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If & and & are saturated formations, # is strongly con-
tained in & (written & « &) if:
(1.1) For any solvable group G with & -subgroup E, and & -

subgroup F, some conjugate of E is contained in F',

This paper is concerned with the problem :
(1.2) Given &, what saturated formations & satisfy & <« &#?

The object of this paper is to prove two theorems. The
first, Theorem 5.3, shows that if .7 is a nonempty forma-
tion, and & ={G|G/F(Ge. 7 }. (F(G) is the Fitting sub-
group of G), then any formation .& which strongly contains
# has essentially the same structure as £ in that there is
a nonempty formation 2 such that & = {G|G/F(G)eZ%}.
The second, Theorem 5.8, exhibits a large class of formations
which are maximal in the partial ordering <. In particular,
if _7"* denotes the formation of groups which have nilpotent
length at most ¢, then _#7¢ is maximal in «. Since for
A" =471, the _/ -subgroups of a solvable group G are the
Carter subgroups, question (1.2) is settled for the Carter
subgroups.

Since the theory of formations is of relatively recent origin, we
give a few highlights. The theory begins with a paper [4] by
Gaschiitz which provides the setting in which the results of Carter
[1] on the existence of nilpotent self-normalizing subgroups of solvable
groups take their most natural form. He showed that given a
saturated formation %, and any finite solvable group G, one can find
a conjugacy class of subgroups of G (called .&#-subgroups of G) which
is connected in a natural way with the formation .. Recently,
Carter and Hawkes [2] have made a major contribution to the theory
by generalizing the work of Philip Hall on system normalizers in
solvable groups to .# -normalizers, and investigating the relationships
between the _“#-subgroups of a solvable group G and the .&#-
normalizers of G. As is clear from (1.1), this paper proceeds in a
different direction by considering the relative embedding of the Z-
subgroups for two distinct saturated formations &, &#. We consider
only finite solvable groups in this paper.

The machinery used in the proof of our main theorem, Theorem
5.8, is developed in §4. We begin by obtaining a characterization of
strong containment which depends only on the two formations % and
% . This characterization depends on the knowledge that if & is
a saturated formation, then & is a locally defined formation (see
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§2), a result proved by Lubeseder in [7]. In certain cases, we are
able to strengthen our characterization of strong containment so that
it gives a complete description of the minimal local definition of &~
as a necessary condition for strong containment.

In §6, we present an example which shows that Hypothesis II
of our main theorem is not redundant. The formation which gives
the example is # = {G| G/F(G) is an 7’-group}, where r is a prime.
It is apparent from Theorem 6.2 that <# is not maximal in the
partial ordering <. In fact, there are an infinite number of forma-
tions which strongly contain 2.

Preliminary results are presented in §8. In particular, we give
a cover-avoidance characterization of the .&#-subgroups of a group,
a result which may have some interest by itself. We remark, how-
ever, that one half of this characterization has appeared in [2].

2. Notation and quoted results. We use the following
notation:
G — a finite solvable group;
D(G@) — the Frattini subgroup of G, the intersection of
all maximal subgroups of G;
F(G) — the Fitting subgroup of G, the maximal normal
nilpotent subgroup of G;

Z, — the field of integers mod p, » a prime;
T — a set of primes;
Find — the complementary set of primes;

0.(G) — the maximal normal z-subgroup of G;

0. (G)— the inverse image in G of O(G/0.(G)) .

If KJHZG, then H/K is a section of G, and if F<G
normalizes both H and K, it is an F-invariant section of G. If
H/K is an F-invariant section of G, then C,(H/K) is the kernel of
the representation of F as a subgroup of the automorphism group of
H/K. Cyx(F) is the set of elements of H/K fixed by every element
of F. The following results will be used frequently:

LemmA 2.1. (Covering Lemma [6], Theorem 1) If A is a group of
automorphisms of the group G whose order is prime to the order of G,
and if H/K is an A-invariont section of G, then Cz(A) covers Cy x(A).

LEMMA 2.2, (F'robenius reciprocity for modules, [8], p. 144)

1 The result on page 144 of [8] does not look quite like the Frobenius reciprocity
theorem quoted above, but if we define the map
x: Homge)(®(G), N)— N by the rule
x: ¢—oel) v€Homga)(R(G), N) ,
then it is not difficult to show that y is a ®(H )-isomorphism from Hom g (&(G),N)
onto N |x.
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Let G be a group, H< G, and & a field. If M is a R(H)-module,
and N a R(G)-module, them Homg (M |%, N), and Homg (M, N |;)
are 1isomorphic as wvector spaces over K. Here M|° is the S(G)-
module induced from M to G, and N |y ts the restriction of N to H.

The final part of this section consists of a short summary of the
theory of formations as presented in the papers of Gaschiitz and
Lubeseder [4], [5], and [7].

DEFINITION 2.3. For each prime p, let # (p) be a formation.
Let & denote the collection of groups G which satisfy the following
two conditions:

(a) if # (p) is nonvoid, and K is a p-chief factor of G, then
G/Cy«(K) lies in F (p);

(b) if & (p) is empty, then G is a p’-group.

Then & 1is a formation called the formation locally defined by the
SJamily {F (p)}). In general, a formation .&# is locally defined if
there is a family { % (p)} of formations such that & is locally defined
by {&F (p)}.

Since the intersection, over all p-chief factors K of G, of the
groups C4(K) is the group O,,(G), it is easy to see that condition
(a) above is equivalent to
@.1) if & (p) is nonempty, then G/0, ,(G) lies in & (p).

The family & (p) of formations which define & is not unique.
If, however, {# (p)} and {F '(p)} are two families of formations
which locally define the same formation .%#, then the family
{&F(p)| S72(p) = F (p) N F '(p)} also defines .. Thus there is a
unique minimal local definition for any locally defined formation &
For example, the minimal local definition of the formation of all
nilpotent groups is obtained by setting _#"(p) = {1} for all primes ».

THEOREM 2.4. ([4], p. 302; ]5], p. 198; [7]) A formation &
18 saturated if, and only if, it is locally defined.

In view of this theorem, we shall use the terms saturated and
locally defined interchangeably from now on.

DEFINITION. 2.5. Let & be a formation. A subgroup F of G
is an & -subgroup of G provided:

(a) Fe 7 ;

(by if F<UZG, and N is a normal subgroup of U such that
U/N lies in &, then FN = U, i.e., F covers U/N.

The following two lemmas appear in [4], and describe the basic
properties of .# -subgroups.
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LEMMA 2.6, ([4], p. 301) If the formation F s saturated, then
every solvable group G has an 5 -subgroup. All F-subgroups of G
are conjugate.

LEMMA 2.7. ([4], p. 801) Let & be a formation, and G a
group. Let F be an element of & such that FF < G. Then:

(a) if F is an F-subgroup of G, and F < U L G, F 1s also an
F -subgroup of U,

® if NG, and F is an F-subgroup of G, then FN/N is an
F-subgroup of G/N;

() if NG, F'/N is an F-subgroup of G/N, and F is an
F -subgroup of F', then F 1s an & -subgroup of G.

3. Preliminary results. The first three lemmas of this section
are elementary, but they are used frequently enough to justify their
inclusion., The last two theorems give a cover-avoidance characteri-
zation of the . -subgroups of a group.

LEMMA 3.1. Let H be a normal p’-subgroup of G, & a field of
characteristic p, and M an indecomposable K(G)-module. Then M |,
is a completely reducible R(H)-module whose nontsomorphic irre-
ducible components form a single orbit € of conjugate K(H)-modules
under action by the elements of G. Let L,J be two &(G)-modules of
M such that L < J. Then the distinct K(H)-irreducible components
of (JIL) |y are precisely the elements of €.

Proof. Complete reducibility of M|, is clear since H is a p’'-
group. Since the decomposition of M|, into its homogeneous com-
ponents is unique, these components are permuted by the action of
G on M. Indecomposability implies only one orbit O can occur, hence
the same statement holds for the nonisomorphic irreducible components
of M|;. The transitivity of G on the orbit € and the fact that at
least one element of € appears as a constituent of (J/L)|, yields
the last statement of the lemma.

LEMMA 3.2. Let G be a group, and M a R(G)-module. M 1is
Sfaithful if, and only 1f, M |pe s faithful.

Proof. The lemma follows a fortiori from the statement that
if 1 < NG, then 1 < NN F(G).

We now begin a discussion of the properties of & -subgroups of
solvable groups. If G is a group, and &% a formation, we use G .
to denote the intersection of all normal subgroups N of G such that
the factor group G/N lies in .&. It is useful to know the behavior
of G- under homomorphisms, so we prove
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LEmMMA 3.38. Let # be a formation, G a group, and H<|G. Then.
(G/H)., = G-H/H .

Proof. Let F be the inverse image in G of (G/H),. Then G/F
is isomophic to (G/H)/(G/H)., hence G/F lies in & . Therefore,
G.-H<F. ,

Since G/G.-H lies in &, it follows that G.-H/H is a normal
subgroup of G/H whose corresponding factor group lies in #.
Therefore F/H is contained in G.H/H; this completes the proof.

The next theorem generalizes a remark made by Carter in [1],
and provides the first half of a cover-avoidance characterization of
& -subgroups.

THEOREM 3.4. Let F# be a formation locally defined by the
Jamily {F (p)}, G be a group, F a subgroup of G which lies in &,
and K an F-composition factor of G. Then

(a) F either covers, or avoids K;

(b) if F covers K, and p|| K|, then F/Cx(K)e & (p);

(¢) if F is an F -subgroup of G, and p|| K|, then

3.1) FIC.(K)e F (p) = F covers K .

Proof. Let K= L/M be the F-composition factor in question.
Statement (a) follows from the fact that F acts irreducibly on K,
and (LN FYM/M is an F-invariant subgroup of K.

If F covers K, then looking at F' as a set of operators on K, it
follows that K is operator isomorphic to L N F/M N F', a p-chief factor
of F. Therefore the kernel of the representation of FF on LN F/M N F
is C(K). Since F liesin .#, F/Cx(K) lies in # (p). This proves (b).

Now suppose F' is an .#-subgroup of GG, and K is a p-section of
G such that F/C.(K) lies in &# (p). To show F covers K, it suffices
to show that F covers the larger section FL/M. But by Lemma
2.7, F is an Z-subgroup of FL, hence it is sufficient to show F =
FL/M is an element of & since F, by definition, covers any such
factor of FL.

If ¢ is a prime distinct from p, then K, as a normal ¢’-subgroup
of F, is contained in O,(F). Therefore O, (F)L/M is contained in
0,.F), so F/O,,(F) is isomorphic to a quotient group of FL/O, (F)L.
But FL/O,(F)L is isomorphic to a quotient group of F/O,(F). Since
Fe. 7, (2.1) implies F/O, (F) lies in .# (q), hence F/O,(F) is also
in & (q).

Let U = F.,. Since Fe &, F/O, (F) liesin & (p). Therefore
U is contained in O, (F'). Since we have assumed F/C.(K)ec & (p),
it follows that K is contained in the center of UL/M. Therefore
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UL/M has a normal p-complement. As a normal subgroup of F, it
follows that UL/M is contained in O, ,(F), the maximal normal sub-
group of F which has a normal p-complement. Therefore F/O, ,(F)
is isomorphic to a quotient of F/U and must lie in & (p). This
shows that F satisfies (2.1) for all primes p, so F lies in .

Our next theorem will show that (3.1) characterizes the .-
subgroups of a solvable group G. In order to obtain as weak an
hypothesis as possible, we prove two lemmas. (3.1) actually applies
only to specific F-composition factors of G, so when we say that
(3.1) holds for an F-composition series, G =G > G, > --- > G, =1,
of G, we mean F satisfies that property for all factors G;/G;., of the
series for which the hypothesis of (3.1) holds.

LEMMA 3.5. Suppose # is a formation locally defined by
{F ()}, F lies in &F, and F<G. Let A/B be an F-invariant
section of G such that A > C > B defines a fixed F-composition series
of A/B. If (3.1) holds for this series, then (3.1) holds for every
F-composition series of A/B.

Proof. We may assume that a second F-composition series of
A/B exists and is defined by A > D > B where D = C. Then we
must have A = CD and B = C N D. Therefore

(3.2) A/B = C/B x D/B, A/C = D/B, A/D = C/B,

where the decomposition is an operator decomposition, and the iso-
morphisms are operator isomorphisms.

Suppose the decomposition (3.2) is unique. If F/C.(A/D) lies in
F (p), it follows from (3.2) that F/Cp(C/B) lies in .# (p). Since
(3.1) holds for the series A > C > B, F covers C/B. Therefore
FNAD=FNC)D=CD=A, so F covers A/D. If F/C.(D/B)
lies in ¥ (¢), then (3.1) implies F covers A/C. Because of the
uniqueness of the decomposition, and the fact that FFn A4 is not
contained in C, either A = (FFN A)B,or D = (FFN A)B. In the former
case, F covers all of A/B, and in the latter case, FNA=FnD
since FF’N A < D. Therefore, in either case, F covers D/B.

The decomposition (3.2) is unique if the orders of the factors
are relatively prime, so we may assume A/B is an elementary abelian
p-group for some prime p. This means that we can look at A/B as
a Z,(F)-module. If the factors are distinct Z,(F')-modules, then the
decomposition is again unique. If they are isomorphic, it follows
from (3.1) for the series 4 > C > B that F either covers, or avoids
A/B. Therefore Lemma 3.5 holds in all cases.

LEMMA 3.6. Assume F lies in 7, HZG, and F < Ny(H). If
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(3.1) holds for a fized F-composition series of H, then it holds for
every F-composition series of H.

Proof. Let H=H,> H, > +-- > H, =1 be the fixed F-compo-
sition series of H for which (8.1) holds. Use induction on n. If
H=K,>K, >--+->K,=11is a second F-composition series for H,
and K, = H,, (3.1) holds for the second series by induction.

If K, and H, are distinct, we let ¢ be the smallest integer such
that K, N H, = H,. Because H; < K, H;,.,, wehave H;, = K, N H,_,,
so that we have the following lattice diagram :

H

1

Now H, is F-invariant, and because of the isomorphisms indicated in
the diagram, H. > KN H, > --- >K NH,_, =H;,> --->H,=11s
an F-composition series for H, which has length » — 1. By induec-
tion, (3.1) holds for this series. Therefore, (3.1) holds for the F-
composition series of H/H, N K, defined by the series H > H, > H, N K.
By Lemma 3.5, (3.1) holds for the F-composition series

H>K >HNnK,>--->KnH_,=H;,>--->H,=1

of H. In particular, (3.1) holds, by induction, for any F-composition
series of K,. Therefore (3.1) holds for the series K, > K, > --- > K, =1.

THEOREM 3.7. Let & be a formation locally defined by {F (p)}.
Let G be a group, and F a subgroup of G which lies in &. If
(3.1) holds for a fixed F-composition series G=G,>G > --->G,=1
of G, then F is an F-subgroup of G.
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Proof. We use induction on |G|. By Lemma 3.6, we may assume
that the series G =G, > G, > --- > G, =1 is a refinement of the
chief series G = H,>H, > --- >H,,_, > H, =1. Then H,_, = G, for
some k. H,_, is a minimal normal subgroup of G, so we set G, =
G;/G, for i =0,1, ..., k, F = FG,/G,, and G = G,. Our first step is
to show that F is an .#-subgroup of G.

If m =1, the result is trivial. If m is larger than 1, then
H,_, is a proper subgroup of G, and by induction, to show that F
is an % -subgroup of G, it is sufficient to verify (3.1) for the F-
composition series G, > G, > -+ G, = 1.

For each i, set K, = G;/G;.,, and K, = G;/G,,,. Since G, < Gy,
for + <k, G, centralizes the section K, for ¢ < k. Therefore,
C# K;) = Co(K,)G./G, for all ¢ < k. Thus,

FICHK) = FG,/CHK)G,, = FIC(K)F NGy .
But F'n G, £ Cu(K;), so we have
(3.3) FIC+K,)) = FICH(K,) for i <k.

Suppose K; is a p-section of G such that F/CH(K,) lies in & (p).
By 3.3), F/Cx(K;) lies in & (p), so F covers K,. Therefore,
FG, N GGy, = (F N G)GGis, = (F N G)Giry = G;. By taking homo-
morphic images, and noting that FG,NG/G,= FnG;, we get
(FNG)Gis, = G;. Thus F covers K;. Therefore (3.1) holds for the
F-composition series G =G, > G, > -+ > G, =1 of G.

Now that we know F is an .Z-subgroup of G, it follows from
Lemma 2.7 that we can complete our proof by showing that F' is an
Z-subgroup of FG,.

Suppose FG, < G. We consider the series

FGk:Dogplg"‘gDn:]-:

where D, = FG,NG; for each ¢. Suppose D, > D,., for some 1.
Then

Dz’/Di—H = (FGk N Gi)Gi+1/Gi+l > 1 .
This is an operator isomorphism, hence because F' is irreducible on
K;, we have
(3.4) D/D;., = Gi/Gy., .

Therefore the distinet terms of the series D,= D, = --- = D, =1,
form an F-composition series for FG, which passes through G,.
Since F covers FG./G,, and since D, = G, for 1 = k, (3.1) holds for
this composition series. By induction, F' is an .#-subgroup of FG,.
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If G = FG,, then G, is a minimal normal subgroup of G, and F
acts irreducibly on G,. Therefore F' either covers, or avoids G,. If
F covers G,, then F =@, so F is an S -subgroup of G. Suppose
F avoids G, and G, is a p-group. Then FG,/Cr: (Gi) = F/Cw(Gy)
cannot lie in & (p) since (3.1) holds for G,. Therefore (F'G,)~ = G,.
Since FG,/G, lies in &, (FG,)+ = Gy.

If F<U<ZPFG,, then U= F, or U= FG,. The above remarks
show that F covers U/U. in both cases. Therefore F' is an .#-
subgroup of FG,, and the proof is complete.

As one application of Theorem 3.7, we prove

COROLLARY 3.8. Let F# be a formation locally defined by
{F (»)), He Z, and let I be a finitely generated Z,(H)-module.
Let G = HI be the semi-direct product of I by H where the action
of H on I by conjugation is the usual one. Then,

(a) F = HC/(0,(H)) ts an F-subgroup of G,

(b) As a Z,(H)-module, I = C/(0, (H, ) + G-

Proof. Let W=C,(0,(H,)). Our first task is to show HW
lies in .. Suppose ¢ is a prime distinct from p, then W is a ¢’-group
normal in HW, so O, ,(F) = 0,,(H)W. Therefore,

FlOy(F) = H[O,,(H) .

Since H lies in .7, F/O,,(F)e 7 (q).

Let U= H. . Then O,(U) centralizes W. Since H/O, ,(H)
lies in # (p), U < O, ,(H). Therefore UW has a normal p-comple-
ment, and as a normal subgroup of F', must be contained in O, ,(F).
Therefore F/O, ,(F') is isomorphic to a quotient group of H/U. Since
H/Ue & (p), so is F/O, (F). Therefore, (2.1) holds for all primes
r, so F' lies in &

Now let G=G,>G, > +-- > G, =1 be an F-composition series
for G such that G, = I for some [. In order to check (3.1) for this
series, we need only consider K; = G,/G,;, for ¢ =1, since F covers
G/I. W centralizes every K;, so we have

(3.5) F/CHK:) = H/Cy(K)) .

If v+ =1, and F/C.(K;)e ¥ (p), then (8.5) implies Cy(K;) = U.
In particular, O,(U) centralizes K,. Therefore F covers K;, and
(8.1) holds for the series in question. By Theorem 3.7, F is an & -
subgroup of G.

By complete reducibility, I = W + (I, 0,(U)), and since O,.(U)
is normal in H, both W and V = (I,0,(U)) are normal in HI.
Clearly HI/V is the largest factor of HI covered by F. Therefore
V =G..
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REMARK. This result cannot be extended to the case where I is
a p-group of class 2 because of the following example. Let I be the
quaternion group. I has an automorphism % of order 3 such that 7
acts fixed point free on I/D(I), and centralizes D(I). Let H be the
cyclic group of order 38 generated by h, and let G = HI. A Carter
subgroup of G is H x D(I), but D(I) has no complement in I, so no
splitting is possible.

The author is indebted to the referee for the following

REMARK. If & is a saturated formation, He &, and {< (p)},
{F:(p)} are two local definitions for 7, then 0,.(H ) = O, (H ).

Proof. Clearly H/H..,e€% N .Fi(p), 80 Hryp = Hepsyn-
Since & N .#;(p) is contained in F; (), Hs,p) = Hoypns, and in the
terminology of [2], we may assume the local definitions {&;(p)} are
integrated.

By Theorem 2.2 of [2], we have 7 Z (p) = Z F;(p), where

P Zi(p) ={G|G/0,(G) € F:i(p)} .
Since H.,, < O,,(H) for each ¢, it follows that for each 1,
Op(Hsy») = Hos it -
Since Z# F,(p) = P F,(p), the remark follows.

4, Strong containment. In this section, we shall characterize
strong containment. In certain cases, we can make our characteriza-
tion more precise by giving generating sets for certain of the for-
mations & (p) in the minimal local definition of .&#. The results of
this section form the basis for our results in §5.

LEMMA 4.1. Let & and & be two nmonempty saturated forma-
tions; let & be locally defined by {&(p)}. Let G be a group of
mintmal order satisfying:

(4.1) An Z-subgroup of G is not contained in any F-subgroup of G.

If F is an F-subgroup of G, and E is an & -subgroup of F, then

@) G-=M s a minimal normal subgroup of G; G is the
semidirect product of M by F; F acts faithfully and irreducibly
on M.

() If M is a p-group, then E* = ECy(0O,(E;,)) is an &£-sub-
group of G, and 1 < C(0,(Ey»)) = M.

Proof. If G is an element of &, then G = F contains every
# -subgroup of G, hence G does not satisfy (4.1). Therefore Ge¢ . #;
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in particular, G is not the identity. Let M s 1 be a minimal normal
subgroup of G. By Lemma 2.7, FM/M is an .#-subgroup of G/M.
Because of the minimality of |G| with respect to the property (4.1),
some & -subgroup of G/M is contained in FM/M. Since all &-
subgroups of G/M are conjugate, we can find an & -subgroup E of
G such that EM < FM. E, as an Z-subgroup of G, is also an
#-subgroup of FM. Because G satisfies (4.1), no conjugate of K
under FM can be contained in F. The minimality of G implies
G = FM.

G/M is in &, but G is not, so G- =M. Since FNM is a
normal subgroup of G, properly contained in M, FNM =1, so G is
semidirect product of M by F. Since M was arbitrary to begin with,
and we showed M = G, M is the unique minimal normal subgroup
of G. Therefore F' acts faithfully and irreducibly on M. This
proves (a).

G/M is isomorphic to F, so EM/M is an & -subgroup of G/M.
By Lemma 2.7, an & -subgroup of EM is also an & -subgroup of G.
Corollary 3.8 shows that E* = EC,(0,(E.,)) is an & -subgroup of
EM. Since E* is not contained in F, statement (b) holds.

Before stating the characterization, we introduce some notation.

DEFINITION 4.2, If & and & are two saturated formations,
and & is locally defined by {&(p)}, set

a) (&) ={p|L(p) is nonempty}. =(Z) is called the charac-
teristic of &.

(b) If pen(¥), we denote by @(p) the collection of all He &
such that if E is an ¥ -subgroup of H, then H has a faithful irre-
ducible Z,(H)-module M which satisfies

(4.2) 1 < Cu(0p(Bew) = M.

() If pen(), let 6(p) be the collection of all H in @(p) such
that H has at least one faithful irreducible Z,(H)-module satisfying

(4.3) 1 < Cu(O0,(Es)) < M.

THEOREM 4.3. Suppose & and F are two saturated formations
locally defined by {Z(p)} and {F (p)} respectively. Then & L F
if, and only if, for each prime p in the characteristic of &, @(p)
is contained im F (p).

Proof. Suppose @(p) is contained in & (p) for each p in the
characteristic of &, and % is not strongly contained in .&#. Then
the class of groups satisfying (4.1) with respect to the formations &
and & is nonempty, so we choose G to be an element of minimal
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order in this class. By Lemma 4.1, if G. is a p-group, then p
divides the order of an % -subgroup of G, and must be an element
of the characteristic of #. By Lemma 4.1, if F is an .“-subgroup
of @, then F lies in @(p). Therefore F' is an element of .5 (p), and
O,(F) = 1.

Since G .- is the unique minimal normal subgroup of G, G.- =
0,.,(G). Therefore F = G/G.- = G/0,.,(G) lies in F (p). If ¢q is a
prime distinct from p, then G- =< 0,(G), and it follows that O,,(G) =
G _.-O,,(F). Therefore,

G/0y4(G) = F|Oy(F) .

Since F lies in &, we see that G/O,,(G) lies in # (¢). By (2.1), G
lies in &, a contradiction to the fact that G.- > 1. Therefore
& L 7.

Suppose & & &, pen(¥), and Fe@(p). Let M be the faithful
irreducible Z,(F')-module mentioned in the definition of @(p). Set
G = F'M, where the action of F on M by conjugation is the
module action. By Corollary 3.8, an #-subgroup of G is F* =
FC(0,(F ~,)), hence G = F*M. Let K be an % -subgroup of F.
Since EM/M is an & -subgroup of G/M, it follows, from Lemma 2.7
and Corollary 3.8, that F* = EC,(0,(E.,)) is an & -subgroup of G.
E* does not avoid M, and because % < &, E* is contained in some
F-subgroup of G, hence F* does not avoid M. Since F'* is irre-
ducible on M, it follows that F'* contains M, hence F'* = G.

Since G lies in &, and F acts faithfully on the p-chief factor
M of G, we have F isomorphic to G/G4(M), an element of .7 (p).
Therefore @(p) is contained in & (p).

Because of this characterization, if # « ., and p is a prime
in the characteristic of ¥, then @(p) & % (p) for any & (p) which
lies in some local definition of 5. This leads naturally to the
question:

Suppose {.Z (p)} is the unique minimal local definition for .#.
(4.4) If p is a prime in the characteristic of ', is & (p) the smallest

formation generated by the set &(p)?
The answer to this question is yes, provided the set #(p) is nonempty
for at least two primes. We have not been able to relax the
hypothesis on the #(p)’s. In order to prove this partial result, we
shall, for the next few lemmas, investigate properties of the @(p)’s
and 0(p)’s.

LEMMA 4.4. Let & and & be nonempty saturated formations
with local definitions {&(p)} and {F (p)} respectively. Suppose
% & F, and G is an element of F with &-subgroup K.
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(a) Suppose G e D(q) for some prime q in the characteristic of
&. G lies in 0(q) if, and only if, O, (Es,) > 1.

) If O[G) =1, and the permutation representation on the
cosets of Oy (Eyy) s fatthful, then G lies in {@(q)), the smallest

Sformation generated by the set @(q).
(¢) Let V be a faithful irreducible Z,(K)-module, where K 1is

a group. If G = KV, and the permutation representation on the
cosets of O, (E.) is faithful for some prime q in n(L) — {p}, then
G lies in O(q).

(d) For each r,s in w(&), 0(r) < LD(s)).

Proof. Let H= 0,(H,,). If Gis in &(q), then G has a faith-
ful irreducible Z,(G)-module I such that 1 < C,(H) < I. Equality
holds if and only if H =1, so (a) is true;

Now suppose G satisfies the hypothesis of (b). Let T be the
Z,G)-module which affords the representation of G on the cosets of
H. Since H is a ¢’-group, the principal Z,(H)-module is a direct
summand of the regular Z,(H)-module, hence

{4.5) T is a direct sum of principal indecomposable Z (G)-modules.

We write T=T,+ +--- + T,, where each T; is indecomposable, and
let U; be the unique maximal proper Z,(G)-submodule of 7;. Finally,
we let M; be the factor module T,/U,.

Since O,(G@) is trivial, F(G) is a g¢’-subgroup of G, hence by
Lemma 3.1, the distinct irreducible components of M, |, are exactly
the same as the distinct irreducible components of T |z. Since T
is faithful, it follows that if we let M be the direct sum of all the
modules M;, then M |, is faithful. By Lemma 8.2, M is a faithful
Z,(G)-module.

We now apply the Frobenius reciprocity theorem for modules,
i.e., Lemma 2.2, For each ¢ =1,2,---,s

(0) c Homy ()(T, M) = Homy, (1, M; |y) ,
where 1 denotes the principal Z,(H)-module. Therefore, for each 1,
1<C(H)ysS M;.

Set G; = G/Cy(M,). Then K, = EC(M;)/Cs(M,;) is an & -subgroup
of G;. By Lemma 3.3, (K))., = E. ,,Co(M)/Ce(M;). It follows from
(2.1) and the definition of E.,, that E., has a normal ¢g-complement.
‘Therefore O, ((E)).) = Op(E,,))Co(M,;)/Cs(M;). This implies

1 < CJI,;(Oq'(EZ(q))) = Cﬂ[i(oq'(Ei)a”(q)) é Mz .
Since G lies in &, qen(¥), and M, is a faithful irreducible
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Z(G;)-module, G; lies in @(q) for each 2. Therefore G = G/N.Cs(M,)
lies in {@(q)>, the smallest formation generated by the set ®@(q).
This proves (b).

The proof of (¢) is essentially the same as the proof of (b).
Let G = KV be the group mentioned in the hypothesis of (¢). Let
T be the Z,(G)-module which affords the permutation representation
on H. Once again, T has a decomposition into a direct sum 7T =
T, 4+ +++ 4+ T, of principal indecomposable Z (G)-modules. Since G
is faithful on T, V is nontrivial on some T,, say T,. If U, is the
unique maximal proper Z,(G)-submodule of T,, then Lemma 3.1 implies
V is nontrivial on M = T,/U,. By Frobenius reciprocity, we again
have 1 < C,(H) £ M.

Since K acts faithfully and irreducibly on V, it follows from
Lemma 1.2 of [3] that O,(K) =1, hence V = F(G). Since V is
minimal normal in G, and nontrivial on M, it is faithful on M.
Lemma 3.2 implies G is faithful on M. Since gen(¥), G is, by
definition, an element of @(g). This proves (c).

Part (d) is the only statement in Lemma 4.4 which requires the
assumption % « &#. Suppose Hecb(r), E is an &-subgroup of
H, and M is a faithful irreducible Z,(H)-module such that
1< Cy(0Er))) < M. Set G = HM. By Corollary 3.8, F =
HC,(0,.(E ) is an F-subgroup of G, and since EF = EM/M is an
& -subgroup of G/M, E* = EC,(0,(E+.)) is an & -subgroup of G. Since
¥ L & , F cannot avoid M, hence F' = (G is an element of .

Let N be the intersection of all the conjugates of O, (E*..) in
G. Then N<{ G, and NNMZE*NM=Cy(N,(Es,) <M. There-
fore NN M = 1. This shows that the representation of G on the
cosets of O, (E*.,) is faithful on M. Because M = F(G), it follows
from Lemma 3.2 that this representation is faithful on G. By part
(¢), G is an element of &(s) for any s in n(&) — {r}. Therefore
H = G/M is an element of {&(s)>, for s in n(&) — {r}. Since 6(r) is
contained in @(r), it follows that 0(r) & <{@(s)> for each s in the
characteristic of . This proves (d).

The next lemma has an elegant proof. This proof was shown to
me by Professor E. C. Dade, and it shortens this part of the discus-
sion considerably.

LEMMA 4.5. Let A, B be two groups and assume the center of
A is the identity. If M s a faithful Z,(A)-module, and T is a
faithful Z,(B)-module, then M Q T is a faithful Z,(A X B)-module.

Proof. If V is a vector space over Z,, we let GL(V) denote
the general linear group on V. Then A x B < GL(M) x GL(T) =C,
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so we examine the kernel K of the representation of C on M T.
Let m,, «++, m, be a Z,-basis for M, and ¢, ---,¢, a Z,-basis for T.
Then (m; Xt |1 =1 < r, 1 <7 <s}isa Z,-basis for M® T. Suppose
J X g is an element of K, and

mf = D@y for each 7,

Then m; Q@ ¢; = m; Qt;(f X 9) = Cpum) @ (Zast;). By collecting
terms, and equating coefficients we see that

o = 0 if (7,7) # (k, 1)
PEET L d) = (D)

Therefore m;f = om,; for each ¢, and ¢,g0 = p~'t; for each j. There-
fore f lies in the center of GL(M), and g lies in the center of GL(T).

If axbe(4dx B)NK, it follows, from the assumption that
Z(A) = 1, that we must have ¢ = 1. This means that the constant
@ is the identity in Z,, so b = 1. Therefore 4 x B acts faithfully
on M T.

LEMMA 4.6. Suppose A€ @(p)y — 6(p), Bed(p), and either Z(A)
or Z(B) s the identity. Then A x Bell(p)), the smallest forma-
tion generated by the set 6(p).

Proof. Let E be an &-subgroup of A4, and E* an & -subgroup
of B. Since Aec®(p) — 6(p), it follows from Lemma 4.4 (a) that
0,(Es,) =1. By (2.1), and the definition of &, ,,, we see that £,
has a normal p-complement. Therefore E., is a p-group. Since
Be a(p)’ O})’(E*’é’(ﬁ)) > 1'

Now E x E* is an Z -subgroup of A x B. We wish to examine
0, (E x E*)z). Since (B x E¥)/(E., < E*.,) lies in & (p),
(E x E*)., is a normal subgroup of E x E* contained in K., X E*. ).
We define a subgroup W of E*,, by:

W ={ecE*,,|3te(E X E*),,ot=d x e, and de E,,} .

In other words, W is just the collection of all elements of EZ,
which appear as components of elements of (F x E*).,. W is clearly
a normal subgroup of E* which is contained in K%,,. By construc-
tion, (E x E*)., is a subgroup of K x W, hence it follows that
E*/W lies in & (p). Therefore W = EZ,,,.

Now if ¢ is any element of O, (W), then there is an element d
in E,, such that t=d x e lies in (F x E*).,. Since E,., is a
p-group, by taking an appropriate power of ¢, we see that e lies in
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(B X E*).,. Therefore,
(4.6)  O0,(EZf,) <O, ((E x E*).y) = 0,(E. ) x Eiy,) = 0,(B%,) .

By assumption, A has a faithful irreducible Z,(4)-module
M, and B has a faithful irreducible Z,(B)-module 7T such that
1 <CiO,(E*,)) < T. By Lemma 4.5, M Q T is a faithful Z,(A x B)-
module.

Since the restriction of M @ T to B is isomorphic to a multiple
of T, if we let U be any Z,(4 x B)-composition factor of MR T,
then the restriction of U to B is also a multiple of 7. Because of
(4.6), we have

(4.7) L <CHOME" ) = C(O (B X E¥).»)) < U,

for each U.

Let G = (A X B)./CAXB(U)I then E = (E X E*)CAXB(U)/CAXB(U) is
an & -subgroup of G. It follows from Lemma 3.3, and (4.7) that
0,(E.p) >1. By (4.7 and the fact that G is an element of .7, it
follows from Lemma 4.4 (a) that G lies in 0(p).

Let V be the direct sum of all Z,(4 x B)-composition factors
oceurring in a composition series of M @ 7. By Lemma 1.2 of [3],
F(A x B) = F(A) x F(B) is a p'-group, so the fact that M@ T is
faithful implies the restriction of V to F(4A x B) is also faithful.
By Lemma 3.2, V is a faithful completely reducible Z,(A x B)-
module. Therefore A x B = (4 X B)/N.C..x(U) lies in {4(p)), and
this completes the proof.

COROLLARY 4.7. If = <« 7, and there is an element B in 0(p)
such that Z(B) = 1, then {O(p)y S <O(q)) for each q in w(L).

Proof. By Lemma 4.7, if Aec®(p) — 6(p), then A x B lies in
{O(p)y. Therefore A is an element of {0(p)>, so {D(p)> = {H(p)y. By
Lemma 4.4 (d), if ¢ is a prime in the characteristic of &, then

0(p) < {D(q)>, hence {D(p)y < {P(q)).

THEOREM 4.8. Suppose & < .7, and 0(p), 6(r) are monempty
for two primes p, v in the characteristic of & . Let {F (q)} be the
unique minimal local definition of & . Then

& (@) =<P(q)) for each q in w(£) .

Proof. We define a new formation & * by setting
() =7 *(9) for ge=(~) ,
Z(q) = 7 *q) for ge(~) .
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Since & € &, F *(g) is contained in & (¢) for each ¢, by Theorem
4.3, Therefore ¥ * & #.

Let @*(q) be the set specified in Definition 4.2 for the formation
F *. Since F *S F, ¢F(s) S 0(s) & F *(s) for each s in w().
Therefore Theorem 4.3 implies & is strongly contained in & *.

Suppose F *c &#. If G is an element of minimal order in
F — Z *, then G is a semi-direct product, G = F*M, where F* is
an & *-subgroup of G. F* acts faithfully and irreducibly on the
elementary abelian ¢-group M. Since G lies in & — F *, F*=
G/CHM) lies in & (t) — F *(). For t in n(¥), this contradicts
the definition of & *(t), hence ¢t is a prime in the characteristic of .

Since & « & *, F*, as an & *-subgroup of G, must contain
some & -subgroup E of G. Thus for any prime ¢, the permutation
representation on the cosets of O, (&) is faithful. By Lemma 4.4
(¢), G lies in @(q) for each ¢ in 7(&) — {t}.

By Lemma 4.4 (d), 6(q) S .& *(s) for each ¢, s in 7(%), hence if
G lies in 6(q) for some ¢ in m(¥) — {t}, then G lies in F *({).
Suppose, therefore, that Ge ®@(q) — 0(q) for each ¢ in =(&) — {t}.
One of the primes p, r is unequal to ¢, say p. Then G is an element
of @(p) — 6(p) such that Z(G) = 1. Since 6(p) is nonempty, there is
a group H in 6(p), so by Lemma 4.6, G X H is an element of & *(¢),
hence in each case F'*, as a factor group of G, must lie in & *(?),
a contradiction.

Therefore 7 * = . Since {& *(q)} forms a local definition for
Z *, we have 0(q) & F (¢) S & *(g) for each ¢ in the characteristic
of &, so the proof of Theorem 4.8 is complete.

Because we could not relax the hypothesis on the 6&(p)’s, we
thought it appropriate to include

THEOREM 4.9. Suppose & £ F, and pen(¥). 0(p) s emply
if, and only if, for each element F of F, an & -subgroup E of F
either covers or avoids each p-chief factor of F.

Proof. Suppose an -subgroup of F either covers or avoids
each p-chief factor of F' for every F in .&#. Let Fe®(p), and let
E be an Z-subgroup of F. Let M be a faithful irreducible Z,(F)-
module such that C,(0,(E.,)) >1. By Corollary 3.8, and the fact
that & « &, F* = FC,(0,(F ~,)) is an F#-subgroup of FM, acts
irreducibly on M, and does not avoid M. Therefore F'’* = FM; M is
a p-chief factor of G = FM which is not avoided by the & -subgroup
E* = ECy(0,(E.)) of G. Therefore O,(E.,) centralizes M, so
f(p) is empty.

Suppose 4(p) is empty, F lies in &, and F is an & -subgroup of
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F which does not avoid the p-chief factor K= L/N of F. Let
F = F/C.(K). Our first assertion is that the semi-direct product
FK lies in .# (the action of F on K is the action induced by the
action of F on K). By Corollary 3.8, F* = FCx(0,(F - )) is an
F-subgroup of FK. Therefore F* acts irreducibly on K, and
F*/C7(K) is isomorphic to F. Since F' is in &, F is in & (p).
By Theorem 3.4, F'* covers K, hence FK is an element of &,

E = EC(K)/Co(K) is an & -subgroup of F. By Lemma 3.3,
E., =E.,CnK)/Cx(K). Because E., has a normal p-complement,
it follows that O,.(E.,) = O, (Ey»)Cr(K)/Cp(K). Therefore

CK(Op'(Eg(p))) = CK(Op'(E—’g<p))) .

0,(E.,) centralizes every p-section of FE, hence it centralizes
(L N E)N/N, a nonidentity subgroup of K. Therefore,

1 < CK(Op'(Eg(p))) g K .

Thus F lies in @(p). 6(p) is empty, so it follows from Lemma 4.4
that K., is a p-group. If U is any E-composition factor K, then
E., centralizes U since it is contained in O,(¥). Upon taking
inverse images in E, we see that Cy(U) contains E.,,, so that
E/CL(U) lies in &£ (p). By Theorem 3.4, E covers U, hence E also
covers all of K.

5. Structure theorems. Throughout this section we shall make
the following assumptions:

Hypothesis 1. ¥ and & are saturated formations such that
(@) 4 ESE¥LKF;

(b) there is a nonempty formation .9~ such that & =
{(Ge & | G/IF(G) e T}.

Our first theorem says that the structure of & is essentially
the same as the structure of & in that there exists a formation %
such that & = {Ge & |G/F(G)e % }.

First we prove two lemmas.

LEMMA 5.1. Let .9~ be a nmonempty formation. Let & be the
formation locally defined by setting < (p) = . for each p. Let
& ={Ge L |GIFG) e 7} Then & = &.

Proof. Suppose G € & . Because O,.,(G) contains F(G), G/F(G) e .9
implies that, for each p,G/0,,(G) lies in . By (2.1), G is an
element of &.
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If G is in &, then G/O,.,(G) is in .7~ for each prime p. Since
7 is a formation, and F(G) = N,0,,.(@, G/F(G) lies in .7, From
this it follows that & = & .

LEMMA 5.2. If G is a group with Z-subgroup E, and E lies
in 7, then E = G. If {F (@)} is any local definition for &, and
G 1s an element of I~ such that O(G) = 1, then G lies in Z (q).

Proof. We prove our first statement by induction on the nil-
potent length of G. If G is nilpotent, then G is already in &, so
there is nothing to prove. Since E lies in &, EF(G) lies in & .
Since E is an «-subgroup of G, E covers U/U, for any subgroup U
of G which contains E. Therefore E contains F(G). Set G = G/F(G),
then E = E/F(G) is an #-subgroup of G. By induction, E = G,
hence E = G.

Let {¥ (¢)} be any local definition for .#. Suppose Ge .7, and
0,(G) =1. Let M be the regular Z,(G)-module, and form the semi-
direct product G, = GM. Since G lies in .7, G, lies in &. It is a
simple consequence of strong containment that & &.&, hence G, e #.
Since 0,(G) =1, and G acts faithfully on M, M = O,,(G,). There-
fore G,/M is an element of & (p). Since G is isomorphic to G.,/M,
G lies in & (p). This completes the proof of the lemma.

THEOREM 5.3. Suppose & and F satisfy Hypothesis I. Then
there is a formation ZZ containing .7, such that

T ={Ge L |GIFG) ez} .

Proof. If & = &, the formation .9 satisfies the requirements
of the theorem. Assume & C .. By Lemma 5.1, the family
(& (p)| &(p) = .7 for each p} is a local definition for &. We shall
use this family for the local definition of & throughout the remainder
of the proof. Let {< (¢)} be the unique minimal local definition of
Z. A second application of Lemma 5.1 says that we need only show
Z (r) = F (s) for each pair of primes r, s. In view of Theorem
4.8 and Corollary 4.7, we begin by examining the set 6(s) for various
primes s. Since 4~ & &, w(¥) contains all primes, so 6(s) and @(s)
are defined for each s.

Let G be an element of minimal order in &% — %. By mini-
mality, if N is any normal nonidentity subgroup of G, then G/N
lies in . Therefore G. is the unique minimal normal subgroup of G.
If F is an & -subgroup of G, then KG, = G, and E N G, = 1. Further-
more, E acts faithfully and irreducibly on G.. We set M = G., and
note that M is an elementary abelian p-group for some prime p.
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Since G is not in %, Lemma 5.2 implies F is not an element of
7. Therefore F(E)= FE. > 1. But it follows from Lemma 1.2 of
[3] that F(F) is a p’-group, so for some prime # distinct from p,
E - has a nonidentity normal Sylow »-subgroup R. If s is a prime
distinet from 7, then

Os’(Eg(s)) = Os/(E/) g R > 1 .

Because M is the unique minimal normal subgroup of G, and EN M=
1, the permutation representation on the cosets of O, (F.,) is faithful
for each s. By Lemma 4.4, G lies in 6(s) for each prime s distinct
r and p. Since K is faithful and irreducible on M, the center of G
is trivial.

Now fix a prime s =% 7, p. Then G is in #(s), so there exists a
faithful irreducible Z,(G)-module J such that 1 < C/O,(E..)) < J.
We let G* be the semi-direct product GJ. Since E is isomorphic to
an # -subgroup of G*/J, it follows from Lemma 2.7 and Corollary
3.8 that E* = EC,(0,(E,.)) is an &-subgroup of G*. An F-sub-
group of G* covers G*/J since G lies in & it cannot avoid J because
% & Z#. Therefore G* lies in .#. Because E is a quotient group
of £*, and E is not in 7, E* is not in ., hence

1< E)> = (EN)en = E-Ci(O,(Exy))

(E*)- is a p'group because K _- is a subgroup of the p’-group F(X),
and s is not equal to p. The permutation representation on the
cosets of (E*). is faithful since J is the unique minimal normal
subgroup of G*, and (E*).-nNJ < C,(O,(E.)) < J. It follows from
parts (a) and (¢) of Lemma 4.4 that G* lies in #(p). By construc-
tion, the center of G* is trivial, hence we have established:

(5.1) If s == », then there is a group X in 4(s) such that, Z(X) = 1.

We can now apply the results of §4. The characteristic of &
contains all primes, so by Theorem 4.8, and (5.1), & (s) = {®@(s)> for
each prime s. By Corollary 4.7, we have

52 F(s) = F (q) for s, ¢ in ',
(-2 F(s) & F () for each s.

For s = r, we set % = & (). The final step in the proof will be
to show @(r) & % .

By part (d) of Lemma 4.4, 0(r) & & (s) for each s, so 0(r) & Z.
Suppose He @(r) — 6(r), and E is an & -subgroup of H. Then it
follows from Liemma 4.4 that £ _- is an r-group.

If £, =1, then E is in .. By Lemma 5.2, E = H, and if s is
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any prime not dividing »|H|, O,(H) = 1, so H lies in & (s) = %.

Suppose E - >1. Since H has a faithful irreducible Z,.(H)-
module, O.(H) = 1, so the permutation representation on the cosets
of K - is faithful. Since H is in &(r), H lies in % Thus if s is a
prime which does not divide the order of H, it follows from part (b)
of Lemma 4.4 that H lies in {@(s)>. Therefore

) S & F (r)=L0(r)) .
Since Z = & (s) for each s, Lemma 5.1 says that
7 ={Ge & |GIFG ez} .

The fact that % contains .7~ is a consequence of part (b) of Lemma
4.4,

We are interested in finding formations which are maximal in
the partial ordering <. Since & € & implies & < ., we shall assume
& c.#, as well as Hypothesis I, Since & = {Ge.&¥|G/F(G)e 7},
we fix our local definition for & by setting & (p) = .7 for each p.
We assume that {# (p)} is the minimal local definition for #. By
the proof of Theorem 5.3, there is a formation %/, containing &, such
that & (p) = % for each p. Since ¥ < &, we must have 7 C %.

Before stating our main theorem, we prove several lemmas. The
proof of Lemma 5.5 contains the essential construction used in the
proof of the main theorem.

LeEMMA 5.4, Let G be a group, and 1< H<G. Assume that
the permutation representation of G on the cosets of H is faithful.
If M is the Z,(G)-module which affords this representation, set
U=N,cCu(H)g. Then U is a Z,(G)-submodule of M, and M/U s
a faithful Z,(G)-module.

Proof. We can let the cosets of H in G be a Z,-basis for M,
ie,let M=Z%,-H+ Z,-Hg,+ --- + Z, Hg,, where s = [G: H], and
the operation of G on M is by right multiplication.

For each g in G, Cy(H)g = C,(H?), hence U = Cy(U,ccH?). In
other words, if N is the normal closure of H in G, then U = C,(N).
Since N is normal in G, U is a Z,(G)-submodule of M.

Let O, --+, 0, be the orbits of the cosets Hyg, under action by
N. Since N <]|G, G permutes these orbits transitively, thus all
orbits have the same number of elements [N: H]. Since H is not
normal in G, it follows that [N: H] = 3.

For each 4, let O, ={Hyg,, ---, Hg;,} where » =[N:H]. Set
w; = > Hg;;. It is a standard result that the elements w; of M
form a Z,-basis for C,(N). Hence a Z,-basis for M/U consists of
the cosets:
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{U+Hg;|1l<is=m, 1l=j=r—1}.

Suppose x lies in the kernel of the representation of G on M/U.
Then for 1 <7<m, and 1 <7 <7r — 1 we have

Hg,;x — Hg;; = ’kg‘lakuk s

where the «, are suitably chosen elements of Z,. Since Hg,x is a
coset, and each u, is a sum of at least three distinct cosets, we
must have «, = 0 for each k. Since & permutes the orbits of N, it
follows from the fact that x fixes Hg, that x fixes each orbit O,.
This, together with our above remarks show that x lies in the kernel
of M. Since M is faithful, so is M/U.

LEMMA 5.5. Let & and % satisfy Hypothesis 1, & C &, and
suppose there is an element H in 2 N & — 7 such that O,(H) = 1.
Then

Z 2{Ge F | F(G) is a p-group} .

Proof. Let G be an element of & such that F(G) is a p-group.
Let K be an & -subgroup of G, and assume O,(F ) > 1. Since F(G)
is a p-group, O,(G) =1, so the permutation representation on the
cosets of O,(F,) is faithful. Let M be the Z,(G)-module which
gives this representation, and let U = C,(N), where N is the normal
closure in G of O,(E-). By Lemma 5.4, the Z,/(G)-module M* =
M/U is faithful. Let X = GM*. Then F(X) = F(G)M*, so X/F(X)
is isomorphic to G/F(G). Since G is in ., so is X. Now E* =
EC,(0,(E.)) is an & -subgroup of X. Since U centralizes O, (%),
we have C,.(0,.(F.)) = C,(0,(F ))/U. Let T be the intersection of
all conjugates of E* in X. Since E* N M* = C,.(0,(E ), it follows
that

TNM*=Cu{N)=1.

But if K is a normal subgroup of X, whose intersection with M* is
trivial, then K centralizes M*. C (M*)= C,(M*)M*, so the fact that G
is faithful on M* says that M* is self-centralizing in X, consequently
K =1. From this we have T'=1, so the representation of X on
the conjugates of E* is faithful. Certainly it also follows that the
representation of X on E* is faithful, so if ¢ is any prime which
does not divide the order of X, then X e<®@(t)) = %/, by Lemma 4.4.
Therefore G, as a factor group of X, also lies in Z.

We may now assume O,.(FE ) =1, so K is a p-group. It is time
to use H, If R=1I 1 ...+ I, is a decomposition of the regular
Z,(H)-module into its principal indecomposable constituents, we let
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K; = I;/U; for each j. Here U, is the unique maximal submodule of
I;. Since R is faithful, and F(H) is a p'-group, it follows from
Lemmas 3.1 and 3.2 that R* = K, + --- + K, is faithful. Since H
is not an element of &, it follows that for some j, B = H/C(K;)
does not liein .77 Let K = K, then B is an element of Z N ¥ — 7
which has K as a faithful irreducible Z,(B)-module.

Let S be the regular Z,(G)-module, and set W = (B x G(KR S),
where the action of B x G on K(® S by conjugation is the canonical
action of B X G on the module K® S. To show G lies in Z, it is
sufficient to show W is in %7, since G is a factor group of W.

Since B has a faithful irreducible Z,(B)-module, F(B) is a
p’-group. Therefore if N is the kernel of the representation of
F(Bx @G on KQS, then N= NN F(B) x NN F(G). Since B and
G act faithfully on KQ S, F(B x G) is faithful on K® S. By
Lemma 3.2, KQ S is faithful. Therefore O,(W) =1, so we have
F(W) = F(G(K® S). Since W/F(W) is isomorphic to B x (G/F(&)),
an element of %, it follows that W lies in &,

An & -subgroup of B x G is B X K, so

E* = (B X E)Cyes(0,((B X E)))

is an &-subgroup of W. Since BezZ N¥ — 7, 1< B, < F(B),
so B, is a p'-group. By assumption E. is a p-group. Let V be
the collection of elements of B which appear as components of
elements of (B X E),. Then V is a normal subgroup of B, and
(BXx E), <V x E. Since B/V is isomorphic to (B x E)/(V x E),
B/V lies in 7, hence V=B.. If veV, then for some u in
E,, vxuliesin (B x E),. Since B. is a p'-group, and E.- is a
p-group, v is equal to a power of v x u. Therefore

(5.3) B, = 0,((B x E)-) .

Now the restriction of K@ S to B_ is a multiple of the restriction
of K to B, so it follows from Lemma 3.1 that Cygs(B.) =1. By
(5.3), B x E is an & -subgroup of W,

Let ¢ be a prime which does not divide | W|. The fact that the
representation of W on the cosets of B x E is faithful implies that
the same is true of the representation of W on the cosets of
(B X E),. By part (b) of Lemma 4.4, W is an element of {&(t)> =
Z . Therefore G lies in Z¥ in every case, so the proof of Lemma
5.5 is complete.

Because of the preceeding lemma, we give

DEFINITION 5.6. Let ={p|Z N& — 7 contains a group H
with O,(H) = 1}. We call a prime p special if p is an element of 7'.
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LEMMA 5.7. If & and F# satisfy Hypothesis 1, and & < &,
then there is at most one spectal prime.

Proof. Let G be an element of minimal order in & — &,
Then G is the semi-direct product EM where E is an & -subgroup of
G, and M is the unique minimal normal subgroup of G.

Since E acts faithfully and irreducibly on M, M = F(G). By
Lemma 5.2, E is not an element of .7, and since G e &, G/F(G) lies
inz,so Fezy N — 7.

Since O(E)N O,(F) =1 for two distinct primes r, s, E/O(E)
lies in.7 for at most one prime t. If s # ¢, then E/O(E)e Z N ¥ — .7,
so 7' & {t}.

REMARK. In, general, we cannot control the choice of G enough
to be certain that there are no special primes. This is the basis for
the example in § 6, and the reason behind

Hypothesis I1. Let G = EM be a fixed element of minimal order
in & — &. If ris any prime such that E/O.(F) lies in 7, we
assume that .S7(1’), the formation of all +'-groups, is not contained
in 7. (Such a prime does not necessarily exist.)

THEOREM 5.8. Suppose & and F# satisfy Hypotheses 1 and II.
If & c &, then & = S the collection of all solvable groups.

Proof. Our first step is to show that % contains the collection,
(), of all solvable 7-groups. By Lemma 5.5, the fact that
NS ¥ S . F shows that %7 contains the collection of all nilpotent
n-groups. Proceeding by induction, we assume that %/ contains the
collection, _#7i(7n), of all solvable 7-groups of nilpotent length at
most 7. Since

A7) = {Ge & | GIFG) e (1)},

& contains all solvable n-groups of nilpotent length at most ¢ + 1.

Let Ge _+"*'(n), and F(G) = P, X --- X P,, where P, is the Sylow
p;-subgroup of F(G). Set N, = [[..P:, and let R; be the regular
Z,,(G/N;)-module for each ¢=1,.-.,s. We allow G to act on the
direct product R =R, X -+ X R, by conjugation according to the

rule
(5.4) (r, X1y X eee X 1) =7(Ng) X 1(Nyg) X «++ X 1(N,9) .

Then we form the semi-direct product X = GR. By construction,
N, centralizes the p,~group R;, hence the group F(G)R is nilpotent.
Since F(X)/R is a normal nilpotent subgroup of X/R, and X/R is
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isomorphic to G, F(X) < F(G®)R. Therefore F(G)R is the Fitting
subgroup of X, and X/F(X) is isomorphic to G/F(G). Since G/F(G)
lies in %, it follows that X lies in #.

For each 1, set Xi:X/Ni(HkaéiRk)y Ri:NiR/Ni(HkaéiRk), and
G= G(IxiBi)/Ni(I11riR:). By modularity

G(HkaéiRk) N NiR = Ni(Hk;éiRk) .
Thus X, is the semi-direct product of B; by G:, hence

Because G; acts faithfully on R,, it follows that R, is a self-
centralizing normal p;-subgroup of X,. Therefore O,,;(X’i) =1, so
F(X,) is a p;-group. But p; lies in 7, so by Lemma 5.5, X; is an
element of % for each <. Since the intersection of the groups
N(I1:z:R:) over all ¢ is the identity, X is an element of %. There-
fore G lies in %/, and by induction it follows that () & Z.

By Lemma 5.7, if EM is the minimal element of & — &
mentioned in Hypothesis II, then there is at most one prime »* such

that E/O,.(E) lies in .7, thus 7 contains (»*)’. Therefore,
LirYesmpew s 7.

Suppose & does not contain S2((r*)"), and let G* = E*M* be
an element of minimal order in S7((r*)) — €. By Lemma 5.2, E*
is an element of Z N & — .7, and since E* € &Z((r*)), O,(E*) = 1.
Therefore 7 contains all primes.

Now suppose & contains .&“((r*)). By assumption .Z~ does not
contain .S“((r*)"), so we can choose H in L ((r*))E %, H is an
element of 27 N & — 9 with O,(H) = 1. Therefore » contains all
primes in every case, so we have

=g &7,

which completes the proof of Theorem 5.8.

COROLLARY 5.9. Let _+7* be the collection of groups of milpotent
length at most i. Then _+7° is maximal with respect to the partial
ordering <.

Proof. If we set _#° = {1}, then for 7 =1,
N ={Ge L |GIF(G)e 4} .

For each prime p, .&“(p’) is not contained in _s "', hence the
hypothesis of Theorem 5.8 is satisfied. The result follows from
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Theorem 5.8.

6. An example. Let r be a prime. Throughout this section,
we let <2 be the formation of all group G such that G/F(G) is an
»’-group. For each prime p, we set F(p) = . (1'); {FH(p)} forms a
local definition for .2 because of Lemma 5.1. In this section, we
shall characterize the formations which strongly contain .&Z. The
formation .Z provides an example which shows that Hypothesis II
is not redundant.

LEMMA 6.1. Let G be a group with Sylow r-subgroup R. Then
N4(R) is an R-subgroup of G.

Proof. Clearly Ng(R) lies in .&Z. Suppose Ny(R) < U< G. We
need to show N,(R) covers U/R_. Clearly U. is the smallest normal
subgroup of U whose factor group has a normal Sylow r-subgroup.
If V is the smallest normal subgroup of U whose factor group U/V
is an 7’-group, then R <V, so V is transitive on the Sylow -
subgroups of U. Consequently N (R)V = U. Since R covers every
r-section of U, it follows that N (R) covers U/U.. By definition,
N, (R) is an “#-subgroup of G.

Suppose & > F#, and & D.#. If {F (¢)} is the minimal
local definition of &, it follows from Theorem 5.3 that & (¢) = & (s)
for each ¢, s. We set % = & (¢9). If H lies in ' N <, then H
has a normal Sylow r-subgroup, so H/O.(H) lies in .“(#'). Therefore,
Hypothesis II is violated for the prime ». It follows from Lemma
5.7 that » is the unique special prime associated with .&# and <Z.
The next theorem gives a class of formations which strongly
contain 2.

THEOREM 6.2. Let .7 be a nonempty formation. Let
7z ={Ge & |G/0,(G)e T},
then Z/ 1is a formation. If
7 ={Ge & |GIFG)ex},

then & strongly contains .

Proof. Suppose GeZ/,and N<|G. Then O,.(G)N/N<0..(G/N).
Since G/O,.(G)e .7, the same is true of (G/N)/O,(G/N). Therefore
G/N is an element of Z.

Now let N,, N, be two normal subgroups of G such that G/N;
lies in % for each 7. For each 7, let M;/N, = O,.(G/N,), then G/M;



GENERALIZED CARTER SUBGROUPS 517

lies in .7~ for each 7. Since .77 is a formation, G/M, N M, is in 7.
For each ¢, (M,N M,)N,/N; is an 7’-group, so it follows that the
factor group of G/N,N N, by O,(G/N,N N,) lies in .. Therefore
7 is a formation.

To show # < &, it is sufficient to show that @(p) & % for
each prime p. Suppose Ge @(r), then G has a faithful irreducible
Z.(G)-module. This means that O.(G) = 1. Since G lies in .#, G/F(G)
lies in 2. But F(G) is an +’-group, so it follows that G/O..(G) lies
in 7. Therefore G lies in Z.

Suppose G e @(p) for p distinet from ». An .<Z-subgroup of G
is Ny {R) where R is a Sylow #-subgroup of G. Since p # 7,
0,(NgR)s () = R. Therefore G has a faithful irreducible Z,(G)-
module J such that 1 < C(R) = J. By Lemma 8.1, either C,(0.(G)) =
J, or it is the identity. The latter possibility cannot occur because
1< CiR) < C;0,(G)). Therefore the fact that J is faithful says
that O0.(G) =1, so F(@) is an 7'-group. G lies in &, so the same
argument that was used in the preceeding paragraph shows that
G/0,.(G) is in .. Therefore Ge Z . By Theorem 4.3, <7 is strongly
contained in #.

Since our choice of 7 is arbitrary, it follows that we can
choose an infinite number of distinet formations which strongly con-
tain .&#. Our last theorem shows that we have actually found all
formations which strongly contain 2.

THEOREM 6.3. Suppose F# > #, and {F (Q)} is the minimal
local definition for #. Then there is a nonempty formation
such that

F() ={Ge &~ [G/0.(G)eT}.

Proof. Suppose &% D .#. By Theorem 5.3, there is a formation
2 such that # (q) = % for each q. Our first step is to show that Z
is the smallest formation generated by the set {He ¥ |0O.(H) = 1}.
Let Z* be the smallest formation generated by this set.

Suppose He % and O (H)=1. Let K=1I1 4+ --- L I, be the
decomposition of the regular Z,(H)-module K into principal inde-
composable submodules. By Lemmas 3.1, and 3.2, and the fact that
F(H) is an 7'-group, it follows that H acts faithfully on J =
J,+ +++ 4+ J,, where for each k, J, is the quotient of I, by its
unique maximal submodule. For each %k, set H, = H/Cy(J,). Then
J, is a faithful irreducible Z,(H,)-module. If R, is a Sylow r-subgroup
of H,, then N (R,) is an .ZZ-subgroup of H,, and by definition, it
follows that H, lies in @(r) for each k. Since & K ., we have
H,e. & (r) = %. Since H is faithful on J, H lies in 2. We have
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just shown that all generators of Z* lie in %, therefore Z * is
contained in 7. We know that % is the smallest formation generated
by @(r), from the proof of Theorem 5.3. Thus if we show @(r) & % *,
we have shown % & *. If G lies in @(r), then G has a faithful
irreducible Z,.(@)-module, and G lies in &% Then O0.(G) =1, so by
definition G lies in Z*. This shows Z = % *.

Let & be the smallest formation generated by the set
{H/O,(H)| Hez}. Set %' ={Ge & |G/0,.(G)e. 7 }. We want to
show Z¥ = Z'. By construction ¥ & Z'.

Since the generators of .9 are elements of %/, we must have
9 € % . Therefore, if GeZ’, then G/O,.(G) lies in Z’. To show
G lies in %7, we use induction on the nilpotent length of O,(G). If
0..(G) is nilpotent, then it follows that G/F(G) lies in %. Thus
Ge & By our first paragraph, G/O.(G) lies in %, so G also lies in
Z since O0.(G) N 0,.(G) = 1.

We note that O,.(G/F(0,.(®)) = 0,.(G)/F(0,.(G)), hence by induc-
tion, if G is in %, then G/F(0,.(G)) is in % . Therefore G lies in
. By our first paragraph G/0,(G) is in %, so once again it follows
that G lies in 2. Therefore 2 = Z’. This completes the proof in
the case when <% c .

If &# = & we let . be the formation consisting only of the
identity. We must then show that {<#(q)} is the minimal local
definition for #Z.

Let {<#*(q)} be the minimal local definition for .&#. Suppose p
is an arbitrary prime, Ge &7(r') = “2(p), and ¢t is a prime which
does not divide rp|G|. Let K be the regular Z,(G)-module. Set
G* = GK. Let K, be the regular Z,(G*)-module. Let G’ = G*K,.
Since G acts faithfully on K, and G* acts faithfully on K,, O, ,(G') =
K,. Depending on the choice of p, G’ is either an +'-group, or has
K, as a normal Sylow r-subgroup. Therefore G'¢.2#, hence
G10,,(G) = G /K, lies in &2*(p). Therefore & (r') S #*(p). This
completes the proof.
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