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If i f and J "̂~are saturated formations, ί§Γ is strongly con-
tained in &~ (written gf « jr) if :

(1.1) For any solvable group G with i f -subgroup E, andj^~-
subgroup F, some conjugate of E is contained in F.

This paper is concerned with the problem:
(1.2) Given g% what saturated formations J^~satisfy g7 « J^"?

The object of this paper is to prove two theorems. The
first, Theorem 5.3, shows that if J7" is a nonempty forma-
tion, and ξ?={G\GIF(G)ejT}9 (F(G) is the Fitting sub-
group of G), then any formation ^~ which strongly contains
8Γ has essentially the same structure as c& in that there is

a nonempty formation ^ such that &~ = {G \ G/F(G) e %f}.
The second, Theorem 5.8, exhibits a large class of formations
which are maximal in the partial ordering «. In particular,
if ^Ari denotes the formation of groups which have nilpotent
length at most i, then ^V* is maximal in <. Since for
<yV" — ̂ yf^1, the ^/^-subgroups of a solvable group G are the
Carter subgroups, question (1.2) is settled for the Carter
subgroups.

Since the theory of formations is of relatively recent origin, we
give a few highlights. The theory begins with a paper [4] by
Gaschϋtz which provides the setting in which the results of Carter
[1] on the existence of nilpotent self-normalizing subgroups of solvable
groups take their most natural form. He showed that given a
saturated formation j^~, and any finite solvable group G, one can find
a conjugacy class of subgroups of G (called ^"-subgroups of G) which
is connected in a natural way with the formation ^~. Recently,
Carter and Hawkes [2] have made a major contribution to the theory
by generalizing the work of Philip Hall on system normalizers in
solvable groups to ^-normalizers, and investigating the relationships
between the ^"-subgroups of a solvable group G and the j^~-
normalizers of G. As is clear from (1.1), this paper proceeds in a
different direction by considering the relative embedding of the j ^ -
subgroups for two distinct saturated formations g7, jβ~. We consider
only finite solvable groups in this paper.

The machinery used in the proof of our main theorem, Theorem
5.8, is developed in § 4. We begin by obtaining a characterization of
strong containment which depends only on the two formations g" and
&. This characterization depends on the knowledge that if J?~ is
a saturated formation, then j^f is a locally defined formation (see
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§2), a result proved by Lubeseder in [7]. In certain cases, we are
able to strengthen our characterization of strong containment so that
it gives a complete description of the minimal local definition of J?~
as a necessary condition for strong containment.

In § 6, we present an example which shows that Hypothesis II
of our main theorem is not redundant. The formation which gives
the example is & — {G | G/F(G) is an r'-group}, where r is a prime.
It is apparent from Theorem 6.2 that & is not maximal in the
partial ordering < . In fact, there are an infinite number of forma-
tions which strongly contain έ%.

Preliminary results are presented in § 3. In particular, we give
a cover-avoidance characterization of the ^-subgroups of a group,
a result which may have some interest by itself. We remark, how-
ever, that one half of this characterization has appeared in [2].

2* Notation and quoted results* We use the following
notation:

G — a finite solvable group;
D(G) — the Frattini subgroup of G, the intersection of

all maximal subgroups of G;
F(G) — the Fitting subgroup of G, the maximal normal

nilpotent subgroup of G;
Zp — the field of integers mod p, p a prime;
π — a set of primes;
π' — the complementary set of primes;
Oπ(G) — the maximal normal 7Γ-subgroup of G;
Oπ,π(G)— the inverse image in G of Oπ(G/Oπ,(G)) .

If K <\ H ̂  G, then H/K is a section of G, and if F ^ G
normalizes both H and K, it is an F-invariant section of G. If
H/K is an F-invariant section of G, then CF{H/K) is the kernel of
the representation of F as a subgroup of the automorphism group of
H/K. CHjκ(F) is the set of elements of H/K fixed by every element
of F. The following results will be used frequently:

LEMMA 2.1. {Covering Lemma [6], Theorem 1) If A is a group of
automorphisms of the group G whose order is prime to the order of G,
and if H/K is an A-invariant section ofG, then CG(A) covers CH!K(A).

LEMMA 2.2.1 (Frobenius reciprocity for modules, [8], p. 144)
1 The result on page 144 of [8] does not look quite like the Frobenius reciprocity

theorem quoted above, but if we define the map

χ : Kom${G)(®(G), N) -> N by the rule
χ: φ-*φ(l) peHomβ<σ,(S(G),ΛO,

then it is not difficult to show that χ is a ®CH>isomorphism from
onto N\H.
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Let G be a group, H t^G, and & a field. If M is a ®(H)-module,
and N a &(G)-module, then Ή.om^{G)(M \G, N), and Hom^(H)(M, N \ff)
are isomorphίc as vector spaces over $. Here M\G is the $t(G)-
module induced from M to G, and N\H is the restriction of N to H.

The final part of this section consists of a short summary of the
theory of formations as presented in the papers of Gaschϋtz and
Lubeseder [4], [5], and [7].

DEFINITION 2.3. For each prime p, let ^{p) be a formation.
Let &~ denote the collection of groups G which satisfy the following
two conditions:

(a) if ^~{p) is nonvoid, and K is a p-chief factor of G, then
G/CG(K) lies in j r ( p ) ;

(b) if ^~(p) is empty, then G is a p'-group.
Then ^ is a formation called the formation locally defined by the
family {J^~{p)}. In general, a formation J?~ is locally defined if
there is a family {^(p)} of formations such that J^ is locally defined

by { J H P ) }

Since the intersection, over all p-chief factors K of G, of the
groups CG(K) is the group OV,P{G), it is easy to see that condition
(a) above is equivalent to
(2.1) if J^ip) is nonempty, then G/OP,P(G) lies in ^(p).

The family ^(p) of formations which define j^ is not unique.
If, however, l^~(p)} and {^~'(p)} are two families of formations
which locally define the same formation ^~, then the family
{£έf(p) I £ί?{p) = J^ip) D ̂ \p)} also defines ^ . Thus there is a
unique minimal local definition for any locally defined formation j^~.
For example, the minimal local definition of the formation of all
nilpotent groups is obtained by setting ,yV(p) = {1} for all primes p.

THEOREM 2.4. ([4], p. 302; ]5], p. 198; [7]) A formation ^
is saturated if, and only if, it is locally defined.

In view of this theorem, we shall use the terms saturated and
locally defined interchangeably from now on.

DEFINITION. 2.5. Let &~ be a formation. A subgroup F of G
is an ^^-subgroup of G provided:

(a) Fe^)
(b) if F ^ U ^ (?, and N is a normal subgroup of U such that

U/N lies in ^ then FN = U, i.e., F covers U/N.

The following two lemmas appear in [4], and describe the basic
properties of .^-subgroups.
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LEMMA 2.6. ([4], p. 301) If the formation ^~ is saturated, then
every solvable group G has an ^-subgroup. All ^-subgroups of G
are conjugate.

LEMMA 2.7. ([4], p. 301) Let ^ r be a formation, and G a
group. Let F be an element of J^ such that F fg G. Then:

(a) if F is an ^-subgroup of G, and F ^ U ̂  G, F is also an
^-subgroup of U;

(b) if N <\G, and F is an ^-subgroup of G, then FN/N is an
^-subgroup of G/N;

(c) if N <\G, F'/N is an ^-subgroup of G/N, and F is an
^-subgroup of F', then F is an ^-subgroup of G.

3* Preliminary results* The first three lemmas of this section
are elementary, but they are used frequently enough to justify their
inclusion. The last two theorems give a cover-avoidance characteri-
zation of the ^-subgroups of a group.

LEMMA 3.1. Let H be a normal pf-subgroup of G, $t a field of
characteristic p, and M an indecomposable $t(G)-module. Then M\H

is a completely reducible &(H)-module whose nonisomorphic irre-
ducible components form a single orbit (£ of conjugate &(H)-modules
under action by the elements of G. Let L, J be two B(G)-modules of
M such that L a J. Then the distinct &(H)-ir'reducible components
of (J/L) \H are precisely the elements of (£.

Proof. Complete reducibility of M\H is clear since H is a j / -
group. Since the decomposition of M\H into its homogeneous com-
ponents is unique, these components are permuted by the action of
G on M. Indecomposability implies only one orbit O can occur, hence
the same statement holds for the nonisomorphic irreducible components
of M\H. The transitivity of G on the orbit © and the fact that at
least one element of K appears as a constituent of (J/L) \H yields
the last statement of the lemma.

LEMMA 3.2. Let G be a group, and M a $i{G)-module. M is
faithful if, and only if, M\F{G) is faithful.

Proof. The lemma follows a fortiori from the statement that
if 1 < N<] G, then 1 < Nf]F(G).

We now begin a discussion of the properties of J^-subgroups of
solvable groups. If G is a group, and ^ a formation, we use G^
to denote the intersection of all normal subgroups N of G such that
the factor group G/N lies in J^. It is useful to know the behavior
of G^r under homomorphisms, so we prove
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LEMMA 3.3. Let j^~ be a formation, G a group, and H<\ G. Then.

(G/H)jr = G^H/H .

Proof. Let F be the inverse image in G of (G/H)^-. Then G/F
is isomophic to {G/H)/{G/H)^r, hence G/F lies in j^~. Therefore,
G^H g F.

Since G/G^H lies in ^ , it follows that G^H/H is a normal
subgroup of G/H whose corresponding factor group lies in j^~.
Therefore F/H is contained in G^H/H; this completes the proof.

The next theorem generalizes a remark made by Carter in [1],
and provides the first half of a cover-avoidance characterization of
^-subgroups.

THEOREM 3.4. Let a?" be a formation locally defined by the
family {J^ip)}, G be a group, F a subgroup of G which lies in J^,
and K an F-composition factor of G. Then

(a) F either covers, or avoids K;
(b) if F covers K, and p\\K\, then FjCF{K) e ^~(p);
(c) if F is an ^-subgroup of G, and p\ \K\, then

(3.1) F/CF(K) e J H P ) => F covers K .

Proof. Let K = L/M be the i^-composition factor in question.
Statement (a) follows from the fact that F acts irreducibly on K,
and (L Π F)M/M is an F-invariant subgroup of K.

If F covers K, then looking at F as a set of operators on K, it
follows that K is operator isomorphic to L Π F/M Π F, a p-chief factor
of F. Therefore the kernel of the representation of F on L f] F/M Π F
is CF(K). Since F lies in j ^ " , F/CF{K) lies in J H P ) . This proves (b).

Now suppose F is an ^^subgroup of G, and K is a ^-section of
G such that F/CF(K) lies in ^(p). To show F covers K, it suffices
to show that F covers the larger section FL/M. But by Lemma
2.7, F is an ^^subgroup of FL, hence it is sufficient to show F —
FL/M is an element of ^ since F, by definition, covers any such
factor of FL.

If q is a prime distinct from p, then K, as a normal (/'-subgroup
of F, is contained in Oq,{F). Therefore Oq,q(F)L/M is contained in
Oqlq{F), so F/Oq>q(F) is isomorphic to a quotient group of FL/Oqq(F)L.
But FL/Oq>q(F)L is isomorphic to a quotient group of F/Oq,q{F). Since
F G ^ , (2.1) implies F/Oq,q{F) lies in J^(g), hence F/Oq,q(F) is also
in J H g ) .

Let £7 = F^ip). Since F e ^ , F/OP,P{F) lies in J H p ) . Therefore
[7 is contained in OP,P(F). Since we have assumed F/CF(K) e ^(p),
it follows that K is contained in the center of UL/M. Therefore
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UL/M has a normal p-complement. As a normal subgroup of F, it
follows that UL/M is contained in Opfp(F), the maximal normal sub-
group of F which has a normal ^-complement. Therefore FjOp,p(F)
is isomorphic to a quotient of F/U and must lie in ^(p). This
shows that F satisfies (2.1) for all primes p, so F lies in ^ .

Our next theorem will show that (3.1) characterizes the j^~-
subgroups of a solvable group G. In order to obtain as weak an
hypothesis as possible, we prove two lemmas. (3.1) actually applies
only to specific i^-composition factors of G, so when we say that
(3.1) holds for an F-composition series, G = Go > Gι > > Gn = 1,
of G, we mean F satisfies that property for all factors Gi/Gi+ί of the
series for which the hypothesis of (3.1) holds.

LEMMA 3.5. Suppose J?" is a formation locally defined by
F lies in J?", and F ^ G. Let A/B be an F-invariant

section of G such that A > C > B defines a fixed F-composition series
of A/B. If (3.1) holds for this series, then (3.1) holds for every
F-composition series of A/B.

Proof. We may assume that a second F-composition series of
A/B exists and is defined by A> D > B where D Φ C. Then we
must have A — CD and B = C Π D. Therefore

(3.2) A/B ̂  C/B x D/B, A/C ~ D/B, A/D ~ C/B ,

where the decomposition is an operator decomposition, and the iso-
morphisms are operator isomorphisms.

Suppose the decomposition (3.2) is unique. If F/CP(A/D) lies in
J H P ) , it follows from (3.2) that F/CF(C/B) lies in J?"(p). Since
(3.1) holds for the series A > C > B, F covers C/B. Therefore
(F n A)D ̂  (F Π C)D ̂ CD = A, so F covers A/D. If F/CF(D/B)
lies in ^(q), then (3.1) implies F covers A/C. Because of the
uniqueness of the decomposition, and the fact that F Γ\ A is not
contained in C, either A = (F Π A)B, or D = (F Π A)B. In the former
case, F covers all of A/B, and in the latter case, F Γ) A = F Π D
since F Π A ^ D. Therefore, in either case, F covers D/B.

The decomposition (3.2) is unique if the orders of the factors
are relatively prime, so we may assume A/B is an elementary abelian
p-growp for some prime p. This means that we can look at A/B as
a ^(i^-module. If the factors are distinct ^(i^)-modules, then the
decomposition is again unique. If they are isomorphic, it follows
from (3.1) for the series A > C > B that F either covers, or avoids
A/B. Therefore Lemma 3.5 holds in all cases.

LEMMA 3.6. Assume F lies in _̂ ~, H <£ G, and F <̂  NG(H). If
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(3.1) holds for a fixed F-composition series of H, then it holds for
every F-composition series of H.

Proof. Let H = Ho > Hι > > Hn = 1 be the fixed F-compo-
sition series of H for which (3.1) holds. Use induction on n. If
H — Ko > Kγ > > Kn = 1 is a second ^-composition series for Hy

and Kγ = Hlf (3.1) holds for the second series by induction.
If Kx and Ht are distinct, we let i be the smallest integer such

that K, Π ̂  = Hi. Because Hi ^ Kt Π H^, we have iϊ^ = K, n fl<-i,
so that we have the following lattice diagram:

I 1

Now Hx is F-invariant, and because of the isomorphisms indicated in
the diagram, HL > Kt n fli > > ^ Π fl"^ = Hi > > Hn - 1 is
an F-composition series for Hγ which has length n — 1. By induc-
tion, (3.1) holds for this series. Therefore, (3.1) holds for the F-
composition series of HjHγ Π Kx defined by the series H > Hγ> Hxf\ K.
By Lemma 3.5, (3.1) holds for the F-composition series

H > K, > H, n K, > . > Kx n H^ = Hi > . > Hn = 1

of H. In particular, (3.1) holds, by induction, for any F-composition
series of Kt. Therefore (3.1) holds for the series KQ > K, > > Kn = 1.

THEOREM 3.7. Let ^~ be a formation locally defined by
Let G be a group, and F a subgroup of G which lies in ^[ If
(3.1) holds for a fixed F-composition series G = Go > G1 > > Gn = 1
of Gy then F is an ^-subgroup of G.
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Proof. We use induction on \G\. By Lemma 3.6, we may assume
that the series G = Go > Gx > > Gn = 1 is a refinement of the
chief series G = Ho> Hλ> > Hm-X > Hm = 1. Then Hm^ = G* for
some &. if™^ is a minimal normal subgroup of G, so we set G{ =
(?i/Gfc for i = 0,1, ., k, F = FGk/Gkf and G = Go. Our first step is
to show that F is an ..^subgroup of G.

If m = 1, the result is trivial. If m is larger than 1, then
iJm_! is a proper subgroup of G, and by induction, to show that F
is an ..^subgroup of G, it is sufficient to verify (3.1) for the F-
composition series Go > G1> Gk — ΐ .

For each i, set ^ = GJGi+1, and J^ - GJGi+1. Since Gfc ^ G ί + 1

for ί < k, Gk centralizes the section K{ for i < k. Therefore,
= CF(Ki)Gk/Gk for all i < k. Thus,

-ΛKd ~ FGJCF(Ki)Gk ~ F/CF(Ki)(FΠGk) .

But FnGk^ CF(Ki), so we have

(3.3) F/CτiKi) = F/CF(Kύ for i < k .

Suppose Ki is a p-section of G such that F/CpiKi) lies in
By (3.3), F/CF(Ki) lies in ^ ( p ) , so ί7 covers if,. Therefore,
(FGk n G^G.+i = (F n Gi)GkGi+1 = (F n G4)ί?ί+1 = Cr*. By taking homo-
morphic images, and noting that i^Gfc Π Gi/Gfc = F Π G<, we get
( F n Gi)G<+1 - Gi. Thus F covers X"<β Therefore (3.1) holds for the
/'-composition series G = Go > Gι > > Gk = 1 of G.

Now that we know F is an ..^subgroup of G, it follows from
Lemma 2.7 that we can complete our proof by showing that F is an
_^subgroup of FGk.

Suppose FGk < G. We consider the series

FGk = Do ^ A ^ ^ D% = 1 ,

where D< = FGfc Π G, for each i. Suppose D{ > D i + 1 for some i.
Then

A/A + 1 s (FG, n Gi)Gi+1/Gi+ι > 1 .

This is an operator isomorphism, hence because F is irreducible on
Kn we have

(3.4) DJDi+1 s G4/Gi+1 .

Therefore the distinct terms of the series Do ^ A ^ ^ D n = 1,
form an ^-composition series for FGk which passes through Gk.
Since F covers FGk/GkJ and since D< = G* for i ^ k, (3.1) holds for
this composition series. By induction, F is an ^^subgroup of FGk.
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If G — FGkf then Gk is a minimal normal subgroup of G, and F
acts irreducibly on Gk. Therefore F either covers, or avoids Gk. If
F covers Gk, then F = G, so ί7 is an ^^subgroup of G. Suppose
F avoids Gk, and Gk is a p-group. Then FGk/CFGk(Gk) ~ F/CF(Gk)
cannot lie in ^(p) since (3.1) holds for Gk. Therefore (FGk)^ ^ Gk.
Since FGk/Gk lies in j ^ , (.FG*)^ = Gk.

lί F ^U ^ FGk1 then U = F, or Z7 = FGfc. The above remarks
show that F covers U/Ujr in both cases. Therefore F is an
subgroup of FGk, and the proof is complete.

As one application of Theorem 3.7, we prove

COROLLARY 3.8. Let ^ be a formation locally defined by
HeJ^, and let I be a finitely generated Zp(H)-module.

Let G = HI be the semi-direct product of I by H where the action
of H on I by conjugation is the usual one. Then,

(a) F = HdiOpiHjrip))) is an ^"-subgroup of G,
(b) As a Zp(H)-module, I = Cj(Opt(H^{p))) + G^.
Proof. Let W=C2(Opf(H^ip))). Our first task is to show HW

lies in ά^. Suppose q is a prime distinct from p, then W is a g'-group
normal in HW> so Oq,q{F) = Oq,q{H)W. Therefore,

F/Orq(F) ~ HIOq,q(H) .

Since H lies in j ^ , F/Oq,q(F) e
Let U=H^{p). Then OP,(U) centralizes W. Since H/OP,P(H)

lies in ^~(p), U ̂  OP,P{H). Therefore UW has a normal p-comple-
ment, and as a normal subgroup of F, must be contained in OP,P{F).
Therefore F/OP,P(F) is isomorphic to a quotient group of H/U. Since
H/Ue^ip), so is F/OP,P(F). Therefore, (2.1) holds for all primes
r, so F lies in Jr.

Now let G = Go > Gt > > Gn = 1 be an F-composition series
for G such that Gι = / for some I. In order to check (3.1) for this
series, we need only consider Ki = Gi/Gi+1 for i :> ί, since ί7 covers
G/I. W centralizes every Ki, so we have

<3.5) F/CAK*) ~ HICniK,) .

If i^l, and FjCF(Ki)e^{p), then (3.5) implies CH(Ki)^U.
In particular, OP,{U) centralizes K{. Therefore F covers Kiy and
(3.1) holds for the series in question. By Theorem 3.7, F is an
subgroup of G.

By complete reducibility, 1 = W + (/, OP,(U)), and since Op

is normal in H, both T^ and V = (I, OP,{U)) are normal in HI.
Clearly HI/V is the largest factor of HI covered by F. Therefore
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REMARK. This result cannot be extended to the case where / is
a p-group of class 2 because of the following example. Let I be the
quaternion group. I has an automorphism h of order 3 such that h
acts fixed point free on I/D(I), and centralizes D(I). Let H be the
cyclic group of order 3 generated by h, and let G = HI. A Carter
subgroup of G is H x D(I), but D(I) has no complement in I, so no
splitting is possible.

The author is indebted to the referee for the following

REMARK. If &~ is a saturated formation, £Γ€^", and
are two local definitions for ^ then Or(H^lW) = Opf(H^2ip])..

Proof. Clearly H/H^.lp) e ^ n ^7(p) , so H^.{p) ^
Since <^Π.^7(p) is contained in ^7(p), H^.{p) = fljr.(p,n^, and in the
terminology of [2], we may assume the local definitions {<β\(p)} are
integrated.

By Theorem 2.2 of [2], we have ^ J ^ ( p ) = &*^(p), where

G) e

Since H^.{p) ^ OP,P(H) for each i, it follows that for each i,

Since έ^^Kv) = ^^7(2>), the remark follows.

4* Strong containment* In this section, we shall characterize
strong containment. In certain cases, we can make our characteriza-
tion more precise by giving generating sets for certain of the for-
mations ^(p) in the minimal local definition of J^. The results of
this section form the basis for our results in § 5.

LEMMA 4.1. Let cg and ^ he two nonempty saturated forma-
tions) let & be locally defined by {^(p)}. Let G be a group of
minimal order satisfying:

(4.1) An ^-subgroup of G is not contained in any ^-subgroup of G.

If F is an ^-subgroup of G, and E is an ^-subgroup of F, then
(a) Gjr — M is a minimal normal subgroup of G; G is the

semidirect product of M by F; F acts faithfully and irreducibly
on M.

(b) If M is a p-group, then E* = ECM(Op,(E&ίp))) is an &-sub-
group of G, and 1 < CM(09.(E*{p))) ^ M.

Proof. If G is an element of J^, then G — F contains everjr
7-subgroup of G, hence G does not satisfy (4.1). Therefore G&^;
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in particular, G is not the identity. Let M Φ 1 be a minimal normal
subgroup of G. By Lemma 2.7, FM/M is an .^subgroup of G/M.
Because of the minimality of | G | with respect to the property (4.1),
some gf -subgroup of G/M is contained in FM/M. Since all gf-
subgroups of G/M are conjugate, we can find an gf-subgroup E of
G such that EM ^ FM. E, as an gf -subgroup of G, is also an
gf-subgroup of FM. Because G satisfies (4.1), no conjugate of E
under FM can be contained in F. The minimality of G implies
G = FM.

G/M is in ^ but G is not, so G^ = M. Since F Γ) M is a
normal subgroup of G, properly contained in M, F Γi M = 1, so G is
semidirect product of M by F. Since ilί was arbitrary to begin with,
and we showed M = Gjr, M is the unique minimal normal subgroup
of G. Therefore F acts faithfully and irreducibly on M. This
proves (a).

G/M is isomorphic to F, SO EM/M is an gf -subgroup of G/M.
By Lemma 2.7, an gf -subgroup of EM is also an gf-subgroup of G.
Corollary 3.8 shows that E* = ECM(Op,(E#ip))) is an gf-subgroup of

Since £r* is not contained in F, statement (b) holds.
Before stating the characterization, we introduce some notation.

DEFINITION 4.2. If gf and ^ are two saturated formations,
and g* is locally defined by {gf (p)}, set

(a) π(gf) = {p\ ξf(p) is nonempty}. π(g*) is called the charac-
teristic of gf.

(b) If peττ(gf), we denote by Φ(p) the collection of all HeJ^
such that if E is an g7 -subgroup of £Γ, then ίZ" has a faithful irre-
ducible ifp(iϊ)-module M which satisfies

(4.2) 1 < CM(Op.(E*ω)) ^ M .

(c) If peττ(gf), let θ(p) be the collection of all H in Φ(p) such
that i ϊ has at least one faithful irreducible ^(ίZ")-module satisfying

(4.3) 1 < C
M
(O

p
,(E*w)) < M .

THEOREM 4.3. Suppose g7 and J^~ are two saturated formations
locally defined by {&(p)} and {^(p)} respectively. Then g7 < &~
if, and only if, for each prime p in the characteristic of g?, Φ(p)
is contained in

Proof. Suppose Φ(p) is contained in ^"(p) for each p in the
characteristic of gf, and gf is not strongly contained in ά^. Then
the class of groups satisfying (4.1) with respect to the formations gf
and J^~ is nonempty, so we choose G to be an element of minimal
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order in this class. By Lemma 4.1, if G^ is a p-group, then p
divides the order of an g7 -subgroup of G, and must be an element
of the characteristic of g\ By Lemma 4.1, if F is an .^subgroup
of G, then F lies in Φ(p). Therefore F is an element of ^""(p), and
OP(F) = 1.

Since G^ is the unique minimal normal subgroup of G, Gjr —
OP,P(G). Therefore F ~ G/G^ - G/OP,P(G) lies in ^~(p). If q is a
prime distinct from p, then Gjr ^ Oq,(G), and it follows that Oq,q{G) =
G^Oq,q(F). Therefore,

G/ίWG) ~ F/Oq,q(F) .

Since i?7 lies in J ^ we see that G/Oq,q(G) lies in J^O?). By (2.1), G
lies in ^ a contradiction to the fact that G^ > 1. Therefore

Suppose ξ? < J^, peπ(ίf), and FeΦ(p). Let Λf be the faithful
irreducible Zp(F)-moάale mentioned in the definition of Φ(p). Set
G = FMy where the action of F on M by conjugation is the
module action. By Corollary 3.8, an .^subgroup of G is F * =
FCM(Op,(Fjr{p))), hence G = F*M. Let E be an gf-subgroup of F.
Since EM/M is an gf-subgroup of G/M, it follows, from Lemma 2.7
and Corollary 3.8, that E* = EGM{Opf(E^p))) is an ^-subgroup of G.
E* does not avoid M, and because g7 < ^ ^ £7* is contained in some
.^subgroup of G, hence F* does not avoid M. Since F * is irre-
ducible on M, it follows that F* contains M, hence F* = G.

Since G lies in ^ ^ and ί7 acts faithfully on the p-chief factor
M of G, we have F isomorphic to G/Gβ(M), an element of ^(p).
Therefore Φ(p) is contained in ^~(p).

Because of this characterization, if g7 < . ^ , and p is a prime
in the characteristic of if, then Φ(p) g ^"(p) for any ^~(p) which
lies in some local definition of J^. This leads naturally to the
question:

Suppose {^(p)} is the unique minimal local definition for j^~.
(4.4) If p is a prime in the characteristic of g% is J^ip) the smallest

formation generated by the set Φ(p) ?
The answer to this question is yes, provided the set θ(p) is nonempty
for at least two primes. We have not been able to relax the
hypothesis on the θ(p)'s. In order to prove this partial result, we
shall, for the next few lemmas, investigate properties of the Φ(p)'s
and θ(pY&.

LEMMA 4.4. Let i? and J^ he nonempty saturated formations
with local definitions {^(p)} and {^(p)} respectively. Suppose
g7 < ^ and G is an element of ^~ with CS'-subgroup E.
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(a) Suppose G e Φ(q) for some prime q in the characteristic of
gf. G lies in θ{q) if, and only if, Oq,(E#{q)) > 1.

(b) // Oq(G) = 1, and the permutation representation on the
cosets of Oq,(E#{q)) is faithful, then G lies in ζΦ(q)y, the smallest
formation generated by the set Φ(q).

(c) Let V be a faithful irreducible Zp(K)-module, where K is
a group. If G = KV, and the permutation representation on the
cosets of Oq,(Eχ(q)) is faithful for some prime q in 7r(§f) — [p], then
G lies in Φ(q).

(d) For each r, s in π(gr), θ{r) ^

Proof. Let H = Oq\E^{q)). If G is in Φ(q), then G has a faith-
ful irreducible Zg(G)-module I such that 1 < Cj(H) ^ I. Equality
holds if and only if H = 1, so (a) is true;

Now suppose G satisfies the hypothesis of (b). Let T be the
^(G)-module which affords the representation of G on the cosets of
H. Since H is a g'-group, the principal ^(Jϊ)-module is a direct
jsummand of the regular iΓg(iJ)-module, hence

(4.5) T is a direct sum of principal indecomposable Z?(G)-modules.

We write T = ϊ\ + + T8, where each T{ is indecomposable, and
let Ui be the unique maximal proper ^(G)-submodule of T{. Finally,
we let M{ be the factor module TJUi.

Since Oq(G) is trivial, F{G) is a g'-subgroup of G, hence by
Lemma 3.1, the distinct irreducible components of Mζ \FiG) are exactly
the same as the distinct irreducible components of Tt \F{G). Since T
is faithful, it follows that if we let M be the direct sum of all the
modules Mif then M\FiG} is faithful. By Lemma 3.2, M is a faithful

We now apply the Frobenius reciprocity theorem for modules,
i.e., Lemma 2.2. For each i = 1, 2, , s

(0) c Hom^ ( G )(T, MJ ~ HomZ β ( f l )(l, M, \H) ,

where 1 denotes the principal i?9(iϊ)-module. Therefore, for each i,

1 < CMi(H) £ M{ .

Set Gi = G/CG(Mi). Then Eκ = ECQ(Mi)/CG(Mi) is an ^-subgroup
of G^ By Lemma 3.3, (#<)*<«> = E.^CQiM^C^Mi). It follows from
{2.1) and the definition of E#{q) that E#{q) has a normal g-complement.
Therefore Oq,((Ei)*w) = Oql{E^{q))CG{Mi)ICG{Mi). This implies

1 < CM.(Oq,(E*{q))) - CMi(Oq,{E^{q)) £ Mi .

Since G lies in ^ 9 qeπ(^), and Mt is a faithful irreducible
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Zq(Gi)-moάxύe, G{ lies in Φ(q) for each i. Therefore G = G/ΓiiCG(Mi)
lies in <(Φ(g))>, the smallest formation generated by the set Φ(q).
This proves (b).

The proof of (c) is essentially the same as the proof of (b).
Let G = KV be the group mentioned in the hypothesis of (c). Let
T be the Z?(G)-module which affords the permutation representation
on H. Once again, T has a decomposition into a direct sum T =
Tι + + Ts of principal indecomposable i^(G)-modules. Since G
is faithful on T, V is nontrivial on some Ti9 say Tx. If U1 is the
unique maximal proper Zg(G)-submodule of T19 then Lemma 3.1 implies
V is nontrivial on M — TJU^ By Frobenius reciprocity, we again
have 1 < CM(H) ^ M.

Since K acts faithfully and irreducibly on V, it follows from
Lemma 1.2 of [3] that OP(K) = 1, hence V = F(G). Since V is
minimal normal in G, and nontrivial on ikf, it is faithful on M.
Lemma 3.2 implies G is faithful on M. Since qeπ(&), G is, by
definition, an element of Φ(q). This proves (c).

Part (d) is the only statement in Lemma 4.4 which requires the
assumption §f < ^". Suppose Heθ(r), E is an g7-subgroup of
H, and If is a faithful irreducible Zr(iϊ)-module such that
1 < CM{Or,E^r{r))) < M. Set G = HM. By Corollary 3.8, F =
HCM{Or,{Ejrw))) is an ^^subgroup of G, and since E = EM/M is an
§f -subgroup of G/M, E* = ECM(OAE^{r))) is an g7-subgroup of G. Since
if <<βΓ, F cannot avoid M, hence F = G is an element of ^ 1

Let AT be the intersection of all the conjugates of Os,(£r*^(s)) in
G. Then JV < G, and N Π M ^ E* Π M = CM(NAE^r))) < M. There-
fore JVΠΛf=l. This shows that the representation of G on the
cosets of Oa,(E*vι.)) is faithful on M. Because M = F(G), it follows
from Lemma 3.2 that this representation is faithful on G. By part
(c), G is an element of Φ(s) for any s in π(^) — {r}. Therefore
i ϊ = G/M is an element of <̂ Φ(s)̂ >, for s in π(if) — {r}. Since 0(r) is
contained in Φ(r), it follows that θ(τ) S <(Φ(s))> for each s in the
characteristic of g\ This proves (d).

The next lemma has an elegant proof. This proof was shown to
me by Professor E. C. Dade, and it shortens this part of the discus-
sion considerably.

LEMMA 4.5. Let A, B be two groups and assume the center of
A is the identity. If M is a faithful Zp(A)-module, and T is a
faithful Zp(B)-module, then M(g) T is a faithful ZP(A x B)-module.

Proof. If V is a vector space over Zp, we let GL(V) denote
the general linear group on V. Then Ax B ^ GL(M) x GL(T) = C,
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so we examine the kernel K of the representation of C on 1 0 Γ,
Let m19 « , m r be a Zp-basis for M, and tly •••,£, a Zp-basis for Γ.
Then {mi 0 ίy 11 ^ i ^ r, 1 ^ j" ̂  s} is a ^p-basis for ilί"0 Γ. Suppose
/ x # is an element of if, and

tάg = 'ΣiiOίjiti for each j .

Then m4 0 tό = m< 0 £,-(/ x #) = (Σ9>**w*) 0 ( Σ Λ A ) % collecting
terms, and equating coefficients we see that

U II {%, J) =7̂  (f^, 6)

1 if ( t , j ) = (jfc, ϊ) .

Therefore m{f — φm^ for each i, and ί^ = φ~Hs for each i . There-
fore / lies in the center of GL(M), and g lies in the center of GL(T).

If a x b e (A x B) n K, it follows, from the assumption that
Z(A) = 1, that we must have α = 1. This means that the constant
φ is the identity in Zp, so & = 1. Therefore A x B acts faithfully
on Jlί® Γ.

LEMMA 4.6. Suppose AeΦ(p) — θ(p), Beθ(p), and either Z(A)
or Z(B) is the identity. Then A x B e (θ(p)y, the smallest forma-
tion generated by the set θ(p).

Proof. Let E be an If-subgroup of A, and E* an g7-subgroup
of B. Since AeΦ(p) — θ(p), it follows from Lemma 4.4 (a) that
Opr(E%?{p)) = 1. By (2.1), and the definition of E^ip)f we see that E#{p)

has a normal p-complement. Therefore Eό{p) is a p-group. Since
Beθ(p), Opf(E*^p)) > 1.

Now JE x 2£* is an gf -subgroup of A x B. We wish to examine
OP,((E x E*)vιP)). Since (E x E*)/(E*{p) x E**{p)) lies in &(p),
(E x E*)zip) is a normal subgroup of E x E* contained in E^{p) x E*k ip).
We define a subgroup W of E*YΛp) by:

W - {e G ̂ •^(p, I 3 ί e (JE7 x E*)*{p) 3 t - d x e, and d G ̂  (P)} .

In other words, W is just the collection of all elements of Eϊip)

which appear as components of elements of (E x E*)~ό{p). W is clearly
a normal subgroup of E* which is contained in E#{p). By construc-
tion, (E x E*)%{p) is a subgroup of E x W, hence it follows that
E*/W lies in ξf(p). Therefore W' = Etip).

Now if e is any element of OP,(W), then there is an element d
in Ev(p) such that t = d x e lies in (E x E*)zlp). Since E*{p) is a
p-group, by taking an appropriate power of t, we see that e lies in
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(E x E*),{p). Therefore,

(4.6) Op.(E${p)) ^Opf((E x E*UP)) £ OAE,{P) x Eiip)) = Op,(E*lp)) .

By assumption, A has a faithful irreducible Zp(A)-module
M, and B has a faithful irreducible Zp(2?)-module T such that
1 < CT(OP,(E*(P))) < T. By Lemma 4.5, M ® Γ is a faithful ZP(A x B)-
module.

Since the restriction of M ® T to B is isomorphic to a multiple
of T, if we let U be any ZP(A x j5)-composition factor of Λf ® ϊ7,
then the restriction of i7 to 5 is also a multiple of Γ. Because of
(4. 6), we have

(4.7) 1 < Cc(Op,(E?lP))) = CAOA(E x tf*)^,)) < ^ ,

for each Z7.
Let G = (Ax B)/CAUU), then E = (E x E*)CAXB(U)/CΛXB(U) is

an gf-subgroup of G. It follows from Lemma 3.3, and (4.7) that
Op,(Es{p)) > 1. By (4.7) and the fact that G is an element of ^ it
follows from Lemma 4.4 (a) that G lies in θ(p).

Let V be the direct sum of all ZP(A x i?)-composition factors
occurring in a composition series of M ® Γ. By Lemma 1.2 of [3],
F(A x B) = F(A) x F(B) is a p'-group, so the fact that M ® Γ is
faithful implies the restriction of F to F(A x β) is also faithful.
By Lemma 3.2, F is a faithful completely reducible ZP(A x B)-
module. Therefore A x B = (A x B)/f)σCAXB(U) lies in <0(p)>, and
this completes the proof.

// 3? < ^% a?id ίfeβ?̂ e is α?ι element B in θ(p)
such that Z{B) = 1, ίΛew <$(£>)> S <^(g)> /or βαcA q in

Proof. By Lemma 4.7, if AeΦ(p) - θ(p), then Ax B lies in
<θ(p)>. Therefore A is an element of <θ{p)y, so <Φ(p)> = <#(£>)>. By
Lemma 4.4 (d), if q is a prime in the characteristic of g% then

hence

THEOREM 4.8β Suppose if < ^^, ami 6*(p), /9(r) are nonempty
for two primes p, r in the characteristic of g7. Let {J^(q)} he the
unique minimal local definition of Jf. Then

for each q in π(S') .

Proof. We define a new formation ^ r * by setting

for q e π(<f) f

for qeπ(^Y .
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Since g7 < ^ Jr*(q) is contained in ^ ( g ) for each g, by Theorem
4.3. Therefore ^ * £ ^~.

Let Φ*(g) be the set specified in Definition 4.2 for the formation
JT"*. Since J^"* £ j ^ φ*(s) £ Φ(s) £ J^~*(s) for each s in τr(gf).
Therefore Theorem 4.3 implies if is strongly contained in _^ r*.

Suppose ^~~*(Z^. If G is an element of minimal order in
^ — ̂ r * , then G is a semi-direct product, G = F*M, where F* is
an .J^*-subgroup of G. F* acts faithfully and irreducibly on the
elementary abelian ί-group M. Since G lies in J?~ — t ^

r * , i*7* —
G/CG(M) lies in ^ ( ί ) - ^~*(ί). For ί in 7r(gy, this contradicts
the definition of ^~*(£), hence £ is a prime in the characteristic of g\

Since g7 < ^ r * , i*7*, as an ^*-subgroup of G, must contain
some g7-subgroup E of G. Thus for any prime q, the permutation
representation on the cosets of Oq,{E#{q)) is faithful. By Lemma 4.4
(c), G lies in Φ(q) for each q in π^g7) - {£}.

By Lemma 4.4 (d), #(g) £ ^^*(s) for each #, s in τr(g'), hence if
G lies in (̂g) for some q in ^(g7) - {£}, then G lies in ^~*(t).
Suppose, therefore, that GeΦ(q) — θ(q) for each q in ^g 7 ) — {ί}.
One of the primes p, r is unequal to t, say p. Then G is an element
of Φ(p) — 0(p) such that Z(G) = 1. Since θ(p) is nonempty, there is
a group if in #(p), so by Lemma 4.6, G x H is an element of
hence in each case F*, as a factor group of G, must lie in
a contradiction.

Therefore ^ ^ * = ^^. Since {v^*(g)} forms a local definition for
^~*y we have Φ(g) £ ^~(q) £ «^*(g) for each g in the characteristic
of g", so the proof of Theorem 4.8 is complete.

Because we could not relax the hypothesis on the #(p)'s, we
thought it appropriate to include

THEOREM 4.9. Suppose g" < ^~, and peπ(&). β(p) is empty
if, and only if, for each element F of J?~, an g5-subgroup E of F
either covers or avoids each p-chief factor of F.

Proof. Suppose an g7 -subgroup of F either covers or avoids
each p-chief factor of F for every F in &~. Let FeΦ(p), and let
E be an g7-subgroup of F. Let I be a faithful irreducible ZP(F)~
module such that CM(Opf(E,{p))) > 1. By Corollary 3.8, and the fact
that g7 < J ^ F * = FCM(Opf(F^{p))) is an ^-subgroup of FM, acts
irreducibly on M, and does not avoid M. Therefore F* — FM; M is
a p-chief factor of G = FM which is not avoided by the g7-subgroup
E* = ECM(Op,(E,{p})) of G. Therefore OP.(E^P)) centralizes M, so
θ{p) is empty.

Suppose θ{p) is empty, F lies in ^ and E is an g7-subgroup of
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F which does not avoid the p-chief factor K = LjN of F. Let
F = F/CF(K). Our first assertion is that the semi-direct product
FK lies in J?" (the action of F on iΓ is the action induced by the
action of F on K). By Corollary 3.8, JP* = FCκ(Opf(F^ip))) is an
.J^subgroup of FIT. Therefore F * acts irreducibly on K, and
F*/Cp*(K) is isomorphic to F. Since .P is in ^ F is in
By Theorem 3.4, F * covers K, hence Fif is an element of

E = ECF(K)/CF(K) is an if-subgroup of F. By Lemma 3.3,
E*{p) = Es{p)CF(K)/CF(K). Because J E ^ , has a normal p-complement,
it follows that 0p,(Er{9)) = Op,(E^P))CF(K)/CF(K). Therefore

Op,{E#{p)) centralizes every p-section of E, hence it centralizes
(L Π E)N/N, a nonidentity subgroup of K. Therefore,

Thus F lies in Φ(p). ^(p) is empty, so it follows from Lemma 4.4
that Ejf{p) is a p-group. If Z7 is any ^-composition factor K, then
Evip) centralizes U since it is contained in OP(E). Upon taking
inverse images in E, we see that CE(U) contains E^{p)9 so that
E/CE(U) lies in ίf(p). By Theorem 3.4, E covers [/, hence E also
covers all of K.

5* Structure theorems* Throughout this section we shall make
the following assumptions:

Hypothesis I. gp and ^ are saturated formations such that
(a) ^r S ^ <

(b) there is a nonempty formation J7~ such that

Our first theorem says that the structure of άF* is essentially
the same as the structure of i? in that there exists a formation ^
such that J ^ = {G e &> \ G/F(G) e %r}.

First we prove two lemmas.

LEMMA 5.1. Let J7~ be a nonempty formation. Let gf be the
formation locally defined by setting &(p) = J^ for each p. Let
gf = {G e Sf I G/F(G) e ^}. Then <& = if.

Proof. Suppose G e g 7 . Because OP,P{G) contains F(G), G/F(G) e
implies that, for each p,G/Op>p(G) lies in ^ 7 By (2.1), G is an
element of S .̂
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If G is in 5^, then G/OP,P(G) is in ^~ for each prime p. Since
is a formation, and F(G) = Γ\POP,P(G), G/F(G) lies in Ĵ T From

this it follows that 5f = g*.

LEMMA 5.2. If G is a group with ^-subgroup E, and E lies
in ^ 7 then E — G. If {^(q)} is any local definition for J^, and
G is an element of ^~ such that Og(G) = 1, then G lies in

Proof. We prove our first statement by induction on the nil-
potent length of G. If G is nilpotent, then G is already in g% so
there is nothing to prove. Since E lies in ^ 7 EF{G) lies in g\
Since E is an if-subgroup of G, E covers U/U& for any subgroup U
of G which contains E. Therefore E contains F(G). Set G = G/F(G±,
then E — E/F(G) is an g"-subgroup of G. By induction, E = G,
hence E = G.

Let {«^(^)} be any local definition for JK Suppose G e ^ 7 a n ( i
OP(G) = 1. Let M be the regular ^(G)-module, and form the semi-
direct product G, = Gikί. Since G lies in ^ 7 GL lies in g7. It is a
simple consequence of strong containment that gf S<^Γ hence G: e ^ 7
Since (^(G) = 1, and G acts faithfully on M, M = Opfp(G^. There-
fore GJM is an element of ^{p). Since G is isomorphic to
G lies in ^"(p) . This completes the proof of the lemma.

THEOREM 5.3. Suppose g7 and ^ satisfy Hypothesis I. Then
there is a formation ^/ containing J7~, such that

Proof. If g7 = ^ Γ the formation ^ ~ satisfies the requirements
of the theorem. Assume g ^ c ^ C By Lemma 5.1, the family
{&(p) I &(p) = ^ " for each >̂} is a local definition for g\ We shall
use this family for the local definition of g7 throughout the remainder
of the proof. Let {J^iq)} be the unique minimal local definition of

A second application of Lemma 5.1 says that we need only show
— J?"(s) for each pair of primes r, s. In view of Theorem

4.8 and Corollary 4.7, we begin by examining the set θ(s) for various
primes s. Since %Ar S ^, π{&) contains all primes, so θ(s) and Φ(s)
are defined for each s.

Let G be an element of minimal order in ^ — g\ By mini-
mality, if N is any normal nonidentity subgroup of G, then G/N
lies in g7. Therefore G^ is the unique minimal normal subgroup of G.
If E is an g7-subgroup of G, then EGό - G, and S n G* = 1. Further-
more, i? acts faithfully and irreducibly on G .̂ We set M = Gg, and
note that ilf is an elementary abelian p-group for some prime p.
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Since G is not in g% Lemma 5.2 implies E is not an element of
Ĵ T Therefore F(E) ^ E^ > 1. But it follows from Lemma 1.2 of
[3] that F(E) is a p'-group, so for some prime r distinct from p,
E<r has a nonidentity normal Sylow r-subgroup R. If s is a prime
distinct from r, then

Because M is the unique minimal normal subgroup of G, and E f] M =
1, the permutation representation on the cosets of O8,(Er{8)) is faithful
for each s. By Lemma 4.4, G lies in 0(s) for each prime s distinct
r and p. Since ϋ/ is faithful and irreducible on M, the center of G
is trivial.

Now fix a prime s Φ r, p. Then G is in 0(s), so there exists a
faithful irreducible Zs(G)-module J such that 1 < Cj{Os>(E^{s))) < J.
We let G* be the semi-direct product GJ. Since i? is isomorphic to
an g7-subgroup of G*/J, it follows from Lemma 2.7 and Corollary
3.8 that J5* = £'CJ(Os,(£r^(s))) is an gf-subgroup of G*. An ^'-sub-
group of G* covers G*/J since G lies in _̂ ~; it cannot avoid J because
g" < ^C Therefore G* lies in ^ 7 Because £? is a quotient group
of 2?*, and .& is not in ^ 7 7̂* is not in ^ 7 hence

(E*)jr is a p'group because E^ is a subgroup of the p'-group F(E),
and s is not equal to p. The permutation representation on the
cosets of (E*)<r is faithful since J is the unique minimal normal
subgroup of G*, and (E*)y f] J ^ Cj(Os,(E.is))) < J. It follows from
parts (a) and (c) of Lemma 4.4 that G* lies in θ(p). By construc-
tion, the center of G* is trivial, hence we have established:

(5.1) If s Φ r, then there is a group X in θ(s) such that, Z(X) = 1.

We can now apply the results of § 4. The characteristic of έf
contains all primes, so by Theorem 4.8, and (5.1), j^~(s) — ζΦ(s)y for
each prime s. By Corollary 4.7, we have

J ^ » = ^{q) for s, q in r' ,

J^~(8) g .^(?1) for each s .

For s Φ r, we set ^ = ^(s). The final step in the proof will be
to show Φ(r) C ^ .

By part (d) of Lemma 4.4, θ(r) <Ξ ̂ ^(s) for each s, so θ(r) S ^ .
Suppose HeΦ(r) — θ(r), and i? is an gf-subgroup of £Γ. Then it
follows from Lemma 4.4 that E^ is an r-group.

If Ejr = I, then E is in Ĵ T By Lemma 5.2, E = H, and if s is
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any prime not dividing r\H\, OS(H) — 1, so H lies in ά?~(s) — ^ .
Suppose E^- > 1. Since H has a faithful irreducible Zr{H)-

module, Or(H) = 1, so the permutation representation on the cosets
of Ej- is faithful. Since H is in Φ(r), H lies in ^ Γ Thus if s is a
prime which does not divide the order of H, it follows from part (b)
of Lemma 4.4 that H lies in <(Φ(s))>. Therefore

Φ(r) S ^

Since ^ = ^~(s) for each s, Lemma 5.1 says that

The fact that ^ contains ^~ is a consequence of part (b) of Lemma
4.4.

We are interested in finding formations which are maximal in
the partial ordering <. Since g7 < ^ implies g7 £ ^ we shall assume
g7 c J^Γ as well as Hypothesis I. Since & - {G e ^ | G/.F(G) e ^"},
we fix our local definition for g7 by setting &(p) = ^~ for each p.
We assume that {J^~(p)} is the minimal local definition for j^l By
the proof of Theorem 5.3, there is a formation *ĝ , containing j?^ such
that ^{p) = ^ for each p. Since g7 c ^ we must have J7~ c ^ \

Before stating our main theorem, we prove several lemmas. The
proof of Lemma 5.5 contains the essential construction used in the
proof of the main theorem.

LEMMA 5.4, Let G be a group, and 1 < H ^ G. Assume that
the permutation representation of G on the cosets of H is faithful.
If M is the Zp(G)-module which affords this representation, set
U — f\geGCM(H)g. Then U is a Zp(G)-submodule of M, and M/U is
a faithful Zp(G)-module.

Proof. We can let the cosets of H in G be a Zp-basis for M,
i.e., let M = ZP H+ Zp Hg2+ -. + Zp Hgs, where s = [G : H], and
the operation of G on M is by right multiplication.

For each g in G, CM(H)g - CM(Hg), hence U = CM{\JgeGH
9). In

other words, if N is the normal closure of H in G, then U = CM(N).
Since N is normal in G, U is a Zp(G)-submodule of M.

Let O L, * ,D m be the orbits of the cosets ϋ ^ under action by
N. Since N <\G, G permutes these orbits transitively, thus all
orbits have the same number of elements [N: H]. Since H is not
normal in G, it follows that [N: H] ^ 3.

For each ΐ, let O< = {Hgil9 , H" r̂} where r = [i\Γ:iϊ]. Set
^ί — Έij=i^9i3' It is a standard result that the elements u{ of M
form a Zp-basis for CM(N). Hence a Z^-basis for M/U consists of
the cosets:
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{U + HgiS 11 ̂  i £ m, 1 ̂  j rg r - 1} .

Suppose # lies in the kernel of the representation of G on M/U.
Then for 1 <J i ^ m, and 1 <^ j <^ r — I we have

Hgί5x - i J ^ = Σ ockuk ,

where the ak are suitably chosen elements of Zp. Since Hgiάx is a
coset, and each u/c is a sum of at least three distinct cosets, we
must have ak = 0 for each k. Since *τ permutes the orbits of N, it
follows from the fact that x fixes Hgu that x fixes each orbit O, .
This, together with our above remarks show that x lies in the kernel
of M. Since M is faithful, so is M/U.

LEMMA 5.5. Let gf and ά^ satisfy Hypothesis I, ίf c ^ and
suppose there is an element H in ^f Π ̂  — J7~ such that OV{H) = 1.

3 {G e Jf I î (G) is α p-group} .

Proof. Let G be an element of J^~ such that î (G) is a p-group.
Let ί7 be an g7-subgroup of G, and assume OV,{E^) > 1. Since F(G)
is a p-group, OP,(G) = 1, so the permutation representation on the
cosets of Op,(Ejr) is faithful. Let M be the ^(G)-module which
gives this representation, and let U = CM(N), where i\Γ is the normal
closure in G of OP,{E^-). By Lemma 5.4, the ^(G)-module Jlί* =
M/U is faithful. Let X = GM*. Then F(X) = F(G)M*, so X/F(X)
is isomorphic to G/F(G). Since G is in .^7 so is X. Now E* =
ECM*(Op,(Ejr)) is an ξf-subgroup of X. Since U centralizes OP\ES),
we have CM,{OP\E^-)) = CM(OP\Ey))/U. Let T be the intersection of
all conjugates of E* in X. Since E* Π Λf* = CMφp\E^)), it follows
that

TΠM* = CAN) = 1 .

But if K is a normal subgroup of X, whose intersection with ikP is
trivial, then K centralizes ikf*. CΓ(M*) = CG(lf *)M*, so the fact that G
is faithful on M* says that ikf* is self-centralizing in X, consequently
UL = 1. From this we have T = 1, so the representation of X on
the conjugates of E* is faithful. Certainly it also follows that the
representation of X on E%- is faithful, so if t is any prime which
does not divide the order of X, then XeζΦ(t)y — ̂ , by Lemma 4.4.
Therefore G, as a factor group of X, also lies in ̂ Λ

We may now assume Or(E^) = 1, so E^ is a p-group. It is time
to use H. If iϋ = It -j- 4- It is a decomposition of the regular
ZίJ(iί)-module into its principal indecomposable constituents, we let
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Kό = Ij/Uj for each j . Here Uj is the unique maximal submodule of
I3. Since R is faithful, and F(H) is a p'-&**oup, it follows from
Lemmas 3.1 and 3.2 that #* = K, + -f Kt is faithful. Since H
is not an element of ^ it follows that for some j , B — H/CH(Kd)
does not lie in ^ 7 Let K = Kj9 then 5 is an element of ^ f] g7 — ^ "
which has K as a faithful irreducible ^(B)-moduIe.

Let S be the regular ^(G)-module, and set W= (B x G)(K®S),
where the action of B x G on If 0 S by conjugation is the canonical
action of B x G on the module K(g)S. To show G lies in ^ , it is
sufficient to show W is in ^ , since G is a factor group of W.

Since J5 has a faithful irreducible ^(β)-module, F(B) is a
p'-group. Therefore if N is the kernel of the representation of
F(B x G) on 2Γ(g)S, then N = N f] F(B) x Nf]F(G). Since £ and
G act faithfully on ϋΓφS, F(B x G) is faithful on if(g)S. By
Lemma 3.2, ϋΓ(g)S is faithful. Therefore OP,(PΓ) = 1, so we have
F(W) = F(G)(K®S). Since WJF(W) is isomorphic to B x (G/F(G)),
an element of ^ , it follows that TΓ lies in

An ίf -subgroup of B x G is B x i?, so

E* = (Bx E)

is an gf -subgroup of TF. Since
so JB^ is a p'-group. By assumption E^- is a ί?-group. Let V be
the collection of elements of B^ which appear as components of
elements of (B x E)^-. Then V is a normal subgroup of B, and
(J5 x JE?)̂ , ̂  V x E. Since J5/F is isomorphic to (B x ^ / ( F x E),
B/V lies in J^7 hence V = B^. lϊ veV, then for some u in
£7, , v x u lies in (β x E)^. Since 5 ^ is a p'-group, and £7̂ - is a
p-group, v is equal to a power of v x u. Therefore

(5.3) B^ - OP,((B x S)^) .

Now the restriction of K (g) S to JB^ is a multiple of the restriction
of K to j?^, so it follows from Lemma 3.1 that CK(^S(B^-) — 1. By
(5.3), B x E is an gf-subgroup of W.

Let t be a prime which does not divide \ W\. The fact that the
representation of W on the cosets of B x E is faithful implies that
the same is true of the representation of W on the cosets of
(B x E)^. By part (b) of Lemma 4.4, W is an element of ζΦ(t)} =
Ήf. Therefore G lies in ^f in every case, so the proof of Lemma
5.5 is complete.

Because of the preceeding lemma, we give

D E F I N I T I O N 5.6. Let rj =• {p\^ [\^ — ^~ contains a group H

with OP(H) = 1}. We call a prime p special if p is an element of rf\



514 EDWARD CLINE

LEMMA 5.7. // g" and ̂  satisfy Hypothesis I, and gf c
then there is at most one special prime.

Proof. Let G be an element of minimal order in ά^ — if.
Then G is the semi-direct product EM where E is an g?-subgroup of
G, and M is the unique minimal normal subgroup of G.

Since E acts faithfully and irreducibly on M, M = F(G). By
Lemma 5.2, i? is not an element of ^ 7 and since G e ̂  G/F(G) lies
in ^ , soίe^ng'-y:

Since O ^ ) n Oβ(£?) = 1 for two distinct primes r, s, E/Ot(E)
lies in ̂ ~ for at most one prime t. If s φ t, then E/OS(E) e ^ ί l g 7 - ^
so )/ S {*}.

REMARK. In, general, we cannot control the choice of G enough
to be certain that there are no special primes. This is the basis for
the example in § 6, and the reason behind

Hypothesis II. Let G — EM be a fixed element of minimal order
in ^ — g\ If r is any prime such that E/Or(E) lies in ^ 7 we
assume that <S^(r'), the formation of all r'-groups, is not contained
in ^Γ. (Such a prime does not necessarily exist.)

THEOREM 5.8. Suppose %? and J?" satisfy Hypotheses I and II.
If i? c ^ 7 ί̂ W' - ^ = S^\ the collection of all solvable groups.

Proof. Our first step is to show that ^ contains the collection,
of all solvable ^-groups. By Lemma 5.5, the fact that

Λs" ^ ^ g ^ shows that ^ contains the collection of all nilpotent
^-groups. Proceeding by induction, we assume that *%f contains the
collection, ^/Γ^rj), of all solvable ^-groups of nilpotent length at
most i. Since

%ArM{η) = {Ge^\ G/F(G) e ̂ (η)} ,

^ contains all solvable ^-groups of nilpotent length at most i + 1.
Let G 6 ̂ //^+1(^), and F(G) = P} x x P s, where P{ is the Sylow

Prsubgroup of F(G). Set Nt = flk&Pk, and let Rt be the regular
.̂(G/ΛΓ^-module for each i = 1, « ,s. We allow G to act on the

direct product R = Rλ x x Rs by conjugation according to the
rule

(5.4) (n x r2 x x rs)
9 = r^N.g) x r2(N2g) x x rs(Nsg) .

Then we form the semi-direct product X = Gi2. By construction,
AT; centralizes the prgroup Ri9 hence the group F(G)R is nilpotent.
Since F(X)/R is a normal nilpotent subgroup of X/R, and X/JK is
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isomorphic to G, F(X) ^ F(G)R. Therefore F(G)R is the Pitting
subgroup of X, and X/F(X) is isomorphic to G/F(G). Since G/F(G)
lies in &, it follows that X lies in ,JC

For each i, set Xt = X/iN^ΓUA), % = iWΉ(Π**Λb)> and
G = G(Tlk^Rk)/Nmk*iRk). By modularity

Λ) n
Thus Xi is the semi-direct product of Rt by Gi9 hence

Because G< acts faithfully on R{, it follows that Rt is a self-
centralizing normal pΓsubgroup of X{. Therefore Op^(Xi) = 1, so
F{Xi) is a prgroup. But pi lies in 57, so by Lemma 5.5, X{ is an
element of ^ for each i. Since the intersection of the groups
Ni(ϊlk¥:iRk) over all i is the identity, X is an element of <ff. There-
fore G lies in ^ , and by induction it follows that S^(η) S ^ .

By Lemma 5.7, if EM is the minimal element of ^ — if
mentioned in Hypothesis II, then there is at most one prime r* such
that E/Or*(E) lies in J^7 thus η contains (r*)'. Therefore,

Suppose g7 does not contain «^((r*)'), and let G* = S*Λf * be
an element of minimal order in £^((r*y) — g\ By Lemma 5.2, JS'*
is an element of ^ Π g7 - ^ 7 and since £?* €^((r*) ') , Or*(-K*) = 1.
Therefore 77 contains all primes.

Now suppose g7 contains ^((r*)'). By assumption _^~ does not
contain ^((r*)'), so we can choose H in S*((r*)') S ^ , £Γ is an
element oί ^ f] ^ - ^ with Or*(JΪ) - 1. Therefore 57 contains all
primes in every case, so we have

which completes the proof of Theorem 5.8.

COROLLARY 5.9. Let ιyl/"i be the collection of groups of nilpotent
length at most i. Then ^γ~{ is maximal with respect to the partial
ordering < .

Proof. If we set ^ ° = {1}, then for i ^ 1,

* = {G e Sf I G/F(G)

For each prime p, S^{pf) is not contained in w^><-1, hence the
hypothesis of Theorem 5.8 is satisfied. The result follows from
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Theorem 5.8.

6* An example. Let r be a prime. Throughout this section,
we let & be the formation of all group G such that G/F(G) is an
r'-group. For each prime p, we set &(p) = .S^ir'); {&(p)} forms a
local definition for & because of Lemma 5.1. In this section, we
shall characterize the formations which strongly contain &. The
formation & provides an example which shows that Hypothesis II
is not redundant.

LEMMA 6.1. Let G be a group with Sylow r-subgroup R. Then
NG(R) is an R-subgroup of G.

Proof. Clearly NG(R) lies in &. Suppose NG(R) ^ U ̂  G. We
need to show NG(R) covers U/R&. Clearly U& is the smallest normal
subgroup of U whose factor group has a normal Sylow r-subgroup.
If V is the smallest normal subgroup of U whose factor group U/V
is an r'-group, then R <Ξ V, so F is transitive on the Sylow r-
subgroups of U. Consequently NG(R) V — U. Since R covers every
r-section of U, it follows that NG{R) covers UjUM. By definition,
NG(R) is an ^-subgroup of G.

Suppose ^ > ^ , and ^ Z ) ^ ? . If {^(q)} is the minimal
local definition of ^ it follows from Theorem 5.3 that ^(q) = ^~(s)
for each q, s. We set ^/ = ̂ {q). If H lies in ^ Π ̂ , then H
has a normal Sylow r-subgroup, so H/Or(H) lies in S^(r')m Therefore,
Hypothesis II is violated for the prime r. It follows from Lemma
5.7 that r is the unique special prime associated with ^ and ^ .
The next theorem gives a class of formations which strongly
contain &.

THEOREM 6.2. Let J7~ be a nonempty formation. Let

then ^ is a formation. If

^ = {G e &> I G/F(G) e

then J^ strongly contains &.

Proof. Suppose G e ^ , and N<\G. Then Or,(G)N/N^Or,(G/N).
Since G/Or,(G)e^~, the same is true of (G/N)/Or,(G/N). Therefore
G/N is an element of <%S.

Now let N19 N2 be two normal subgroups of G such that G/N{

lies in <U for each i. For each i, let MJN, = Or,(G/Ni), then G/M,
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lies in J7~ for each i. Since J77 is a formation, G/Mί Π M2 is in ^ 7
For each i, (Mλ Π M2)Ni/Ni is an r'-group, so it follows that the
factor group of G/N, Π N2 by OAG/N, (Ί iV2) lies in jTT Therefore
^ is a formation.

To show ^ < J^Γ it is sufficient to show that Φ(p) S ^ for
each prime p. Suppose GeΦ(r), then G has a faithful irreducible
Zr(G)-module. This means that Or(G) = 1. Since G lies in ^ Γ G/i*W)
lies in ^ . But JP(G) is an r'-group, so it follows that G/Or,(G) lies
in ^ 7 Therefore G lies in <%f.

Suppose G e Φ(p) for p distinct from r. An ^-subgroup of G
is NG(R) where R is a Sylow r-subgroup of G. Since p Φ r,
Op,(NG(R)snrf)) = R. Therefore G has a faithful irreducible ZP(G)-
module J such that 1 < CAR) ^ /. By Lemma 3.1, either Cj(Or(G)) =
J, or it is the identity. The latter possibility cannot occur because
1 < CAR) ^ Cj(Or(G)). Therefore the fact that J is faithful says
that Or(G) = 1, so F(G) is an r'-group. G lies in ^ so the same
argument that was used in the preceeding paragraph shows that
G/Or,(G) is in ^ 7 Therefore Ge^S. By Theorem 4.3, & is strongly
contained in ^ Γ

Since our choice of _̂ ~ is arbitrary, it follows that we can
choose an infinite number of distinct formations which strongly con-
tain .^?. Our last theorem shows that we have actually found all
formations which strongly contain &.

THEOREM 6.3. Suppose ^ > ^ , and {^{q)} is the minimal
local definition for *β\ Then there is a nonempty formation J7~
such that

J H ί ) = {Ge^\ G/OAG) e ^) .

Proof. Suppose ^ ~z> &. By Theorem 5.3, there is a formation
^ such that ^~(q) = ^ for each q. Our first step is to show that ^
is the smallest formation generated by the set {Hz^ \ Or(H) = 1}.
Let ^ * be the smallest formation generated by this set.

Suppose HeJ^ and Or(H) = 1. Let K = I, + + Is be the
decomposition of the regular Zr(iJ)-module K into principal inde-
composable submodules. By Lemmas 3.1, and 3.2, and the fact that
F(H) is an r'-group, it follows that H acts faithfully on J =
j ι _j_ . . . _j_ j s j where for each k, Jk is the quotient of Ik by its
unique maximal submodule. For each k, set Hk = H/CH(Jk). Then
Jk is a faithful irreducible Zr(jffA;)-module. If Rk is a Sylow r-subgroup
of Hk, then NHk(Rk) is an ^-subgroup of Hk1 and by definition, it
follows that Hk lies in Φ(r) for each Λ. Since & < ^ Γ we have

= <%f. Since H is faithful on J, H lies in ^ . We have
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just shown that all generators of ^ * lie in ^ , therefore ^ * is
contained in ^ . We know that ^ is the smallest formation generated
by Φ(r), from the proof of Theorem 5.3. Thus if we show Φ(r) g ^ * ,
we have shown ^ gΞ ^ * . If G lies in Φ(r), then G has a faithful
irreducible Zr(G)-module, and G lies in ^ C Then Or(G) = 1, so by
definition G lies in ^ * . This shows ^ = ^ * .

Let ^ ~ be the smallest formation generated by the set
{H/Or,(H)\He^}. Set ^ " - {Ge ^ | (?/Or,(G) e^~}. We want to
show ^ = ^ " . By construction ^ S ^ " .

Since the generators of ά^ are elements of ^ , we must have
jT~ £ ^ . Therefore, if G e ^ ' , then G/Or,(G) lies in ^ . To show
G lies in ^ , we use induction on the nilpotent length of Or,(G). If
Or,{G) is nilpotent, then it follows that G/F(G) lies in <%f. Thus
GθcJC By our first paragraph, G/Or(G) lies in ^ , so G also lies in
^ since Or(G) Π Or,(G) - 1.

We note that Or,(G/F(Or,(G))) = Or,(G)/F(Or,(G)), hence by induc-
tion, if G is in ^ " , then G/F(Or,(G)) is in ^ . Therefore G lies in
^ Γ By our first paragraph G/Or(G) is in ^ , so once again it follows
that G lies in %S. Therefore %f = <%S\ This completes the proof in
the case when έ% c JK

If <% — j ^ we let JT~ be the formation consisting only of the
identity. We must then show that {&(q)} is the minimal local
definition for &.

Let {&*(q)} be the minimal local definition for &. Suppose p
is an arbitrary prime, GeS^(rf) = &(p), and έ is a prime which
does not divide rp\G\. Let K be the regular Zί(G)-module. Set
G* = GK. Let Kλ be the regular Zp(G*)-module. Let G' = G*K1Λ

Since G acts faithfully on K, and G* acts faithfully on Klf Op,p{Gf) =
Kx. Depending on the choice of p, Gr is either an r'-group, or has
Kt as a normal Sylow r-subgroup. Therefore G ' e ^ , hence
G'/OP,P(G') = G'/Kι lies in &*(p). Therefore £*(r') S &*(p). This
completes the proof.

I would like to thank my advisor Professor Marshall Hall for his
help and encouragement. In addition, I would like to thank Pro-
fessor E. C. Dade for his help in this work.
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