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Let G be a compact Abelian group with discrete countable
dual group Γ = G and let feU{G) with Fourier transform
F — /. If V is a finite subset of Γ we consider the operator
Fv on LKV):

(Fvφ)(r) = Σ F{γ-τ)φ{τ) φ 6 L\V\ γϊV.
τeV

Then if {Vn} is any suitably restricted sequence of finite

subsets of Γ we show that

lim I FvJ = lim {max | (FVnφ, φ) |} = | | / I U

where \ Fv\ is the operator norm of Fr on L2(F) and (Fvφ,φ)
denotes the inner product of Frψ and φ (over V).

This result is then translated into a statement concerning
a special class of infinite matrices which generalize the
classical Toeplitz matrices. We then apply these results in
evaluating the norm of a special type of linear operator.

In [1] the author considered the asymptotic distribution of eigen-
values and characteristic numbers of certain sequences of operators
{FVJ over a locally compact group Γ associated with sequences {Vn}
of Borel sets of Γ of finite nonzero measure satisfying

(*) l i m | τ F % Δ Vn\/\ Vn\ = 0 for all τe/\
n—>oo

where | | is left Haar measure on Γ. We write {VJ e WΓ, and say
{Vn} has the weak ratio property in case (*) is satisfied (see [2]).
In this paper we are considering countable Abelian Γ and a more
general family TΓ of sequences {Vn} than those in Wr (and hence in
general the asymptotic distribution of the characteristic numbers of
{FVJ does not exist, [2]) but still restricted enough to guarantee an
asymptotic formula for the maximal characteristic number of Fv as

l The basic theorem* Γ denotes an arbitrary countably in-

finite discrete Abelian group equipped with the counting measure.

DEFINITION 1. A sequence {Vn} of finite nonempty subsets of Γ
has the translation property, written {Vn}sTr, if and only if to
every finite subset Γ0Q Γ there corresponds an nQ — no(Γo) such that
for n ^ n0 there exists a τn = τn(Γ0) e Γ with the property that

τn + ΓQ S V%.
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528 WILLIAM R. EMERSON

PROPOSITION 1. (i) {Vn}eTΓ and VnQ Vi for neN+ implies
{F*}e TΓ. (ii) WΓ is properly contained in TΓ.

Proof, (i) is immediate from the definition. To prove (ii), first
assume {Vn} e WΓ and fix any finite nonempty subset Γo S Γ. Set
C = ΓQ U {0}. We then readily conclude (see [2] where many pro-
perties of WΓ are established)

(1)
\vn\

But C + Vn = Urevjτ + Γo) U V.. Hence if r + Γo £ Vn for all
τeVn, we have | (τ + Γo) ~ F n | ^ 1 for all r e F , and consequently

(2) \C+VΛ\^\Vn\+-&

since we may choose | Vn \ elements r + yτ e (r + Γo) ~ F», where
r e 7 » and yτeΓ0, and no element is duplicated more than | Γo \ times.
But for sufficiently large n (2) violates (1) and therefore there is a
τ κ e Vn for which τn + Γo g F n . Hence PΓΓ S Γr

We now show inclusion is proper. For let {Fκ}e WΓ {Φ<Z>, by
[2]); we shall construct a sequence Vi 2 Vn such that {Fί}0 WΓ,
which completes the proof of (ii) upon appealing to (i). Fix any
γ e Γ ~ ( 0 } . We inductively construct a sequence v[n), , v\fn) as
follows: v[n) ί 7 , + {0, ±7}, and

(I) υ i " ' ί ( V . U {v[n), " , v Ά } ) + {0, ± 7 } ( 2 ^ k ^ \ Vn I) .

We set V* = Vn U {y{n), , v\Λ)

V[} and verify that

\v;\ ~ 2

implying {Fκ*}e TFΓ For

(7 + vi) n F :

= ((7 + F J n Pί) U ({7 + yί">, , 7 + v]VJ n (Vn U {yίκ), , υί?J,,}))

= ((7 + vn) n Fί)

since the second term in the union is empty by (I). Hence
I (7 + Fί) Π V: I ̂  I 7 + F π I = I F κ I, and therefore for n e N+

1 (7 + FM*) nv:\ __ 1 (7 + F : ) n F * I ^ \vn\ _ 1
IKΊ 2 ] vn 1 - 21 v. 1 2

We now prove a result, of independent interest, which is critical in
the proof of Theorem 1.
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PROPOSITION 2. Let G be a compact Abelian group (with measure
normalized to one), let feLι(G), and let p be any positive number.
Then

= sup f \ ω(x) \?f(x)dx

where ω ranges over all trigonometric polynomials on G satisfying
II α > 1 1 , ^ 1 .

Proof. Recall that a trigonometric polynomial is a finite linear
combination of characters on G. Clearly

ω{x)Yf(x)dx \ω(x)γdx=\\f\U\\ω\γp^\\f\\oo.

We divide the proof of the converse inequality into two cases:
To prove the converse inequality, we first consider the case

II/IU < +oo. Fix any δ > 0 (until the conclusion of the argument).
Let S = S(δ) be a measurable subset of the complex plane of dia-
meter less than δ and such that

where χB denotes the characteristic function of E. Hence for s e S
and l e f i w e have

11 β I - I (χEf)(χ) 11 ̂  I β - (χEf)(χ) \ < δ ,

and consequently also

Therefore, if g = χE/\ E | then

fgdx ^
JG

+

(3) ιι/ιu-ι*ι
- s

- \ fgdx

\E\ }E

o
! o

£ 2δ .

We next wish to approximate g by a continuous function h, and
at this point the estimate is rather delicate because this is also
needed later in the case 11/11^= +oo and consequently we must
avoid ll/llco as a factor in the error of estimation. Now since
feLι{G), to every ε > 0 there corresponds an rj = ^(ε) such that for
all measurable subsets T of G of measure at most rj
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\f\dx<ε.

We now choose 7 = Ύ(δ) satisfying

(4) (i) y<δ\E\, (i i) ^\f\dx<δ\E\iί\T\<y.

Furthermore, since Haar measure is regular, we may find an open
set E+ and a closed set E~ such that

(4') E~ S E Q \E+
7 .

Finally (by Urysohn's Lemma, since G is a normal topological space)
there exists a continuous h0: G —* [0,1] such that hQ \ E~ = 1 and
h01 G ~ E+ = 0. Our candidate for Λ is then defined to be the nonnega-

tive function h = hJ\E\. Let us now estimate I /grdα; — \ /feίZa? :

[ fgdx - \ fhdx ^ f I/I I g - h \ dx
JG }G JG

(5) = ( [ + [ + ( ) \ f \ \ g - h \ d x = \ \f\\g-h\dx
\JE~ JE+-E- )G~E+J JE+-E-

E + ~B~" ' - \E\

by (4), (4') and the definitions of g and h. Also, we have

I hdx ^ I hdx — \ hdx <^ || h ]]„ | E+ \ ,
JE- JG JE+

implying the estimate

l ί i ^ ^ I I 7 I I ^

(6) ^ 1 + δ by virtue of (4) and (4') .

Lastly, to any a > 0 we may correspond a trigonometric polynomial
ωa satisfying || hllp — ωa ]]«, < a, and consequently || hllp — | ωa \ ̂  < a
since Λ1^ ^ 0. Thus by choosing a0 = aQ(δ) sufficiently small we may
conclude

(7)

Also,

\h- | ω β β K | | 1 ^ | | Λ - | α ) β 0 | ' > |

We now let

ω = ωaj(l + 2δ)ιfp, implying | | ω \\P ̂  1 .
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Finally,

(8)

ί \ω\pfd
JG 2δ

\ \o)ao
J G

1 + 2δ
1

1 + 28
U\\f\\

- \ fhdx - \ hfdx
JG JO

-2δ)-δ-δ\\f\\1).

By (3), (5), and (7). Our assertion follows upon letting δ —>0.
In case 11 /1 !«, = + °°, we let Sn be a measurable subset of the

complex plane of diameter less than δ and such that Έ% — f~ι{S^),
\\1EJ\U> n. Equations (3) - (8) still hold with H/IU replaced by
ilZ^/l |eo>^ wherever it occurs, and we readily construct trigono-
metric polynomials ωn with | | ω J L < ^ l and such that I \ωn\

pfdx is
JG

unbounded as n —> + °o.
We now are ready to prove the basic theorem.

THEOREM 1. Let G be a compact group (with measure normalized
to one), let feL1(G)1 and let F = feL00^), the Fourier Transform
of f. Furthermore, let {Vn} e TΓ and let Fv% be the Hilbert-Schmidt
operator on L2(Vn):

(FvJr)(Ύ) = ί F(Ί- τ)ψ(τ)dτ - Σ Fin - τ)ψ(τ)
Jvn τeVn

Let {FVnψ, ψ)Vn denote the inner product of FVnψ and ψ over Vn,
and let | FVn | denote the maximal characteristic number of FVn as
an operator on the Hilbert space L2(Vn). Then

( i ) Jim ̂  max | (FrJ>, ψ)Vn \ = | | / | U .

(U) l i m ! FYn I =
n—>oo

Proof, (i) By definition,

F(Ύ -

= Σ ft (7 - T, x)f(x)dx]ir(τ)ψΐή

x)f (r)(7, x)ψ(Ύ)\f(x)dx
J

GLr,τeVn

L Σ (r, x)f{τ) f(x)dx .

Note that
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is a trigonometric polynomial on G, and ψ —* α>̂  ί s a n isometry of
L\Vn) into L2(G) since || ωΨ \\l = Σ r e . | ψ(τ) \2 = \\ψ \\l Therefore

(t) max I (FVnψ, ψ)Vn \ = max f
| | ^ | | 2 = 1 I I « ! I 2 = 1 JC

ω(x) f(x)dx

where co ranges over linear combinations of characters on G generated
by elements in Vn. Hence by Proposition 2 (p = 2),

lim max \(FVnψ,ψ)vJ ^ | | / | U .

On the other hand, let co be any trigonometric polynomial on Gy

say

ω(x) = Σ (To a?)^ (cέ G 0, τ< e Γ) .

Let Γo = {7i, , 7A;}, a finite subset of JΓ. NOW since {Vn}eTΓ

there exists an nQ such that for n ^ n0 there exists τne Γ such that
τw + A S Vn Hence for n ^ n09

con(x) = (rn, α?)α)(a;) = Σ (*"* + 74, »)(?<

is a linear combination of characters on G generated by elements of
Vn. Since | ω(x) \ = |α>w(a?) | for all xeG, the proof of (i) is completed
by again applying Proposition 2 with p = 2.

(ii) Recall that | FVn \ is the norm of FVn considered as an.
operator on L\Vn), i.e.,

FVn\= m a x \\FVnψ\\2.

but by the Cauchy-Schwarz Inequality, for | | ^ | | 2 = 1

I (FVnψ, ψ)Vn I ̂  II F V n ψ ||2 II ψ ||2 = || F V n ψ ||2 ^ | FV

and therefore by (i),

lim I FVJ ^ lim max | (FVnψ,ψ)Vn \ = | | / | U .

Thus, if ||/||oo = + ^ nothing remains to be proved. If ||/||co < +°°
we have feL\G) n ^ ( G ) , and_therefore by [3], p. 445, \FV%\^ | | / | U
for all neN+. Hence \imn^oo\FVn\ ^ WfW^, and consequently

in this case as well.
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We now conversely prove that the hypothesis {Vn) e TΓ is in fact
necessary for the conclusion of Theorem 1. More precisely,

THEOREM 1'. Using the notation of Theorem 1, if {Vn} is any
sequence of finite subsets of Γ for which conclusion (i) holds for all
trigonometric polynomials f on G, then {Vn} e TΓ.

Proof. Assume {V«} g TΓ, i.e., there exists a finite subset Γo of
Γ such that no translate of Γo lies in Vm for an appropriate sub-
sequence m —• oo. We then assert that

f(χ) = Σ (r, x)

is a trigonometric polynomial for which (i) fails. More precisely we
show for all these m:

Max I (FVmψ, ψ)rm I g ( l -

Recalling relation (f) of the proof of Theorem 1. We have:

(t) Max I (Fvmψ, ψ)vm I - Max
l | ω | | 2 = l

\ω(x)mx)dx

where ω ranges over all linear combinations of characters on G
generated by elements in Vm.

However, any such ω is of the form

where

implying

and finally

= | | ft)

I o)(x) -i - τt, x)aTlaT2 ,

\ \ω(x)\*f(x)dx=-±- Σ αΓlαΓ

Consequently,



534 WILLIAM R. EMERSON

\\\ω(x)\*Ax)dx

2

K M Or, I ̂

Σ
r 2 6 F m

τ2-τ1eΓQ

77 Σ (

ΣKI2( Σ
τ2eVm \ F

Σ |α Γ l

IΛIΣ K
F

- C1 - ϋkίλSJ * 1** (1 - SIT

since no translate F m — τt contains Γo by hypothesis. Our assertion
now readily follows.

2* A class of doubly-infinite matrices* We now translate the
theorem of the preceding section into a statement concerning a class
of doubly-infinite complex matrices M = («»•,/)£/=! whose entries aitj

are determined by a "group law".

DEFINITION 2. Let M = (αίfJ )~j=i be a matrix with complex
entries. We then write

M~(Γ,Λ,F)

if and only if
( i ) Γ is a countable Abelian group.
(ii) Λ is a subset of Γ.
(iii) F:Γ-+C.
( i v ) T h e r e e x i s t s a n o r d e r i n g o ϊ Λ = {\19 « , λ w , •••} s u c h t h a t

for all i,jeN+,

REMARK. For any M = ( î,5 )Πi=i with complex entries we may
take Γ to be Qx, the multiplicative group of rational numbers, and
Λ to be P = {pn: neN+}, the set of all positive integral primes, upon
defining F by

F(r) = if r = Λ / ^

otherwise .
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We then have M ~ (Qx, P, F).
Under suitable restrictions on (Γ, A, F) we shall be able to compute

the norm and quadratic norm of the matrix M, which are defined
as follows:

DEFINITION 3. The norm of M, \M\, and the quadratic norm of
M, |Λf|7, are defined by

|AΓ |= sup | | M X | | 2 , \M\^ sup \(MX,X)\,
I I J Γ I I ^ i I I J Γ I I ^ i

where X — ({&<}) ranges over elements of the complex Hubert space
I2 with only finitely many xt Φ 0, and MX —

LEMMA 1. If M induces a bounded operator on I2, then

(i) \M\ = sup || MX\\ , (ii) \M\j = sup | (MX, X) | ,
ι ι x ι ι i i x i l g i

where X = ({#J) ranges over all elements of I2 (with \\X\\2<Lΐ).
Hence in this case \M\ is the standard norm of M considered as a
bounded linear operator on I2.

Proof. For x e I2, let Xn be the projection of X on its first n
components (0 elsewhere). Since M is bounded and consequently
closed, lim^eo MXn — MX and (i) follows since Xn has at most n
nonzero components. Also

(MX, X) = (MXn, Xn) + (M(X - X%), Xn) + (MX, X - Xn) ,

and therefore

I (MX, X) - (MXn, Xn) I

as n —> °o, and (ii) clearly follows.

THEOREM 2. Let M - (Γ, A, F) where
( i ) FeA(Γ), i.e., F = / for some fe U(G).
(ii) To each finite subset Γ0Q Γ there corresponds a j = Ύ(Γ0)

such that 7 + ΓQ £ A.
Then \M\ = \M\z=\\f\U.

Proof. Assume A = {λx, , Xn, •} as in Definition 2, and set
Vn = {λlf , λn}. Then hypothesis (ii) clearly implies {Vn} e TΓ. The

-theorem will follow from the two inequalities
( i )

( ϋ )
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since \M\r <̂  \M\ by the Cauchy-Schwarz inequality.
(i): If 11/11^= +00 there is nothing to prove. Otherwise

feL1(G)riLoo(G), and therefore the operator M'\L\F)-+L\Γ) de-
fined by

(M'φ)(*γ) = Σ ^ - τ)Ψ{τ) (φ e L\Γ) , 7 e Γ)
ΓΣ

τeΓ

has norm | Mr \ = | | / | U by [3], §3.2., p. 441. Hence if we only
consider φ with support in A and restrict 7 to Λ, Mf restricts to an
operator M"\ L\Λ) ~> L\A) with \M"\^>\M'\. Now consider the
isometry of I2 onto L2(Λ) given by X = ({&n}) —> <£>x where
for neN+. Then for this ^ = φx and λ^eΛ,

which is the ίth component of MX, and therefore | M | = | M" | g
II/IU (and thus M" induces a bounded linear operator if

< +00).

(ii): For neN+, consider the isometry of L2(Vn) (which is none
other than ^-dimensional Euclidean space) into I2 given by φ —* Xψ

where Xφ = ({ccj}) and #f = φ(λy) for 1 <L j <: n and 0 otherwise.
Hence Xψ has only finitely many nonzero components, and each
Xel2 with only finitely many nonzero components is in the image of
L2(Vn) under the above isometry for n = n(X) sufficiently large.
Now consider Fv% on L2(Vn):

(FVnΨi φ)Vn = Σ Σ
i = (MX9, XΨ) (in I2) .

But by Theorem 1 (i) lim max \(FV φ,φ)v | = | | / | L and therefore

since

I M\, = sup I (MX, X) I = lim max | {FVnφ, ψ)Vn \ = | | / | U .
l l α | | 2 ^ l n->co | | ^ | | 2 ^ 1
x%=£0 finitely

COROLLARY 1. (1) Hypothesis (i) of Theorem 2 is satisfied if

( i )' Σ I F(Ύ) |2 < + - .
γeΓ

(2) Hypothesis (ii) of Theorem 2 is satisfied if

(i i) ' A + A £ Λ and (ii)" Λf generates Γ .

Proof. (1), (i)' implies /(a?) = Σrer(τ, a?)F(τ) e L\G) and therefore
also feU(G) since G is compact and hence of finite measure. Clearly
F = feA(Γ).
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(2) First note that any element of Γ is the difference of two
elements in Λ, i.e., Γ = A — Λ. For by (ii)", if yeΓ we have
7 = \.i + . . . + \ k — . . . — Xi% for some suitable finite sequence of
integers ilf , in (if no terms with a plus sign occur we may take
k = 0, if none with a minus sign occur take k = n). But by (ii)',
y+ = \, + + \ k e A if fc > 0, 7" = λ ίΛ+i + + Xin 6 A if & < n.
If & = 0 we may write 7 = \ — (λx + + λw + λx) and similarly
7 = (\1 + . . . + χΛ + χt) - χt if & = n.

Now let Γo = {7i, , λ j be a nonempty finite subset of Γ.
Then for appropriate ai,bieN+ we have

7, = λα. - λδ. (l^i^k) .

Consequently, for 1 ^ i ^ k,

y< = λβ i + λδl + + λ δ . + . . . + λ H - (λ6l + + λ6jfc)

where (Λ) denotes deletion of a term. Hence if we set 7 =

λ6l + + λ6fe we have 7 + Γo £ A since

λαί + λ6l + + λ6. + + Xbk 6 yl

by (ϋ)'.

We now apply Theorem 2 to completely solve the norm evalua-
tion in the case M — (Γ, A, F) where F ^ 0 and /ί satisfies (ii). We
make use of the following simple lemma:

LEMMA 2. If M — (<xifj)7,j=ι and M' — (<%i,j)7,j=i where

aitj ^ a'ij ^ 0 for all i,jeN+

then

( i ) \M\ - sup | | M X | | , | M | 7 = sup (MX, X)

where X = ({»<}) Λαs o î?/ finitely many nonzero coordinates, all
positive.

(ii) | M ' | ^ I Af| , | M'\z ^ |Λf|7 .

Proo/. For X = ({αj) e i2 we define X + - ({| ^ |}). Note \\X\\2 =
j | X + | | 2 and X+ and X have the same cardinality of nonzero co-
ordinates. Also, aitj Ξ> 0 clearly implies || MX\\2 ^ || MX+ ||2 and
I (MX, X) I ̂  (MX+, X+) and (i) readily follows. But aitS ^ cίiti ^ 0
also implies each component of MrX+ is dominated by the correspond-
ing component of MX+ and hence (ii) follows from (i).

THEOREM 3. Let M ~ (Γ, Af F) where
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( i ) F(Ύ) ^ 0 for all yeΓ.
(ii) // Γo is any finite subset of Γ there exists a 7 = 7(Γ0)

such that 7 + Γo S Λ. Then

I M\ = I M\τ = Σ F(V) (possibly + 00) .
re/

Proo/. Since \M\Σ^\M\ it suffices to show t h a t

(l) \M\^ΣF(y)f (2)

If ΣreΓ^T) < + ^ there is nothing to prove since in this case
the result is included in Theorem 2 because f(x) — Σ^AΊ, x)F(i) is
a continuous function on G, F = /, and H/IU — /(0) =ΣrerF(j).

On the other hand, if ΣrerF(y) = +00 then î 7 may not be in
A(Γ) and hence we cannot apply Theorem 2 directly. Clearly (1) is
true in this case and we need only verify (2). Let Γf — {7lf •• ,7»}
be any finite subset of Γ and define

MΓ> = « ' y)Γy=i

where

( if \ - λj = 7»eΓ'

10 otherwise ,

i.e., MΓ, - (Γ, ί̂, FrO where FΓ,(τ) = F(Ί)IΓ,{Ί). Since F ^ 0, α ^ ^
αf/y ^ 0 for i, j e N+, and Lemma 2 implies | ikf | 7 ^ | MΓ, |7. But by
Theorem 2

MΓ, | z = ess sup Σ (T, = Σ F(Ί)
γeΓ'

since Σrer(7, x)FΓ,{i) is continuous and FΓ, ^ 0. This in turn implies

I M\j ^ sup Σ F(i) = + oo .

COROLLARY 2. Under the hypothesis of Theorem 3.

I M\ = I M\r — sup ( Σ ^,y) = S U P ( Σ ^t,j)

Proof. We prove only | M\ = | M | 7 = supieiy+(ΣyejH-#ί,, ) the proof ι
of the other equality being similar. By Theorem 3. we need only
verify sup i6iV+(Σie^+^i,i) = ΣirerF(7). First
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Let Γ = {7i, β ,7»} be any finite subset of Γ and let Γo =
{0, — 7i, , — 7%}. Condition (ii) insures the existence of an a e Γ such
that a + Γo S Λ. In particular α: e Λ, say a = λfc(α). But

Γ' S - Γ o - α - (a + Λ) £ λt(β) - 4 ,

and thus for i — A:(α:) we have

Σ otu - Σ F(Ύ) ̂  Σ ̂ (T)

since JP ̂  0, and our assertion follows.

3* An application* In this section we apply the results of
§ 2 to evaluate the norm of a special type of linear operator.

DEFINITION 4. Let T be the circle group, considered as the real
numbers R+ mod2ττ, and let L2 = L2(Γ, dt) be the associated Hubert
function space with respect to normalized Lebesgue measure. Let

gΞ U be the submanifold

= θ } .

Furthermore, let Z' = Z ~ {0} and for a = {an}nez, e L\Z') define
Ha: ^€ -* ̂  by

(fl"β/)(ί) - Σ anf(nt)
nez'

(where equality of functions is to be taken in the U sense).
We now show that the mapping α ~> Ha is a one-to-one bounded

linear transformation from L\Z') into ^// *, the dual space of
For

nj\\\ = Σ α»/(mί)

Σ anamf(nt)f{mt)

Σ
,ne z

since | |/(wί) | |2 = | | / ( ί ) | |2 for all » e Z ' . Therefore | | ίΓα | | β , ^ || α l ^

Also, f^^/ί implies ί Γ α / e ^ ' since

( {HJ){t)dt = Σ α. = 0
T

Therefore, since i i a is clearly linear, £ΓαG^^* and the mapping
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a~~±Ha is bounded and linear from Lι(Zr) to ^ |Γ*. Finally, the
mapping is one-to-one since

Ha{eu) = Σ ane
int = 0 <=> a = 0 .

We now apply Corollary 1 to evaluate the norm of Ha.

THEOREM 4. Let a = {an}nez,eLί(Z')1 and for reQ* let

F(r) = ̂  aman .
TO , n e z'

Then

! Ha\\op = max Σ (r, »

where Qx is the compact dual of the discrete group Qx.

Proof. Let / e ^f, and let the Fourier expansion of / be

fit) = Σ,2iKeimt .

Then

(HJ){t) = £a.f(nt) = κΣ,αM[roΣ/M
<ra)lί]

where cp ^ ^mn=p m>nez,anbmf and L2 convergence is the justification
for the rearrangement of summation. Therefore

flα/llϊ= Σ k , l 2 - Σ ( Σ ^ X Σ an,bm)
pez' PeJZ' \vtn — p m'n'~p J

2 J anbman,bm, — ΣA \[ ΣA
m,n,m' ,n' e zf m,m' e
mn = m'n'

where the manipulation of the quadruple sum is justified by absolute
convergence:

Σ \anbman,bm,\= Σ \an\\a%,\( Σ I K \ (bm.)
' r 'l

Σ

by Cauchy-Schwarz. Upon setting
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ίorίJeZ'at,i= Σ aman=F(±)
mln = ilj \ 7 /

and

M = (a{j) (order Z' = (1, - 1 , 2, - 2 , . . . ) ) ,

we obtain

Also, upon identifying ^ C with .S^ 2 by f+-*Xf = (6 l f 6 β l , 62, 6_2,

we have

= (MXf,Xf).

But

Σ F(±) ^ Σ Σ I α« I I an
i,jez' m/n=ilj

and hence

/(*) = Σ (r, x)F(r)
reQx

is a continuous function on Qx with Fourier transform F. The
theorem follows upon applying Theorem 2 (Corollary 1 (i)) to
M~(Q,Z',F).

then
COROLLARY 3. If a = {an}nez, eL\Z') and an ^ 0 for all neZ',

\ H a \ \ 0 P = \\a\U.

Proof. By Theorem 4,

Σ (r, a?)F(r)

since

an^0, anam, and Σ I F(r) \ = \\a\\\ .

But upon setting x = 0 we obtain
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Σ (r, 0)F(r)

WILLIAM R. EMERSON

i_
Σ Fir) = ( Σ

and thus the proof is complete.
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