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Consider the nonlinear differential system
(1.1) y=At)y + eqt, ¥, ¢)

where %, q are column #n-vectors, g is continuous in (¢, y, ¢)
and has continuous second partial derivatives with respect to
y, e for all values of £,0=y < R for some R>0 and 0 <c=¢
for some ¢,>0, Further assume A(t) is an nX#n matrix such
that AcC!, and both A and ¢ are periodic in ¢ with period
T. Associated with system (1.1) are the general homogeneous
and nonhomogeneous equations

1.2) y =A@y
1.3) y=A®)-y + ft)

where f(t) is an arbitrary n-vector function periodic in ¢ of
period 7. In this paper we consider the classical problem of
proving the existence of T-periodic solutions ¥ = y(t) of (1.1)
when the homogeneous system (1.2) has nontrivial T-periodic
solutions,

In his book “Oscillations in Nonlinear Systems” [5], J. K. Hale treats
this problem in Chapter 11 as an extension of the general method de-
veloped in Chapter 6 for the case when A(f) is a constant matrix A.
Among other treatments of this problem is the work of D. C. Lewis
[6] utilizing a generalized Green’s matrix. It is the aim of the pre-
sent paper to incorporate certain ideas from [6] into the general
method employed in [5] in Chapter 6. We feel that the approach
presented here brings into sharper focus the generality of the methods
employed in [5] and also has certain computational advantages which
will be mentioned in the body of the paper. The present paper has
many points of contact with a recent paper of S. Bancroft, J. K. Hale,
and D. Sweet [2]. See also [1], [7] and [8].

2. We must first consider the general nonhomogeneous equation
(1.3). We will state a necessary and sufficient condition for the ex-
istence of T-periodic solutions of (1.3) when (1.2) has nontrivial T-
periodic solutions. Following [6] we then construct a generalized
‘Green’s function in order to find an explicit periodic solution of (1.3).

Let S={f:f(@t) = f(t + T); feC; and f(t) is a real valued n-vector
for all ¢}, Then S is a Banach space if we define the norm V(f) to
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be V(f)=sup{|| f(¢)]]; 0 <t < T}. Further let X(¢) be any real funda-
mental matrix solution of (1.2), and let n—k be the rank of the nxn
matrix L = X(0) — X(T). Then there exist % linearly independent
column vectors b, b,, ++-,b, such that L.-b;=0 for+t=1,2,---,k.
Let B denote the % X k matrix (b, b, -+-,5,). Then the columns
@(t), Puft), «++, p,(t) of the matrix @(t) defined by @(t) = X(¢)-B form
a set of & linearly independent solutions of (1.2) which are T-periodic.
By assumption k£ > 0, and of course the columns of @(t) span the
space S, of all T-periodic solutions of (1.2). Explicitly we have

S, ={feS: f(t) = 0@{)-a = >, a;-p;(t) for all a = (a,, a,, -+, a,) € R*} .

Let A’ denote the transpose of an rxs matrix A. Let N(4) and
R(A) denote the nullity and range of A, respectively. Consider the
n X n matrix L' = X'(0) — X'(T). Since dim N(L') = dim N(L), we
can find %k linearly independent column vectors u,, %, - - -, u, such that
Lu,=u,-L=0for1=1,2 ..., k. Let U denote the ¥ X n matrix
with rows uj, u}, -+, u,. We define an n x k matrix ¥(¢) to be

re) =[U-X(T)- X)) .

Then ¥'(t) = U-X(T)-X7X(t). Clearly, ¥(¢t) has rank k and each of its
columns is a solution of the differential equation

(2.1) Z=—A@M)-Z

which is adjoint to (1.2).

Let +r,(£), 4y(2), - - -, ¥,(t) denote the k linearly independent columns
of ¥'(t). These functions span the space S, of all T-periodic solutions
of the adjoint equation (2.1). In fact, since ¥'(0) = ¥(T) and Z(¢) is
a matrix solution of (2.1) we see that ¥(s) =¥(s+ T) for 0 s T.
If (2.1) had [ linearly independent periodie solutions with [ > k then
the original system (1.2), which is adjoint to (2.1), would also have
at least ! linearly independent T-periodic solutions, contrary to as-
sumption. Explicitly, we have

S, ={feS: f(t) =¥ (t)-a = 3 a;-9(t) for all a = (a;, a5, - -+, ;) € R*} .

It is easy to see that S becomes a real Euclidean space when an
inner product (f, g) is defined for f,gec S by

T n T
@2 (ho) = 4| <, a@xat = 31| Ao vt
where {a, b> = >\~ a;-b; denotes the usual inner product for a, be R".

Without loss of generality we may assume that both {p,(¢)} and {y.(¢)}
are  orthonormal bases for their respective subspaces S, and S,; i.e.,
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(Pis P5) = (Yiy ¥g) = 095 for 1 < 4,5 < k.
By P and @ we denote the orthogonal projections of S onto S,
and S,, respectively. Explicitly we have

(2.3) PiS—S.,  Pf) =3 (£ 9)-p:d)
(2.4) QS—S, QAW =3 (F) () -

For convenience we summarize certain well-known general properties
of projections in Euclidean space.

(i) feS, =>Pf=fand fe8S,=) Qf = f.

(ii) P?*f = Pf and @ = Qf for all fe 8.

(iii) Pf=0<=> (fip)=0"for i =1,2,---k.

(iv) QF=0<=>(f,¥y:)=0fori=1,2,---k.
Let us consider the condition Qf = 0. By (iv) we have Qf = 0{=>

0= (/9 = (o f) = = | <t®), A0

for 2=1,2,.--, k. In matrix notation these % equations can be
written as

(2.5) 0= STW’(t) Sf(t)dt = STU-X(T)-X"l(t)- ftyde .
Again using matrix notation we note explicitly that for fe S we have

(2.6) QO = ¥ O T(0)-Fe)ds .

LEMMA 1. The differential system (1.3) with feS has a T-
periodic solution if and only if Qf = 0.

Proof., It is well known that the unique solution y(¢) of (1.3)
satisfying ¥(0) = y, is given by

t
(2.7) y(@) = X(©)-X7(0)-y, + SOX(t)-X“l(S) -fls)ds .
Let 8 = X~'(0)-y,. The solution y(t) is T-periodic if and only if y(0)=
y(T), and from (2.7) this is equivalent to the statement that the
matrix equation

(2.8) L8 = S:X(T)-X—l(s)- f(s)ds

can be solved for B. Suppose first that such a vector 8 has been
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found. The matrix U was defined in such a way that U-L=0. Mul-
tiplying (2.8) by U and making use of (2.5) we see that Qf = 0.

Conversely suppose Qf = 0. It follows from (2.5) that for each
column u; of the matrix U’ we have

Cu || X(T)-X05)- 005 » = 0.
Thus for each vector x e N(L’) we have
<x, g: X(T)- X-(s)- f(s)ds> ~0.

From the compatibility theorem of linear algebra this guarantees the
existence of some solution of (2.8).

For an arbitrary linear equation L-8 = v, it is known that one
can find a nonsingular n X % matrix M, called a pseudoinverse of L,
such that L-M-L = L and for each v<€ R(L) we have L-(M-v) = 1.
Pseudo inverses are constructed from the given matrix L by means
of elementary row operations (see [3], [4]). The following corollary
is an immediate consequence of this observation.

COROLLARY.T If feS and Qf =0, then (2.8) has a solution of
the form B = S P(s)-f(s)ds, where P(s) = M-X(T)-X-'(s) and M is a
nonsingular pseudo inverse of L.

LemMA 2. Consider (1.3) and suppose f€S and Qf = 0. Then
there exists an m X m matriz G(t, s) which is independent of the
function f and continuous in t and s except at t = s where it has a
finite jump, and such that

T
(i) The function y(t) = S G(t, s)-f(s)ds ts a T-periodic solution
[1]

of (1.3) and moreover is the only T-periodic solution satisfying
Py, = 0.

(ii) The columns of ¥(s) are orthogonal to the rows of G(t, s)
for each t;1.e.,

2.9) S:Gax 8" W(s)ds = 0 .

Proof. Since Qf = 0, (2.8) has a solution B of the form indicat-
ed in the preceding corollary. Substituting 8 into (2.7) we get the
equation

u(t) = || XO-1P@) + X)) 75)ds + || X0 Pe)-fo)ds

or
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T
y(t) = || K(t, 9)-f(s)ds
(2.10) K(t, s) = X(t)-[P(s) + X(s)] 0<s=st
= X(t)- P(s) t<s< T
for the unique T-periodic solution of (1.3) satisfying %(0) = y,. Thus
any T-periodic solution of (1.3) will be in the form

2.11) () = B(t)-¢ + S:K(t, s)-f(s)ds

for a suitable choice of c¢ec R,

It is easy to see that at most one T-periodic solution y, of (1.3)
can satisfy Py, = 0. For if y*e S is another solution with Py* = 0,
then ¥ = ¥y, — y* € S and solves (1.2). Thus y¢ S, and so Py =y. On
the other hand we have Py = Py, — Py* = 0, which implies ¥, = »*.

To verify (i), we first observe that the condition Py = 0 is equi-
valent to the equation

(2.12) STQ)’(t)-y(t)dt —0.

We want to find ¢e R* such that both (2.11) and (2.12) are satisfied.
For this it is necessary and sufficient that

0= .% S:@’(t) - O(t)-edt + _;_ SOT (.D’(t)-DOTK(t, 5)- f(s)ds]dt :

Since {g;(¢)} forms an orthonormal basis,

1 r 14 —
_T_SO @'(t)-Ot)dt = I(k x k)

and from O(f) = X(t)-B we find

(2.13) ¢ = —% g:B’-H:X’(T)-K(t, s)dt]-f(s)ds .

Thus the vector ¢ is completely determined by an equation of the form
(2.14) ¢ = ST;/(s) F(s)ds

where &“(s) for a given K(t,s) is a continuous k x# matrix function
of s, independent of f, given explicitly by (2.13). Substituting (2.14)
into (2.11) and introducing the function

(2.15) G*(t, s) = O(t)- < (s) + K(t, 5)

we find the T-periodic solution of (1.3) satisfying Py, = 0 to be
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2.16) i) = S:G*a, 5)-f(s)ds .

From (2.5), however, we see that for any % X k£ matrix function R(t)
the solution #,(t) in (2.16) can also be written as

(2.17) u®) = | [6°(t, 9) — RO-T©)]-f(e)ds -
Choosing in particular the matrix
(T .
R(t) = 7SOG (t, 5)- W(s)ds

and recalling that {y,(¢)} forms an orthonormal basis, we see that (2.9)
is satisfied for

(2.18) G(t, s) = G*(t,s) — R(t)-¥'(s) .
Finally, it is clear that G(¢, s) has the specified smoothness properties.

COROLLARY. Let feS and Qf =0. The unique solution y.t) of
(1.3) with Py, = 0 satisfies the inequality

(2.18) V(y) = K-V(f)
for K= T-sup{||G(t,s)|:0s,t < T}.

LEMMA 3. The matriz G(t, s) given above is uniquely determin-
ed by its properties specified in the statement of Lemma 2.

Proof. Let g(s) be any element of S. Set f(s) = g(s) — Qg(s).
Then Qf = Qg — Q%9 = 0 and so we may apply Lemma 1. From (2.6)
and (2.9), however, we find that
(2.19) ST G(t, 5)- f(s)ds = ST G(t, 5)- g(s)ds

0 1]
and so the unique solution ¥,(¢) satisfying Py, = 0 is given by

ult) = S:G(t, 5)-g(s)ds .

If G,(t,s) were a second matrix with the properties given in
Lemma 2, then the same argument shows that

u(®) = || Gu(t, 9)-g(s)ds

as well. From
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[ 16, 9) = G2, 9)1-g(eds = 0
0
it follows immediately that G.(¢, s) = G(¢, s).

REMARKS. The subspaces S, and S, were introduced by Hale in
[5]. The proofs of Lemma 1,2 and 3 are modeled on the treatment
in [6]. A discussion of these ideas employing the Moore-Penrose
notion of generalized inverse can be found in [7]. It turns out that
the estimate (2.18) is the essential information required for the itera-
tion scheme which we construct in the next section. We note, how-
ever, that the existence of the function G(t, s) has been established by
constructive methods which in principle make it possible to write out
explicitly every T-periodic solution of (1.3) for arbitrary feS.

3. In this section we indicate how the above analysis can be
applied to the question of the existence of periodic solutions of (1.1)
for ¢ = 0. Our treatment is a modification of the analysis in Chap-
ters 6 and 11 of [5], and the reader is referred there for details and
further results.

Let a*(t) be any T-periodic solution of (1.2). For some a € R* we
have Pa*(t) = a*(t) = @(¢t)-a. For given constants b, d with 0<b<d<R
and a*(t) € S, we define S,C S as ’

S, = {feS: Pf(t) = a*(t); V(f) = d} .

THEOREM 1. Given a constant b,0<b=<R, there exists an >0
such that corresponding to each k-vector function a*(t)e S, with
a*(t) = O(t)-a and V(a*) < b and to each € with |e| < ¢, there is a
unique function y*(t) = y*(, a,e) e S, which has a continuous first
derivative with respect to t, satisfies y*(t, a, 0) = a*(t) and

3.1) y* = A@)-y* + e-[q@t, y*, ©) — Qa(¢, y*, 9)] .

Finally, the function y*(t) may be obtained by the iteration pro-
cedure in (3.4) below.

Proof. Since the function G(t, s) constructed in Lemma 2 is in-
dependent of fe S, it makes sense to define an operator &# for y =
y(t,a,¢) in S, as

(3.2) w=Fy=a*t) + e-STG(t, s)-q(s, y(s, a, €), €)ds .
0
As in the proof of Lemma 3 we see that the function Z(¢) defined by

a(t) = e[ G(t, 9)-a(s, 465, a, ©), 9)ds
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satisfies Z = A(t)-Z + ¢-[q(t, ¥, &) — Qq(t, ¥, €)] and also PZ = 0. Thus
we get Pw(t) = Pa*(t) + PZ(t) = a*(1).

Without difficulty one can show that & is a contraction map in
S, for 0 < |e| < e, and ¢, sufficiently small. Thus % has a unique
fixed point y*(t) = y*(¢, a, €) given by

@3 g =a'®) + e | Gt 5)als, 476, 0, 9), s .

Again from (2.6) and (2.9) we see that y*(f) is a solution of (3.1).
The contraction mapping principle states that the solution %*(f) can
be obtained as the limit of a sequence {y*(¢)} defined by

wl®) = a*(t) = 0(t)
B4 ) = FY) = @) + < || Glt, 9)-9(6, 16), )ds

From (3.4) we conclude ¥(¢, a,0) = a*(¢). To prove uniqueness, let
Y, = y.(t, ¢) be another solution of (3.1) in S, for |¢| < e,. Let us de-
fine w(t) = y,(t) — a*(#). Then w is a T-periodic solution of

w = A(t)‘w + 5‘[Q(t: Yy, 8) - QQ(t, Yy, 8)]

satisfying Pw = 0. It follows now from (2.6) and Lemma 2 that v,
is a fixed point of .#, which can only mean that y, = y*.

REMARK. Consider the special case when A(f) is a constant matrix
of the form diag (0, B), where B is an (n — k) X (n — k) matrix such
that X = B-X has no T-periodic solution X(¢). Thus (1.2) has pre-
cisely % linearly independent constant solutions, and so we may choose
an orthonormal basis of S, to be the first & unit n-vectors in R". Then
@(t) is the % x k matrix whose only nonzero terms are & 1’s along the
diagonal. Clearly we may choose the same basis for S,, and so ?'(t)=
@(t). Thus Pf = Qf for all fe S and the spaces S, and S, coincide.
This is the case treated in Chapter 6 of [5].

THEOREM 2. Let y*(t) =y*(t, a, €) be the solution of (3.1) defined
for all ae R* and ¢ such that 0 < |e| < ¢, and V(@*) =TV (@()-a) < b.
If there exists an ¢, < €, and a continuous function a=a(e) for |e| < &,
such that

(3.5) QQ(t) y*(tx (1(5), g),e) =0

then y*(t, a(e), ) is a T-periodic solution of (1.1) for |e| < e,. Con-
versely, suppose (1.1) has a T-periodic solution y = y(t,e) for |e| =
& < &, continuous in € with V(Py) < R. Then for some continuous
Sunction a(e) satisfying (3.5) we have Y(t, €) = y*(t, a(e), &) for |e| =&,
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In this semse we say that the existence of a continuwous function a(g)
satisfying (3.5) 1s a mecessary and suficient condition for the exis-
tence of a periodic solution of (1.1).

Proof. The sufficiency of the condition is obvious. Conversely,
given 7 = §(t, ¢) define a(e)’ = (¥, ), &, ®2), *++, (¥, ). Then for
a*(t, €) = O(t)-a(c) we have Py(t, €) = a*(t, ¢). Clearly a(¢) is continuous
and by assumption V(Py) = VP®#H(-,¢)) = V(a*(-,¢)) < BR. Thus for
some b,d with 0 <b<d< R we have V(a*(-,¢)) = b< R for 0 =
le| < e, Since 7 is a solution of (1.1) we obviously have

(I - QY — A@t)-F — e-q(t, 7, )] = 0
Qy — At)7 — -a(t, 7,€)] = 0.

Since 7 is assumed known we can regard it as a solution of an equa-
tion of the form (1.3). From Lemma 1 this implies Qq(¢, %(t, €), €)=0.
Thus the above equations reduce to

(3.6) ¥ = A7+ e-[at, 7, &) — Qa(t, 7, €)]
(3.7) Qq(t, 7,¢) = 0

for 0 < |e| <¢,. From Theorem 1, however, the function y*(t, a(e), €)
is the only T-periodic solution of (3.6) satisfying

Py*(t, ale), €)) = a*(t, ¢)

for |e| < e, Since ¢, <¢, from (3.6) we conclude %(¢, &) =y*(¢, a(¢), €)

for |e] £ ¢, and from (3.7) we see that a(e) satisfies (3.5).

REMARK. Condition (3.5) is most easily verified, of course, when
the implicit function theorem can be applied in the manner of Chapter
6 of [5]. If this fails, then one can use (3.4) to find approximate de-
termining equations for (1.1) involving the successive approximations
Yo, Y', - ¥*, as done in Chapter 7 of [5]. One advantage of the pre-
sent methods is that these higher order equations can be explicitly
written out, due to the constructive method used to define the kernel
G(t, s) of the integral operator .#.
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