). By (1), (2) and (3) we have easily
Ly =1y + 4, %y =1y 4", and +;y =1y + 4;. Now since e =5 and
m(f) = 2 we can choose a linear character a of N with « # 1, and such
that @ does not occur in 4,. Hence by the above and the fact that
m(ys) = m(y) = 2 we have a® = ay, + by, with a,b < 2. Thus since

[G:N] = a’(l) = ays(1) + by1l) = (@ + b)(p + D
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and [G: N] =1 (p) we have [G: N] = p + 1. Now choose 8 so that
B occurs in 6y. Then

p+1=[G:N=gMz S 00 =@ -5 - 15,

a contradiction since 5|(p — 1) implies that p = 11. This therefore
completes the proof of the theorem.

Finally we consider the remaining groups with r.b.(2p — 1).

THEOREM 7. Let pbe a prime and let G be a group with r.b.(2p — 1).
Then we have one of the following.

(i) G has a normal abelian Sylow p-subgroup.

(ii) @G s solvable and has p-length 1.

(ili) G/Z(G) = PSL(2, p) or PGL(2, p) for » > 3.

(iv) G/Z(G) = PSL(2,p — 1) for p a Fermat prime, p > 3.

(v) G/Z(G) = PSL(2,p + 1) for p a Mersenne prime.

(vi) G/Z(G) = Sym (4) for p = 2.

Proof. If p =2 then G has r.b.3. Thus by Corollary 6.5 of [8],
G satisfies (ii) or (vi) above. Now let » > 2. Since 2p — 1 < p*?,
Theorem 5 implies that »*} |G/0,(G)|. With this additional fact it is
easy to see that the proof of the main theorem of [6] applies also to
groups with r.b.(2p — 1) with p > 2 yielding the same conclusion.
(The p > 2 assumption is used crucially in the last paragraph of the
proof of Proposition 3.1 of [6].) Thus either G satisfies (i) or (ii)
above or G = P, X G, where P, is an abelian p-group and »*/ |G, |.
Clearly G, has r.b.(2p — 1) and if G, satisfies any of the above then
so does G. Therefore it suffices to assume that G = G, or equivalently
that p*}|G|. We assume now that G does not satisfy (i). This of
course implies that p || G|.

Let K = 0,.(G) and let H/K be a minimal normal subgroup of G/K.
Then p | | H/K | and since p* / | G/K | this implies that H/K is the unique
minimal normal subgroup. Now H/K is a product of isomorphic simple
groups and p*} | H/K| so H/K is simple., If |H/K|= p then G is
p-solvable of p-length 1. Thus since G does not have a normal Sylow
p-subgroup, Proposition 2.3 of [6] implies that G is solvable and G
satisfies (ii). Hence it suffices to assume that A = H/K is a nonabelian
simple group. It is convenient to first consider the possibility » = 5.

Since H is the unique minimal normal subgroup of G = G/K we
have Cz(H) = {1> and thus G < Aut H. Suppose T is a subgroup of
H with 1 < [H: T] < 2p. Since H is simple and p||H| we cannot
have [H: T] < p. Thus p < [H: T] < 2p and T is maximal in H and
hence self normalizing. If T were abelian it would follow easily that
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T is a T.I. set and then H is a simple Frobenius group, a contradiction.
Thus T is nonabelian.

Let 4 be an irreducible character of K and let y be an irreducible
constituent of ¥?. If ¢ = [xx, ¥]x then x(1) = ety (1) where ¢t = [H: T]
and T is the inertial group of « in H. Suppose T < H and set T =
T/K. Since y(1) < 2p we have ¢ < 2p and thus by the remarks of the
preceding paragraph ¢ > p and 7T is nonabelian. Thus we have 2p >
1) = etyr(l) = epy(l) so e = (1) = 1. Now there exists an irreducible
character 7 of 7 with 77 = y and 7, = ey = . Since T is nonabelian
we can choose a nonlinear irreducible character 8 of T containing K
in its kernel. Thus since 7 is linear, 7, = 8 is also an irreducible
character of 7. Let y, be an irreducible constituent of 7. Then
By = 1y, occurs in ¥,, and therefore [¥,x, ¥] = A1) > 1. The above
reasoning applied to y, now yields a contradiction. Thus H = T and
H fixes all irreducible characters of K. By Brauer’s lemma, H fixes
all conjugacy classes of K. Let P be a Sylow p-subgroup of H. Then
P fixes each class of K and since K is a p’-group, P centralizes K.
Thus if C = C,(K) then KC > K and since H/K is simple we have
H=KC. Now C/(CNK)=H and Z(C)2CNK so Z(C) = Cn K.

Let D denote the last term in the derived series of C. Then
clearly D=D', D/ZD)=H and Z = Z(D)=DnNK. Thus Z is a
homomorphic image of the Schur multiplier of H. By Theorem 6,
H = PSL(2, p), PSL(2, p — 1) for p a Fermat prime or PSL(2,» + 1)
for p a Mersenne prime. We have by assumption p > 5. Also for p = 5,
PSL(2, p) = PSL(2,p — 1) and we will view this group as PSL(2, p).
By [10] (Satz IX, p. 119) either Z = {1> or H = PSL(2, p), D = SL(2,
p) and | Z| = 2.

We show now that K is central. Suppose first that Z = {1)> so
that H= D x K. Let x be a fixed irreducible character of D with
x(1) = p and let N be an irreducible character of K. Then y» is an
irreducible character of H so 2p > x(1)»(1) = pr(1) and A(1) = 1. Thus
K is abelian and central in H. If K is not central in G, then some
linear character X of K is not fixed by G. This implies easily that
if @ is a constituent of (yA\)? then 6(1) = 2x(1) = 2p, a contradiction.
Thus K is central in G in this case. Now let Z = (1> so that | Z| = 2
and D = SL(2, p). We have an epimorphism D x K — DK = H where
the kernel is the third subgroup W of order 2 in the group generated
by the copies of Z in D and K. Let A be an irreducible character of
K. Since Z is central in K and |Z| = 2 it is easy to see from the
character table of SL(2, p) ([10], p. 128) that there exists an irreducible
character ¥ of D with y(1) = p and with W in the kernel of ¥\, an
irreducible character of D x K. Thus y\ is a character of H. The
preceding argument now shows first that K is abelian and then that
K is central. We have therefore shown that G/Z(G) = G and it remains
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to identify G.

Now G S Aut H and H is a 2-dimensional projective group so the
possibilities for G are given by Satz 1 of [9]. Suppose first that
H = PSL(2, p). Then either G = PSL(2, p) or G = PGL(2, p) and we
have (iii). Note the fact that PGL(2, p) has r.b.(2p — 1) can be seen
from the character table on page 136 of [10]. We consider the
remaining two cases. Thus H = PSL(2,s) with 2" = s =p + 1 and
G/H is isomorphic to a subgroup of the Galois group of GF(2")/GF(2),
a cyclic group of order n. Suppose G > H and let ¢t € G correspond to
a nontrivial field automorphism « — 27. Then in the notation of page
134 of [10], but replacing upper case by lower case letters, we have
t~'at = a’ #a. Since s >4 by our assumption for p = 5 it follows easily
that a’ = a~' so a’ is not conjugate to @ in H. From the character table
of H we now see easily that ¢ moves some irreducible character of H of
degree s+ 1 and thus G has an irreducible character of degree at least
2(s +1) = 2p, a contradiction. Hence G = H and G satisfies (iv) or (v).
This completes the proof of the theorem for p = 5.

Finally let p = 3. Since H is a nonabelian simple group with
r.b.(2p — 1), H = PSL(2, 4) = PSL(2,5) by Theorem 6. Certainly G
is not 5-solvable and G has r.b.(2-5 — 1). Thus by the prime 5 case
already proved, G/Z(G) = PSL(2,5) or PGL(2,5). Since the latter
group has an irreducible character of degree 6 > 2p — 1 we have
G/Z(G) = PSL(2,5) = PSL(2,p + 1) and G satisfies (v). Thus the
result follows.
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