EXTENDING BOUNDED HOLOMORPHIC FUNCTIONS FROM CERTAIN SUBVARIETIES OF A POLYDISC

HERBERT JAMES ALEXANDER
EXTENDING BOUNDED HOLOMORPHIC FUNCTIONS
FROM CERTAIN SUBVARIETIES OF A POLYDISC

HERBERT ALEXANDER

Let E be a subvariety of the unit polydisc

$$U^N = \{(z_1, \ldots, z_N) \in \mathbb{C}^N: |z_i| < 1, 1 \leq i \leq N\}$$

such that E is the zero set of a holomorphic function f on U^N, i.e., $E = Z(f)$ where $Z(f) = \{z \in U^N: f(z) = 0\}$. This amounts to saying that E is a subvariety of pure dimension $N - 1$. In [2] Walter Rudin proved that if E is bounded away from the torus $T^N = \{(z_1, \ldots, z_N) \in \mathbb{C}^N: |z_i| = 1, 1 \leq i \leq N\}$, then there is a bounded holomorphic function F on U^N such that $E = Z(F)$.

Call such a subvariety E, that is, a pure $N - 1$ dimensional subvariety of U^N bounded from Γ^N, a Rudin variety. We are interested in the following question: When is it possible to extend every bounded holomorphic function on a Rudin variety E to one on U^N?

Examples show this is not always possible. We will say that a pure $N - 1$ dimensional subvariety E of U^N is a special Rudin variety if there exists an annular domain $Q^N = \{(z_1, \ldots, z_N) \in \mathbb{C}^N: r < |z_i| < 1, 1 \leq i \leq N\}$ for some $r(0 < r < 1)$ and a $\delta > 0$ such that

(i) $E \cap Q^N = \emptyset$ and

(ii) if $1 \leq k \leq N$ and $(z', \alpha, z'') \in (Q^{k-1} \times U \times Q^{N-k}) \cap E$ and $(z', \beta, z'') \in (Q^{k-1} \times U \times Q^{N-k}) \cap E$ and $\alpha \neq \beta$, then $|\alpha - \beta| \geq \delta$.

Obviously (i) implies that a special Rudin variety is a Rudin variety. We have the

Theorem. If E is a special Rudin variety in U^N, then there exists a bounded linear transformation $T: H^\infty(E) \to H^\infty(U^N)$ (where H^∞ is the corresponding Banach space of bounded holomorphic functions under sup norm) which extends each bounded holomorphic function on E to one on U^N.

Remark. The proof of the theorem is a modification of the proof in [2] of Rudin’s theorem: the changes reflecting the fact that we are dealing with an additive problem while Rudin’s was of a multiplicative nature. I am further indebted to Professor Rudin for some comments (on a preliminary version of this paper) which led to improvement in the hypothesis of the theorem.

The following lemma is well-known and easy to prove.

Lemma 1. If $0 < r < 1$ and $Q = \{\lambda \in \mathbb{C}: r < |\lambda| < 1\}$ and

$$h(\lambda) = \sum_{n=0}^\infty a_n \lambda^n, h_1(\lambda) = \sum_{n=1}^\infty a_n \lambda^n$$

are analytic in Q, then

$$h_1(\lambda) = \frac{1}{1 - \lambda} (h(\lambda) - a_0).$$
for $\lambda \in Q$, then

$$|| h_i ||_q \leq K || h ||_q$$

where $K (> 1)$ is a constant depending only on r.

If h is holomorphic on $Q^r = \{ (z_1, \cdots, z_N) : r < |z_i| < 1, 1 \leq i \leq N \}$ then h has a Laurent expansion

\begin{equation}
(1) \quad h(z_1, z_2, \cdots, z_N) = \sum a(n_1, n_2, \cdots, n_N)z_1^{n_1}z_2^{n_2} \cdots z_N^{n_N}.
\end{equation}

Following [2], we define $\pi_j h_j, 1 \leq j \leq N$, to be the holomorphic function on Q^r whose Laurent series is obtained by deleting in (1) all terms in which $n_i \neq 0$. Lemma 1 implies

Lemma 2. $|| \pi_j h ||_{q^N} \leq K || h ||_{q^N}$.

Proof of the theorem. Since E is a subvariety of U^N of pure dimension $N - 1$, there exists by [1, p. 251] a function f holomorphic on U^N such that at each point of U^N the germ of f generates the ideal of germs of holomorphic functions which vanish on the germ of E at the given point. In particular, $E = Z(f)$. We will show that $\partial f/\partial z_k \neq 0$ on $(Q^{k-1} \times U \times Q^{N-k}) \cap E$ for $1 \leq k \leq N$. We give the proof for $k = 1$, the other cases are identical. Let $(\alpha, \alpha') \in (U \times Q^{N-1}) \cap E$. Now f is regular in the first coordinate [1, p. 13] at (α, α') since otherwise $f(\zeta, \zeta')$ vanishes in a neighborhood of α and hence for $|\zeta| < 1$ and so $E = Z(f) \supseteq (|\zeta| < 1)$, contradicting (i) in the definition of a special Rudin variety. Thus we can apply the Weierstrass preparation theorem and write in some neighborhood of (α, α'), $f = \Omega p$ where Ω is invertible and p is a Weierstrass polynomial. Factor p into primes:

$p = p_1^{\alpha_1} \cdots p_i^{\alpha_i}$

where p_i and the p_i's are of the form

$$(\zeta - \alpha)^n + a_{n-1}(\zeta')(\zeta - \alpha)^{n-1} + \cdots + a_0(\zeta')$$

for (ζ, ζ') near (α, α') with $a_j(\alpha') = 0$. Now the degree of each p_i must be equal to 1 since otherwise there would exist $\zeta_n \rightarrow \alpha'$ with ζ'_n off the discriminant locus of some p_i and so there would exist $\alpha_n \neq \beta_n$ near α with $p_i(\alpha_n, \zeta'_n) = 0 = p_i(\beta_n, \zeta'_n)$ and thus (α_n, ζ'_n) and (β_n, ζ'_n) are in $(U \times Q^{N-1}) \cap E$, but $\zeta'_n \rightarrow \alpha'$ implies $\alpha_n \rightarrow \alpha$ and $\beta_n \rightarrow \alpha$ and so $|\alpha_n - \beta_n| \rightarrow 0$, contradicting (ii). A similar argument also using (ii) shows that there cannot be more than one p_i near (α, α'). Finally, since the germ of f generates the ideal of E at (α, α'), e_i must be equal to 1. Thus $f(\zeta, \zeta') = \Omega(\zeta, \zeta')(\zeta - \alpha + a_0(\zeta'))$ and $\partial f/\partial \zeta(\alpha, \alpha') = \Omega(\alpha, \alpha') \neq 0$ as required.

Now by Theorem 1 of [2] applied to $E = Z(f)$ there is a bounded holomorphic function F on U^N such that $E = Z(F)$. Examination of the
construction in [2] shows that $1/F$ is bounded on Q^N since $F = f_e^{e^{-\sigma_1}}$ on Q^N and $1/f_i$ and $|\text{Re} (g - g_i)|$ are bounded on Q^N. We will show that there is an $\varepsilon > 0$ such that $|\partial F/\partial z_k| > \varepsilon$ on $(Q^{N-k} \times U \times Q^{N-k}) \cap E$ for $1 \leq k \leq N$. We do this for $k = 1$, the finitely many other cases are identical. From [2], $F = fe^g$ for some g and so $\partial f/\partial z_i \neq 0$ on $(U \times Q^{N-k}) \cap E$ implies $\partial F/\partial z_i \neq 0$ there. Now for $z' \in Q^{N-1}$

$$z' \mapsto \frac{1}{2\pi i} \int_{|z| = r} \frac{\partial F/\partial z_1(\zeta, z')}{F(\zeta, z')} \, d\zeta$$

is a continuous integer-valued function and so is a constant m_1 giving the number of zeros for $F(\cdot, z')$ in U. Since these zeros are the points of $(U \times Q^{N-1}) \cap E$ and $\partial F/\partial z_i \neq 0$ there, it follows that the m_i zeros $\alpha_i(z'), \cdots, \alpha_m(z')$ are distinct simple zeros. By (ii) then, $|\alpha_i(z') - \alpha_j(z')| \geq \delta$ for $i \neq j$. Write $F(\cdot, z') = BH$, where B is the Blaschke product with zeros at $\alpha_i(z'), \cdots, \alpha_m(z')$. Now since $1/F$ is bounded on $Q^N 1/H$ is bounded on U. But on E, $\partial F/\partial z_i = \partial B/\partial z_i$, H and since

$$|\alpha_i(z') - \alpha_j(z')| \geq \delta, \partial B/\partial z_i$$

is bounded from zero on E by some constant depending on δ, and as H is also bounded from zero independently of z', it follows that $\partial F/\partial z_i$ is bounded from zero on $(U \times Q^{N-1}) \cap E$.

Let $d = \text{dist}(E, Q^N)$ which we may assume is positive by increasing r if need be. Let g be a bounded holomorphic function on E. We shall extend g to a bounded function on U^N. By the general Oka-Cartan theory [1], there is a holomorphic extension G of g to U^N; G need not be bounded. Since $F \neq 0$ on Q^N, we may define a function h_i on $U \times Q^{N-1}$ as follows: Let $(z_1, z') \in U \times Q^{N-1}$. Choose a circle Γ about 0 lying in Q and enclosing z_1 with positive orientation and set

$$h_i(z_1, z') = \frac{1}{2\pi i} \int_{|z| = r} \frac{G(\zeta, z')/F(\zeta, z')}{\zeta - z_1} \, d\zeta.$$

h_i is clearly independent of the choice of Γ and holomorphic on $U \times Q^{N-1}$. We claim that $G/F - h_i$ is bounded on Q^N. Let $(z_1, z') \in Q^N$ where $z_1 \in Q$, $z' \in Q^{N-1}$. Let $\Gamma_1, \Gamma_2, \cdots, \Gamma_m$ be small circles about $\alpha_i(z'), \cdots, \alpha_m(z')$, the zeros of $F(\cdot, z')$. Then the Cauchy integral formula reads

$$(G/F)(z_1, z') = \frac{1}{2\pi i} \int_{\Gamma_1 \cdots \Gamma_m} \frac{G(\zeta, z')/F(\zeta, z')}{\zeta - z_1} \, d\zeta.$$

Therefore

$$(G/F - h_i)(z_1, z') = -\sum_{1}^{m_1} \frac{1}{2\pi i} \int_{\Gamma_k} \frac{G(\zeta, z')/F(\zeta, z')}{\zeta - z_1} \, d\zeta.$$

Clearly for $r_k = \text{radius of } \Gamma_k$,
\[
\frac{1}{2\pi i} \int_{\Gamma_k} \frac{G(\zeta, z')/F(\zeta, z')}{\zeta - z_1} d\zeta = \frac{1}{2\pi i} \int_{\zeta - \alpha_\kappa(z') = r_k} \frac{G(\zeta, z')}{\zeta - z_1} \frac{\zeta - \alpha_\kappa(z')}{F(\zeta, z') - F(\alpha_\kappa(z'), z')} \frac{d\zeta}{\zeta - \alpha_\kappa(z')}
\]

So letting the radii of the \(\Gamma_k\) go to zero we get

\[
(G/F - h_i)(z_i, z') = -\sum_{k=1}^{m_i} \frac{g(\alpha_\kappa(z'), z')}{(\alpha_\kappa(z') - z_i) \frac{\partial F}{\partial z_i}(\alpha_\kappa(z'), z')}
\]

Since \((\alpha_\kappa(z'), z') \in (U \times Q^{N-1}) \cap E\), recalling the significance of \(d\) and \(\varepsilon\) we get

\[
\| G/F - h_i \|_{Q^N} \leq \frac{m_i \| g \|_E}{d\varepsilon}.
\]

In the same way for each \(i, 1 \leq i \leq N\) we have an integer \(m_i\) and a function \(h_i\) holomorphic on \(Q^{i-1} \times U \times Q^{N-i}\) such that

\[
\| G/F - h_i \|_{Q^N} \leq \frac{m_i \| g \|_E}{d\varepsilon}.
\]

Now let \(m = \max\{m_i; 1 \leq i \leq N\}\) and let \(A = m/d\varepsilon\). Subtracting in the above, we get \(\| h_i - h_i \|_{Q^N} \leq 2A \| g \|_E\). Now following [2] closely, set \(h = (1 - \pi_j)(1 - \pi_\kappa) \cdots (1 - \pi_N)h_{i_j}\). Since \(\pi_i h = 0\), \(h\) extends (uniquely) to a holomorphic function on \(U^N\). Since \(h_j\) is holomorphic on \(Q^{N-1} \times U \times Q^{N-j}\), \(\pi_j h_j = 0\)

and so \(\pi_j h_i = \pi_j(h_i - h_j)\) and therefore by Lemma 2,

\[
\| \pi_j h_i \|_{Q^N} = \| \pi_j(h_i - h_j) \|_{Q^N} \leq K \| h_i - h_j \|_{Q^N} \leq 2KA \| g \|_E.
\]

Now, since \(h - h_i = -\sum \pi_i h_i + \sum \pi_i \pi_j h_i - + \cdots\) and since we get by induction and by use of Lemma 2 that \(\| \pi_i \pi_j \cdots \pi_{i_j} h_i \|_{Q^N} \leq 2K^A \| g \|_E\), it follows that \(\| h - h_i \|_{Q^N} \leq BA \| g \|_E\) where \(B\) depends only on \(K\).

Now consider \(\bar{G} = G - F h_i\). \(\bar{G}\) is holomorphic on \(U^N\) and extends \(g\) since \(G\) does. On \(Q^N\), \(\bar{G} = F(\bar{G}/F - h_i) + F(h_i - h)\). Therefore \(\| \bar{G} \|_{Q^N} \leq \| F \|_{C^N A} \| g \|_E + \| F \|_{C^N B A} \| g \|_E\). Thus \(\bar{G}\) is bounded on \(U^N\) and \(\| \bar{G} \|_{C^N} \leq \gamma \| g \|_E\) where \(\gamma = A(1 + B) \| F \|_{C^N A}\) is independent of \(g\).

Next we show that \(\bar{G}\) does not depend on the choice of \(G\) made at the beginning of the construction. Suppose \(\bar{G}\) were another (not necessarily bounded) extension of \(g\) to \(U^N\). As above we get
\[\tilde{h}_i = \frac{1}{2\pi i} \int_{\Gamma} \frac{G/F}{\zeta - z_i} d\zeta. \]

But then on \(U \times Q^{N-1} \)

\[(2) \quad h_i - \tilde{h}_i = \frac{1}{2\pi i} \int_{\Gamma} \frac{(G - \tilde{G})/F}{\zeta - z_i} d\zeta. \]

Since for \(z' \in Q^{N-1}, (G - \tilde{G})(\cdot, z') \) vanishes at \(\alpha_i(z'), \ldots, \alpha_m(z') \) and since \(F(\cdot, z') \) has simple zeros and only at these points, \((G - \tilde{G})/F(\cdot, z') \) is holomorphic on \(U \) and the right hand side of (2) equals \((G - \tilde{G})/F \) and so on \(U \times Q^{N-1} \)

\[(3) \quad h_i - \tilde{h}_i = (G - \tilde{G})/F. \]

Since the left hand side of (3) is holomorphic on \(U \times Q^{N-1} \), so is the right and consequently \((G - \tilde{G})/F = (1 - \pi) ((G - \tilde{G})/F) \) on \(Q^N \). In the same way we see that for each \(j, (G - \tilde{G})/F = (1 - \pi_j) ((G - \tilde{G})/F) \) on \(Q^N \). Therefore on \(Q^N \) we have

\[(G - \tilde{G})/F = \prod_{j=1}^{N} (1 - \pi_j) ((G - \tilde{G})/F) = \prod_{j=1}^{N} (1 - \pi_j) (h_i - \tilde{h}_i) = h - \tilde{h}. \]

Thus \(G - Fh = \tilde{G} - F\tilde{h} \) on \(Q^N \) and so on \(U^N \). Since the extensions thus coincide, we have a well-defined map \(T: H^\infty(E) \rightarrow H^\infty(U^N) \) such that \(\|T(g)\|_{U^N} \leq \gamma \|g\|_E \).

To see that \(T \) is linear, let \(g \) and \(\tilde{g} \) be bounded holomorphic functions on \(E \) and let \(\lambda \) be a complex number. Let \(G \) and \(\tilde{G} \) respectively be arbitrary holomorphic extensions to \(U^N \). Let \(\tilde{h}_i, h_i, \tilde{h}_i \) and \(\tilde{h}, h, \tilde{h} \) be the \(h_i \) and the \(h \) for \(G + \lambda \tilde{G}, G \) and \(\tilde{G} \) respectively. Then

\[\tilde{h}_i = \frac{1}{2\pi i} \int_{\Gamma} \frac{(G + \lambda \tilde{G})/F}{\zeta - z_i} d\zeta \]

\[= \frac{1}{2\pi i} \int_{\Gamma} \frac{G/F}{\zeta - z_i} d\zeta + \lambda \cdot \frac{1}{2\pi i} \int_{\Gamma} \frac{\tilde{G}}{\zeta - z_i} d\zeta = h_i + \lambda \tilde{h}_i \]

and \(\tilde{h} = \Pi (1 - \pi_j) \tilde{h}_i = [\Pi (1 - \pi_j)] (h_i + \lambda \tilde{h}_i) = h + \lambda \tilde{h} \). Therefore

\[T(g + \lambda \tilde{g}) = (G + \lambda \tilde{G}) - F(h + \lambda \tilde{h}) \]

\[= (G - Fh) + \lambda (\tilde{G} - F\tilde{h}) = T(g) + \lambda T(\tilde{g}). \]

Example. Let \(E \) be the Rudin variety in \(U^2 \) given by \(E = Z((z_1 - \frac{1}{2})(z_1 z_2 - \frac{1}{2})) \). Then \(E \) is the disjoint union of \(Z(z_2 - \frac{1}{2}) \) and \(Z(z_1 z_2 - \frac{1}{2}) \). Let \(g \in H^\infty(E) \) be given by

\[g \mid Z(z_1 z_2 - \frac{1}{2}) = 0 \quad \text{and} \quad g \mid Z(z_2 - \frac{1}{2}) = 1 \.]
Then g admits no bounded holomorphic extension to U^2. For if G were a bounded extension of g to U^2 we would have for $z \in U, z$ near 1,

$$1 = G(z, \frac{1}{2z}) - G(z, \frac{1}{2}) = \frac{1}{2\pi i} \int_{|\zeta|=1} G(z, \zeta) \left(\frac{1}{\zeta - \frac{1}{2z}} - \frac{1}{\zeta - \frac{1}{2}} \right) d\zeta$$

$$= \left(\frac{1}{2z} - \frac{1}{2} \right) \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{G(z, \zeta)}{\left(\zeta - \frac{1}{2z} \right) \left(\zeta - \frac{1}{2} \right)} d\zeta.$$

But as $z \to 1$, the integral is bounded and $(1/2z) - (1/2) \to 0$, a contradiction.

REFERENCES

Received January 8, 1968. The research for this paper war partially supported by the following contracts: NONR 222 (85) and NONR 3656 (08).

UNIVERSITY OF MICHIGAN
Herbert James Alexander, Extending bounded holomorphic functions from certain subvarieties of a polydisc .. 485
Edward T. Cline, On an embedding property of generalized Carter subgroups ... 491
Roger Cuppens, On the decomposition of infinitely divisible characteristic functions with continuous Poisson spectrum. II 521
William Richard Emerson, Translation kernels on discrete Abelian groups .. 527
Robert William Gilmer, Jr., Power series rings over a Krull domain 543
Julien O. Hennefeld, The Arens products and an imbedding theorem 551
James Secord Howland, Embedded eigenvalues and virtual poles 565
Bruce Ansgar Jensen, Infinite semigroups whose non-trivial homomorphs are all isomorphic .. 583
Michael Joseph Kascic, Jr., Polynomials in linear relations. II 593
J. Gopala Krishna, Maximum term of a power series in one and several complex variables ... 609
Renu Chakravarti Laskar, Eigenvalues of the adjacency matrix of cubic lattice graphs ... 623
Thomas Anthony McCullough, Rational approximation on certain plane sets .. 631
T. S. Motzkin and Ernst Gabor Straus, Divisors of polynomials and power series with positive coefficients 641
Graciano de Oliveira, Matrices with prescribed characteristic polynomial and a prescribed submatrix .. 653
Graciano de Oliveira, Matrices with prescribed characteristic polynomial and a prescribed submatrix. II 663
Donald Steven Passman, Exceptional 3/2-transitive permutation groups ... 669
Grigoris Tsagas, A special deformation of the metric with no negative sectional curvature of a Riemannian space 715
Joseph Zaks, Trivially extending decompositions of \(E^n \) 727