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Goldie’s torsion class & is a class of left E-modules closed
under taking submodules, factor modules, extensions, arbitrary
direct sums, and injective envelopes, The corresponding Goldie
torsionfree class & is precisely the class of left R-modules
possessing zero singular submodule, It is shown that <& is
closed under taking direct products if and only if nonzero
left ideals in &% have nonzero socles, Another theorem gives
four conditions equivalent to the following: Any direct sum
of torsionfree injective modules is injective. One of these four
conditions is that the ring R is an essential extension of a
finite direct sum Z(R)DP L P LD -+ P L., where each L;
is a uniform left ideal of R. It is natural to ask when R
actually equals this direct sum. A sufficient condition for this
to happen is given. Rings in which every torsionfree principal
left ideal is projective are studied. Particular attention is
paid to those rings whose Goldie torsion filters possess a cofinal
subset of finitely generated left ideals.

In this paper all rings R are associative with unit, and all modules
are unitary left R-modules.

Before proceeding, we review some results from |2]. The Goldie
torsion class is the smallest class of modules which is closed under
taking factor modules, extensions, and arbitrary direct sums, and
which contains all factor modules B/A, where A is an essential
submodule of B. Then the class & = {F e ,.# |Hom,G, F) = 0 for
all Ge £} is a torsionfree class in the sense of |5]. Moreover, (&,
& ) is a torsion theory in the sense of [5], & N & = 0, and every
Me . has a (necessarily unique) maximal torsion submodule Z (M)
such that M/& (M)e <. % is precisely the class of R-modules which
have zero singular submodule; moreover, % is closed under taking
submodules, direct products, extensions, and injective envelopes. In
particular, a left ideal I of R is in .&# if and only if I has zero
singular submodule when considered as a left R-module. In case R
is an integral domain, then & coincides with class of modules which
are torsion in the usual sense.

Associated with < there is a filter of left ideals F(%) =
{LIR/Lez}. In [1] J.S. Alin shows L e F(%) if and only if there
exists L’ essential in R such that L & L’ and (L:2) is essential in R
for all xe L’. In particular, every essential left ideal of R is in F(Z).
As in [14], F(Z) is said to have a cofinal subset of finitely generated
left ideals if, given L e F(<), there exists I & L such that I is finitely
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generated and ¢ F(¥).

When we say a module G is “torsion,” then we mean G € &; when
we say a module F' is torsionfree, we mean Fe &,

An R-module M will be called uniform if, for any pair L, N of
nonzero submodules of M, LN N=+=0. A left ideal of R is called
uniform if it is uniform as a left R-module.

1. Products of Goldie torsion modules. In [9] J. P. Jans
investigated classes of modules which are closed under submodules,
homomorphic images, extensions, and direct products. Such classes
are called torsion-torsionfree classes (TTF classes). It is clear that
the Goldie torsion class will be a TTF class if and only if & is closed
under direct products. R. S. Pierce has pointed out ([9], Th. 2.1)
that < is closed under products if and only if I = N,cp) L€ F(Z).
In that case I is a two-sided idempotent ideal of R. In studying the
simple torsion class .~“of S. E. Dickson [5], J. S. Alin has shown [1]
that if .&7 is closed under direct products, then £ N .&” is closed under
direct products. If nonzero modules have nonzero socles, then .&¥ =
=-#, and hence Alin’s results shows < is closed under direct products.
This motivates the main result of this section (Th. 1.3).

Since the ideal I = N,.r»,) L plays a key role in examining Goldie
torsion classes closed under direct products, we begin this section by
examining 1.

ProposITION 1.1. Let I = Niep) L. Then Ie .

Proof. By Zorn’s lemma, there is a left ideal J maximal with
respect to JN Z£(I) = 0. Then J + <(I) is essential in R. Since &
is closed under extensions, then the exact sequence

J J J+2d)

yields R/Je &, i.e., Je F(Z'). Thus by the definition of I, J 2 I 2
< (I), and hence < (I) = 0.

LemMA 1.2. Let I = Niery L, and suppose & is closed under
direct products. Then:

(1) If J vs a left ideal of R and J S I, then I =J@PH K for
some left ideal K.

(2) If I#0, then I =@ S.euS. where S, is simple and A
18 an index set.

Proof. Let J = I be a left ideal of R. There exists a left ideal
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K of R maximal with respect to the properties KNJ =0 and K< I.
Then K@ J is essential in I and hence I/ K@ Je <. By [9] Th. 2.1,
Ie F(<); so the exact sequence

0—IJ@® K— RIJ@® K— R/[—0

yields R/J P Ke &, i.e., J Ke F(Z). It follows from the defini-
tion of I that J@@ K 2 I, and hence I = J P K.
(2) follows from (1) and [4], Theorem 15.3.

THEOREM 1.3. The following are equivalent:

(1) = 1is closed under direct products.

(2) Nonzero modules in # have nonzero socles.
(38) Nonzero left ideals in F have nonzero socles.

Proof. (1)=(2): Suppose Fe s and 0x2z2ecF. By [9]
Theorem 2.1 and (1), I€ F(Z). Claim Iz # 0; for otherwise I€ F (%)
implies Rxe€ &, and Rx = F implies Rxe . Thus Rxe o N =0,
a contradiction. By Lemma 1.2, it then follows that S,z = 0 for
some simple left ideal S,. Then S,x is a nonzero homomorphic image
of S,, and hence is a simple submodule of F. Thus F has nonzero
socle.

(2)=1(3): Trivial.

(83)=(1): If ReZ, then & = ,_, and so the result is trivially
true. Suppose R ¢ &. Since <& is closed under essential extensions,
there exists K = R such that Ke . &. By (3) there exists S & K with
S simple.

Claim that Le F(<) implies S& L. For if LNS =0, then
S=S+ L/L S R/Le<; and hence Se ¥, contradicting Se.#. But
then L N S # 0 implies S & L. Since L ¢ F(<) was arbitrarily chosen,
then S S Nierwy L = I. Therefore KNI+ 0.

Let J be a left ideal of R maximal with respect to JNI=0.
By the previous paragraph J contains no left ideals in .&#; hence £(J)
is essential in J. Therefore Je . So the exact sequence

——

—0
I I1+J

0o.J+I_R_ R
I

yields R/Ie &, i.e., Ie F(Z). Hence ¥ is closed under direct products
by [9], Theorem 2.1.

In [1] J. S. Alin points out that every simple module in & is
projective. Hence if R has no projective simples and < is closed
under directs products, Proposition 1.1 and Lemma 1.2 imply I = 0.
Thus we obtain:
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PrOPOSITION 1.4. Suppose R has no projective simples. Then
< 1is closed under direct products if and only if Re <.

It is known [2] that the following are equivalent: (1) R= £ (R)+ S
(ring direct sum) where S is semisimple with minimum condition; (2)
& is closed under homomorphic images; and (3) the Goldie global
dimension of R (see [2]) is zero. Thus it is of interest to examine
these rings in relation to the condition: % is closed under direct
products.

ProrosiTioN 1.5, R = £(R) + S (ring direct sum) where S 1is
semistmple with minimum condition if and only tf the following
conditions are satisfied:

(1) < 1s closed under products.

(2) I=Niern L ts finitely generated as a left ideal.

(8) There are no nonzero nilpotent left ideals in .

Proof. (=): If R has no projective simple modules, then we
are done by Proposition 1.4. Let R =S, @ M, with S, simple. If
I=Niercs) L, then S, & I follows from (1). Hence I = S, P (M, N I).
If M, N I contains a simple summand S, of R, then it follows that
R=8&8S.6p (M NM) where R = S, M,. Proceeding by induction
R=S &SP ---PS.P(N~. M). Now this induction process must
stop after a finite number of steps by (2), say

E=S.@- @5 (NM)

where I N (N, M;) contains no simple summands of R. Set NX, M; = G.
We claim that IN G = 0. For otherwise (1) and Theorem 1.3 imply
there exists a simple module S £ ING. S* 0 by (3) and Proposition
1.1. Let z,yeS such that zy # 0. Then y generates S, and
0:y) NS =0 since S is simple. But (0:y) is maximal, and hence
0:4) P S = R, contradicting I N G contains no simple summands of
R. Hence ING =0 as claimed, and so I =S, &H --- P S,.

Now observe that G = —°(R) as follows: Clearly < (R) cannot
properly contain G. On the other hand, G =1+ G/IS R/Iec < by
(1), and hence Ge &. Therefore, G = & (R).

Since R =G I and since G and I are two-sided ideals, then
R = G + I (ring direct sum.)

(=): If R=<(R)+ S, where S is semisimple with minimum
conditions, then [2], Theorem 3.1. and the remark following [2],
Corollary 3.4, show < is closed under direct products.

2. Direct sums of torsionfree injectives. The main theorem
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of this section points out the relationship between cofinal subsets of
finitely generated left ideals in F(Z) and properties of sums of tor-
sionfree injective modules. This relationship is also studied in [13].
An example in [13] shows that, for more general torsion theories [5]
than the Goldie theory, the analogue of Theorem 2.1 (1) = (5) is not
- always true. In [7], Theorem 5.6, a ring with £ (R) =0 and the
ascending chain condition is represented as an essential extension of
a finite direct sum. Condition (3) of Theorem 2.1 represents more
general rings in this way.

THEOREM 2.1. The following are equivalent:

(1) F(2) has a cofinal subset of finitely generated left ideals.

(2) R contains no infinite direct sum of torsionfree left ideals.

(3) R ts an essential extension of (RSP L, PL.P---PL,,
where each L; is a uniform left ideal.

(4) R/Z(R) = K where K is an essential extension of a direct
sum of finitely many uniform torsionfree left ideals.

(5) Amny direct sum of torsionfree injective modules is injective.

REMARK. [13], Theorem 1.2, gives eight additional conditions
which are equivalent to (5) (above) for more general hereditary torsion
theories in the sense of [1], [9], and [13].

Proof. (1)=(2): Let @ e, L. be a direct sum of nonzero
torsionfree left ideals of R. Then there exists a left ideal L of R
such that L N (3eew L) =0 and V = L@ (34ew L.) is essential in R.
Then Ve F(Z), so (1) implies that there exists N S V with Ne F(Z)
and N finitely generated. Now each generator N has a nonzero
representation in only finitely many coordinants of V=L@ (D S.cw La).
Since N is finitely generated, it follows that there exists w S w such
that || <W,and NS L& >,c. L,. Suppose |u| < |w]|. Then

v R
L, = S &z
2T SL) LO@S L) z

aeu

since NS LP (D >... L, implies LD (D Si.c. L.) € F(Z). Hence
D DwcwuLa€Z NF =0, contradicting L, 0. Hence |w]|=
%] < Y, establishing (2).

(2)=(5): Consider the diagram:

0— ISR
(c) 5|
O F.

aeEw



452 MARK L. TEPLY

where I is a left ideal of R and {F,}... is a set of torsionfree injective
R-modules. Note that ¢(<(I)) 0. If Iis an essential extension of & (I),
then I = £ (I) since ¥ is closed under essential extensions; but then
the zero map from R to @ ... F. makes (¢) commute.

If I is not an essential extension of & (I), then by (2) there exists
a finite direct sum ¢ >\~, Rx; contained in I maximal with respect
to (I)NE@ L Rx,) =0. Then U= <I)D (P 2, Rx;) has the
properties: I/Ue & and ¢(U) is contained in a direct sum of finitely
many Fs (xew). So by the injectivity of the F's (aew), there
exists f: BR— @ Dlacw F, such that f|U = ¢|U. Since (f — ¢)(U) = 0,
there is an induced map ¢: I/ U — @ Y.c., Fo via g(x + U) = (f — 6)(x).
Since I/Ue< and F,e.¥ ~a, then g =0, and hence f|I= g.
Hence f makes (¢) commute, and thus @ 3... F, is injective.

(5)=(1): [13], Theorem 1.5.

(2)=1(3): By (2) let >, L, be a maximal direct sum of
torsionfree left ideals of R. From (2) it follows that each torsionfree
left ideal contains a uniform left ideal. So by breaking the L, apart
into direct subsums, we may assume each L; is uniform. By the
maximal property of @@ >\~ L;, it follows that & (R) P (P S\~, L;) is
essential in R.

(3)=(4): If M & < (R), we claim M N >, L, 0. For sup-
pose M L £ (R) and MN >, L;,) = 0. Then let

0Fz=g+7 +r+ - +rne<<f(R)@<§Li>)ﬂM

by (3). Then g+ 0. If (0:g)x =0, then MN>7r L, #0, a con-
tradiction to our assumption. Hence (0:¢g)z =0, and so xe & (M).
Thus M N G LD T (R)eZ. From 3), MN SCr,.L; P Z (R)) is
essential in M, and hence Mec & by & closed under essential exten-
sions. Thus M & Z(R), which is a contradiction to our choice of M.

From the claim, it follows that R/Z(R) = K is an essential ex-
tension of (P D, L) P C(R)/Z(R) = P D\, L; with L, uniform.

(4)=(1): Assume R¢ . Let K be an essential extension of
@D > L, L; uniform left ideals; K = R/ (R) by (4). If Ie F(<Z),
then I'N L; ++ 0 since L; € %, Choose 0 =z, e INL,forv=1,2, -+, n.
Since L, is uniform, Rx; is essential in L;. Hence

— = =@ L/RucZ .
@Zth i=1

So the exact sequence
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cROGXL g R

— -0

O3 R O R RO L

—

yields R/>\, Rx; e &, i.e., >\, Rx; € F(<).
The following result of F. L. Sandomierski ([12], Th. 2.5) is an
immediate corollary of Theorem 2.1 (2) = (5):

COROLLARY 2.2. If R has mo infinite direct sums of left ideals,
then any direct sum of injective R-modules with zero singular sub-

module 1s imjective.

ExamPLE. To see that R can have an infinite direct sum of left
ideals without having an infinite direct sum of torsionfree left ideals,
consider the ring R = [[[4c. P*] + N (ring direct sum) where |w| =
Wi, P = Z/(p*) (Z = integers, p = prime), and N is a commutative
Noetherian ring with zero singular ideal. Then Z(R) = [[uco P‘¥,
and R clearly has infinite direct sums of left ideals. But since R is
commutative and Ne. & 1is Noetherian, R contains no infinite direct
sums of torsionfree left ideals. Thus Theorem 2.1 gives a proper
generalization of Sandomierki’s result.

If R has zero singular ideal, then F(¥) = {I|I is an essential
left ideal of R}. Hence the following result of C. Walker and E. A.
Walker ([14], Th. 4.20 (b) = (c)) is an immediate corollary of Theorem

2.1 (1) = (2).

COROLLARY 2.3. Let R have zero singular ideal, and let F(Z)
be the filter of all essential left ideals. Then the following are
equivalent:

(1) F(Z) has a cofinal subset of finitely gemerated left ideals.

(2) R has no infinite direct sums of left tdeals.

3. (& PP) rings. From Theorem 2.1 we see that the condition,
F(Z) has a cofinal subset of finitely generated left ideals, is equivalent
to R being an essential extension of the finite direct sum

CRYDLSDBLD:-- DL,

‘where each L; is a uniform left ideal of R. It is a natural question
‘to ask when R is actually equal to this direct sum. The condition that
‘torsionfree principal left ideals are projective plays an interesting role
.as a sufficient condition for equality. The main purpose of this section
is to examine this role and hence to obtain generalizations of some
results of L. Levy [11] and A. Hattori [8].
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A ring R is called (& PP) if every torsionfree principal left ideal
is projective. This is a generalization of Hattori’s concept of (PP)
ring [8]. There a ring is called (PP) if every principal left ideal is
projective. It is easily seen that a ring R is (PP) if and only if R
is (# PP) and Z(R) = 0.

THEOREM 3.2. Let R be an (# PP) ring. Then the following
are equivalent:

(1) F(Z) has a cofinal subset of finitely generated left ideals.

(2) R=Re,QRe,;,® --- D Re, D A, where each Re; is a uni-
form left ideal and where A is an essential extension of

ZR)YDODNDON,D:-- DN, .

Ni=0 for i1=1,2,.--,m, and each N, is R-isomorphic with some
Re;;, where j(i)e{l,2, ---, n}. Moreover, 1 =¢, +e¢,+ -+ + ¢, + a,
acA, and aN; =0 for 1 =1,2, «++, m.

Proof. (1)=1(2): If R = Z(R), then there is nothing to prove.
If R #+ Z(R), then there exists a left ideal I such that IN £ (R) =0
since & is closed under essential extensions. By (1) and Theorem 2.1
(2) we may assume I = Rx is a uniform left ideal in .. Now the
exact sequence

0—0:2) - R— Rx—0

must split since R is (& PP). Hence R = D, @ A, where D, = Rx.
Write 1 = ¢, + a, where e,e¢ D, a,€¢ A,. Then D, = Re,. Since & 1is
closed under homomorphic images and D, €.&, then £ (R) < A..

We proceed by induction to define Re,, Re,, -+, Re, as follows:
Suppose Re,, ---, Re, has been constructed such that

R =Re®---DRe. DA,
Z(R) = A,, each Re; is a uniform left ideal, and
l=e¢+e+ -+ +e, +a,, a, €A, .

If A, = £(R), we are done. If A, # £ (R), then let Rz # 0 be a
torsionfree uniform left ideal contained in A,. If Rex = 0 for all
1=1,2,.--,u, then A,x = Rxe. . So the exact sequence

0—-0:2)n4,—4,—A4x—0

splits since A,x is projective. Hence A, = D,,, P A,,, where D,,, =
A.,x. Write a, = €,,, + a,,, with e,,,€D,.,, a,.,,€A,;,. Then R =
Rex @ cte @ Reu @ Re, ., @ Au+1v and ?(R) & Au+1'

By (1) and Theorem 2.1(2), it follows that the above process
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must stop after finitely many steps (i.e., eventually we cannot assume
Rex = 0 for all ¢ as above). Hence we may assume that we have
constructed uniform torsionfree left ideals Re,, Re,, ---, Re, with the
properties:

(i) R=Re,P:--- P Re,P A.

(ii) 1=e, +e€,+ - + ¢, +a, acA.

(iii) If Rx = A is a nonzero torsionfree uniform left ideal, then
Rex =+ 0 for some 7¢€{1,2, ---, n}.

(iv) Z(R) & A.

Suppose 0 = Rxe #, Rx = A, and Rx uniform. It is easily seen
that ee; =0 for ¢ #j and ¢a =0 ¢=1,2 ..., m. So for yec Rx,
Re,ay = 0. Since Ray & Rz, it follows from (iii) above that ay = 0.
Let g be the least integer such that Reax +# 0, which exists by (iii).
It is easily verified that if ve @ 3., Re; D A, then vex =0. It
follows that if (0:e,x) N Re, 0, then (0:e,x) is essential in R, and
hence (0: ¢,x) € F(Z). But then Rexe & N =0, a contradiction.
Therefore, (0: e,x) N Re, = 0.

Note that the conditions

(2) (0:e) 2 (@ S Re) B A

(b) (0:ex) N Re, =0

() R=Re,P---PRe,PA
imply that (0:e,2) = (@ 3.z, Re;) D A, and therefore Re,x = Re,. Set
N, = Re,x. Then N} E (Rxa)-Rx = Rx-(aRx) = Rx-0 = 0.

If A is not an essential extension of N, P Z(R), then repeat the
process used to obtain N, to get N, & A such that N = 0 and Re, = N,
for some pe{l,2, --.,n}. By induction we construct N,, N,, --- with
the desired properties. Moreover, by (1) and Theorem 2.1 this induec-
tion process stops after finitely many steps, say m. Thus A is an
essential extension of N @ N, P :-- @ N, P T (R) as desired.

(2)=(1): This is an immediate consequence of Theorem 2.1
(3) = (@).

The next theorem is the main result of this section.

THEOREM 3.3 The following are equivalent:

(1)) R=SR)PDR PR.P--- P R., where R.R; =0 for i # j,
R; is (¥ PP), R; is a direct sum of uniform left ideals, and R; has
a stmple classical left quotient ring with minimum conditions for
1=1,2, «-+, m.

(2) (i) R s (& PP).
(ii) F(Z) has a cofinal subset of finitely generated left ideals.
(iii) There are no nonzero torsionfree nilpotent left ideals in R.

(1)=(2): Write R, = Rf;,, where 1=f,+f,+ - +fut+9
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and ge £ (R). We claim that any principal left ideal in & is R-
isomorphic to a principal left ideal in Rf, 4+ Rf, -} --- 4+ Rf,.. For if
& =mrf, + -+ + r,fn +.rg generates a principal left ideal in &, then
the mapping of Rx induced by

C—rfi+ e+ Tt

has kernel K = {trg |t € R, trg € Rz}. But then Rirge £ N.&# =0. Thus
K = 0 and the claim is established.

Thus to show (i), it is sufficient to show that each principal left
ideal in Rf, 4 --- 4+ Rf, is R-projective. Since each Rf; = R, is (& PP)
and fief; = 0 for © # j (ce R), this is easily verified using the fact
that each R; is (& PP).

Condition (ii) is immediate from Theorem 2.1 (3).

Looking at the projections of any torsionfree nilpotent left ideal
into the R!s, we see that the images of these projections all must be
nilpotent left ideals. Since each R; has a simple classical left quotient
ring with minimum conditions, then it follows from [10], Theorem
(p. 268), that each image is zero. It follows that zero is the only
nilpotent torsionfree left ideal.

(2)=(1): By Theorem 3.2, we have

R =Re, P Re, P ---PRe, DA,

where A is an essential extension of E(R)@P N, P N, P --- N,, with
N=0 for t=1,2,---,m. From (iii) it follows that A = Z(R).
Hence R = Re, P --- P Re, P £ (R).

Define 7 ~ j if either e;Re; = 0 or e;Re; # 0 for 1 <4, <n. It
is easily verified that ~ is an equivalence relation. Let S(1), S(2), ---,
S(m) be the distinct equivalence classes of {1,2, --., n} under ~, and
let R; = 3;cs4) Re;. Using Goldie’s Theorem ([10], p. 268), the reader
can verify that the R, have the required properties.

Note that “(& PP)” can be replaced by “finitely generated torsion-
free left ideals are projective” or “torsionfree left ideals are projective”
in the statement of Theorem 3.3, and the result remains true with
only trivial modifications in the proof. In case R has a semisimple
left classical quotient ring with minimum conditions, then £ (R) = 0,
R has no infinite direct sums of left ideals, and B has no nonzero
nilpotent left ideals. Hence the following result of L. Levy ([11],
Th. 4.3) is a special case of Theorem 3.3.

COROLLARY 3.4. Let R be a hereditary ring with semisimple
left classical quotient ring S. Then R is a direct sum of hereditary
rings {R; |+ =1,2, ---, n} which have simple left classical quotient
rings with minimum condition. When considered as a set of left
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ideals of R, {R;|1=1,2, -+, n} constitutes a minimal set of anni-
hilator ideals of R, and hence the quotient rings of the Ris are the
simple components of S.

Since the concept of torsion defined by L. Levy [11] coincides
with the Goldie torsion concept for rings possessing a semisimple left
classical quotient ring with minimum conditions, the next corollary is
a generalization of [11], Theorem 6.1.

COROLLARY 3.5. Suppose that the conditions of Theorem 3.3 hold
with “(F PP)” replaced by “finitely generated left ideals in F are
projective.” Suppose R/<(R) has the ascending chain condition on
annthilator right ideals, and suppose that R contains mo infinite
direct sum of right ideals. Then every finitely generated R-module
M s a direct sum of T (M) and finitely many left ideals of R.

Proof. Under these hypotheses R/Z(R) has a two-sided semi-
simple classical quotient ring with minimum conditions. Note that
R/Z (R) also possesses a Goldie torsion theory, which coincides with
Levy’s torsion theory for R/ (R). Let M be a finitely generated
R-module. Since M/Z (M) is a R/Z (R)-module, it follows from [11],
Theorem 5.2, that M/Z (M) is isomorphic to a submodule of a free
R/ (R)-module. But by Theorem 3.3, R/ (R) =R, + R, + --- + R,
(ring direct sum), where each R; is semi-hereditary. So [3] Theorem
1.6.1 yields M/ (M) = @ >\r, I;, where I; is a finitely generated left
ideal of R/ (R). By Theorem 3.3, each x € R can be written uniquely
as r, + 1, + -+ + 7, + 9, where r,e R, and ge £ (R). Hence each
o =x+ Z(R)e R/Z(R) can be written uniquely as

rd v, e + 1, + E(R).

Thus each I; is R-isomorphic to a finitely generated left ideal of R
contained >\, R; via

ot Tt e+ 1+ CR)—— 1+ e T
So by Theorem 3.3, each I, is R-projective. Therefore,
M=zM)DLOLD---DI,.

An element n of a left ideal N of R is said to be tn the center
modulo £ (R) if the image of n under the natural homomorphism
©0: R— R/<(R) is a nonzero element of the center of the ring R/Z (R).
Equivalently, an element » is in the center modulo % (R) if, for each
x € R, there exists an element ¢,e £ (R) such that xn = nx + ¢,.
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PROPOSITION 3.6. If R is (& PP) and every monzero nilpotent
left ideal im F contains an element in the center modulo Z(R),
then in fact R has mo milpotent left ideals in F.

Proof. Assume otherwise. Then there exists ne R with the
following properties:

(1) Rne .

(2) (Rn) = 0.

(3) For each x < R, there exists t, € £ (R) such that nx = « + ¢,.
By (& PP), there is an isomorphism \: Rn — Re, where €* = e # 0.
Let r € R be such that A(rn) = e. Then ne (0: rn) = (0:¢), so that
ern = ner + t =t for some te £ (R). So (1) implies that ec (0: rn) =
(0: ¢), a contradiction.

COROLLARY 3.7. Let R be commutative. Then the following are
equivalent:

(1) R is (& PP) and F(Z) has a cofinal subset of finitely
generated left ideals.

(2) R=2R)+ R, +R,+ --- 4+ R, (ring direct sum), where
each R; 1s an integral domain.

Proof. Apply Proposition 3.6 and Theorem 3.3. Then note that
a commutative prime ring is an integral domain. Conversely, (2) = (1)
follows from Theorem 3.3.

Recall that R is (PP) if and only if R is (% PP) and £ (R) = 0.
Hence the following result of A. Hattori ([8], Lemma 3) is a special
case of Corollary 3.7.

COROLLARY 3.8. Let R be a commutative ring having no infinite
direct sum of left ideals. Then R is a (PP) ring tf and only tf R
18 a direct sum of integral domains.

The results in §2 and § 3 of this paper will appear in the author’s
dissertation at the University of Nebraska. The author is deeply
indebted to his adviser S. E. Dickson for his advice and encourage-
ment. He is also grateful to J. S. Alin and E. P. Armendariz for
several stimulating conversations.
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