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Let G be a compact Abelian group with discrete countable
dual group I' =G and let fe LY(G) with Fourier transform
F=Ff, If Vis a finite subset of I" we consider the operator
F, on L3V):

Fro)r) = Z Fr—ne(s)  ¢€LXV), reV.

Then if {V,.} is any suitably restricted sequence of finite
subsets of I" we show that

lim | Fy, | = lim {max | (Fr,p, ¢) |} = I f e

n—e [lolly
where | F» | is the operator norm of F on L%(V') and (Fro,p)
denotes the inner product of F¢ and ¢ (over V),

This result is then translated into a statement concerning
a special class of infinite matrices which generalize the
classical Toeplitz matrices. We then apply these results in
evaluating the norm of a special type of linear operator,

In [1] the author considered the asymptotic distribution of eigen-
values and characteristic numbers of certain sequences of operators
{F, } over a locally compact group I" associated with sequences {V,}
of Borel sets of I of finite nonzero measure satisfying

*) m [YV, A V.|| V.l =0 for all ye I,

where | | is left Haar measure on I'. We write {V }e W, and say
{V.} has the weak ratio property in case (x) is satisfied (see [2]).
In this paper we are considering countable Abelian 7" and a more
general family T, of sequences {V,} than those in W, (and hence in
general the asymptotic distribution of the characteristic numbers of
{F,} does not exist, [2]) but still restricted enough to guarantee an
asymptotic formula for the mawximal characteristic number of F', as

N — oo,

1. The basic theorem. I° denotes an arbitrary countably in-
finite discrete Abelian group equipped with the counting measure.

DEFINITION 1. A sequence {V,} of finite nonempty subsets of I”
has the translation property, written {V,}e T,, if and only if to
every finite subset Iy & I" there corresponds an n, = n,l",) such that
for n = n, there exists a 7, =7, (el with the property that
7, + L& V,.
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ProposiTiON 1. (i) {V,}e T, and V,S V} for ne N* implies
(Ve T, (il W, is properly contained in T-.

Proof. (i) is immediate from the definition. To prove (ii), first
assume {V,}e W, and fix any finite nonempty subset ', S I'. Set
C=1I,U{0}., We then readily conclude (see [2] where many pro-
perties of W, are established)

@ lim L€+ Val _

— 00
" nl

But C+V,=U:er (ct+T)UV,. Hence if ¢+ &V, for all
teV,, we have |[(t+ 1)~ V,| =1 for all ze V, and consequently

@ C+ Valz |Vl + el

PAY
since we may choose |V,| elements ¢+ v.¢(c + I ~ V,, where
teV, and 7v.e€ 7, and no element is duplicated more than |I7,| times.
But for sufficiently large n (2) violates (1) and therefore there is a
z,€V, for which 7, + I', € V,. Hence W, <= T,.

We now show inclusion is proper. For let {V,}e W, (O, by
[2]); we shall construct a sequence V; 2 V, such that {V}}e¢ W,
which completes the proof of (ii) upon appealing to (i). Fix any
vel' ~{0}. We inductively construct a sequence vi*,.--,v}) as
follows: vi® ¢ V, + {0, =7}, and

D vt e (VU o, o0 + {0, 27} @=k=|V.)).
We set Vi=V,U{™, ..., vi"} and verify that

[(v + VI N Vi
| V|

A

% (ne N+

implying {V}¢ W,. For

ry+VHInv;
=((v+V)NVHU{r + v, e, v + ”W g NV, U y e Vi)
=((v+ V)N V)

since the second term in the union is empty by (I). Hence
f{(r+VNVil=s|v+ V,| =]|V.|, and therefore for ne N*

o+ VONVE _ 1o+ VanVel - 1V.l _ 1

Vi - 2|V, 21V, 2’

We now prove a result, of independent interest, which is critical in
the proof of Theorem 1.



TRANSLATION KERNELS ON DISCRETE ABELIAN GROUPS 529

ProposiTION 2. Let G be a compact Abelian group (with measure

normalized to one), let fe LNG), and let p be any positive number.
Then

1£ 1l = sup | | | 0@ @i

where @ ranges over all trigonometric polynomials on G satisfying
o, = 1.

Proof. Recall that a trigonometric polynomial is a finite linear
combination of characters on G. Clearly

1o rr@ds | <1171 lo@ds = Fll ol < 117

We divide the proof of the converse inequality into two cases:

To prove the converse inequality, we first consider the case
Hflle < 4. Fix any 6 > 0 (until the conclusion of the argument).
Let S = S(9) be a measurable subset of the complex plane of dia-
meter less than 6 and such that

E = f78), [ xeflle = [ flle

where y, denotes the characteristic function of E. Hence for se S
and € £ we have

sl = 1QeN@ I =1s — QN <0,
and consequently also

Hsl=lIfllel=1ls] = llxeflls]1 = 0.
Therefore, if g = y,/| E| then

0=l ~ | | foaw| = 1151~ tsit+ [isi—| | fods ||
@ =Sl —lsll+ |5~ | fods |

— 1 Flle — Is1]+ lﬁSE(S*fo)dx' <9,

We next wish to approximate g by a continuous function n, and
at this point the estimate is rather delicate because this is also
needed later in the case ||fl|l. = + and consequently we must
avoid || f|l. as a factor in the error of estimation. Now since
JSe LNG), to every ¢ > 0 there corresponds an % = 7(¢) such that for
all measurable subsets T of G of measure at most %
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ST]f]dx<s.

We now choose v = () satisfying
@ ) v<dlE| (i ST}f|dx<5]E| it T <.

Furthermore, since Haar measure is regular, we may find an open
set E+ and a closed set £~ such that

(@) E-CECE+, |E+~E-|<~.

Finally (by Urysohn’s Lemma, since G is a normal topological space)
there exists a continuous #%,: G—[0,1] such that A,|E~- =1 and
h,|G ~ E* = 0. Our candidate for % is then defined to be the nonnega-

tive function » = h,/| E'|. Let us now estimate S fodx — S fhdx :
G (2]

|| fodw = | rnas | < | 17119~ n1do

& =+ .+ Jsg-niaa={  iri1g—nlda

émaXlg—hlSE+~E_Ifldx§l—é—l—-5|Et =5

by (4), (4') and the definitions of g and A. Also, we have
S hdx§S hdw:S hdw < || 1|l | B+,
E— G Et

implying the estimate

(6) ll—%l <lhl= IIEELII <1+ 6 by virtue of (4) and (4.

Lastly, to any a > 0 we may correspond a trigonometric polynomial
o, satisfying || A" — w,]||l. < a, and consequently || A" — |®,||l. < @
since 2 = 0. Thus by choosing «, = «,(0) sufficiently small we may
conclude

() 17 =@ * | =17 = | @ ||l <.

Also,
|of il = 1h — g Il + 12, =0+ X +0)=1+20.

We now let

® = @, /(1 + 20)"*, implying [[w|, = 1.
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Finally,
o] =2 || o, fiz |
® = gl || pwde] - || ods | shas] - | sdo - | Jopsas))
2 =l flle = 20) =0 =3 1711

By (8), (5), and (7). Our assertion follows upon letting ¢ — 0.

In case || f]l. = +, we let S, be a measurable subset of the
complex plane of diameter less than ¢ and such that E, = f~'(S.),
%z, flle > n. Equations (3) — (8) still hold with || f|l. replaced by
| xz,f |l > n wherever it occurs, and we readily construct trigono-
metric polynomials w, with ||w,||, £1 and such that L[a)nlf’fdx is

unbounded as % — + 0.
We now are ready to prove the basic theorem.

THEOREM 1. Let G be a compact group (with measure normalized
to ome), let fe LNG), and let F = fe L"), the Fourier Transform
of f. Furthermore, let {V,}e T, and let F, be the Hilbert-Schmidt
operator on LXV,):

(Fr)) = | FO = opie)ds = 3, Fr = (o)
(veL¥V,), veV,).

Let (Fy 4, v)y, denote the immer product of F, + and + over V,,
and let | Fy | denote the mawximal characteristic number of F, as
an operator on the Hilbert space LXV,). Then

(1) lim max [(Fv, 9, ¥)r, | = [If]l- -
(ii) Im|Fy | =1f]l.

Proof. (i) By definition,
Feuts Dy = 3, O = @b
s, || 7= arwas e vm

7sTeV,

=[5 @ ovewavm | e

|, |3 o) e

Note that
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0y(@) = 3 (7, 24 (2)

is a trigonometric polynomial on G, and + — @y is an isometry of
LXV,) into LX(G) since ||@y [l = Seey, [¥(2) ' = [[¥ [ Therefore

) max | (Fy,, ¥y, | = max | | |o@)] fe)ds
N llg=1 le=t1 J&

where w ranges over linear combinations of characters on G generated
by elements in V,. Hence by Proposition 2 (p = 2),

lim max |(FV,,[‘/T "/’)an = ||f”o° .

n—oo ||ypllg=1

On the other hand, let w be any trigonometric polynomial on G,
say

() :1ék(7iy z)e; (c;el, v;el).

Let I'y={v,+++,7}, a finite subset of I". Now since {V,}e T,
there exists an n, such that for n = n, there exists 7, e " such that
z, +I'y< V,. Hence for n = n,,

wn(x) = (T*rn x)w(x) ::IS}':SI:(T"L + Vis x)ci

is a linear combination of characters on G generated by elements of
V.. Since |o(x)| = |w,(x)| for all x e G, the proof of (i) is completed
by again applying Proposition 2 with p = 2.

(ii) Recall that |F, | is the norm of F, considered as an
operator on LXV,), i.e.,

| Fy, | = max || Fy 4], .

ligpllg=1

but by the Cauchy-Schwarz Inequality, for ||+, =1

l(FVn”‘/f: ’HZ')V,,l = ||FV,,L"$1"H2H“#||2 = HFVW’WHZ = ]Fan
and therefore by (i),
lim|Fy | = lim max | (Fy 49y, | = ([l .

n—oo - |yl
Thus, if || f]l. = + c nothing remains to be proved. If ||f]. < +co
we have fe L'(G) N L=(G), and therefore by [3], p. 445, | F, | < || fll

for all neN*. Hence lim,..|Fy | < fll., and consequently
lim,_.. | Fy | = [ fll~ in this case as well.
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We now conversely prove that the hypothesis {V,} e T, is in fact
necessary for the conclusion of Theorem 1. More precisely,

THEOREM 1’. Using the notation of Theorem 1, if {V,} is any
sequence of finite subsets of I" for which conclusion (i) holds for all
trigonometric polynomials f on G, then {V,}e T,

Proof. Assume {V,}¢ T,, i.e., there exists a finite subset I, of
I" such that no translate of I, lies in V, for an appropriate sub-
sequence m — <o, We then assert that

flw) = |[, 2 Z(T x) (1 flle = A(0) = 1)

is a trigonometric polynomial for which (i) fails. More precisely we
show for all these m:

Max | (B, vm | S(1 = 52 i Fle

ligellg=1 AWAN

Recalling relation (1) of the proof of Theorem 1. We have:

() Max | (Frut, #)rm | = Max | | [0(0) [f(@)da |
where ® ranges over all linear combinations of characters on G

generated by elements in V.
However, any such ® is of the form

o(x) = Z, (7, ®)a.

TeVm

where
Slaf=jekst,
implying
0@ = 3 (@ - T,
and finally

| Jo@feds =1 5 aa,.

Consequently,
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P 1 1 2 2
|0 prea) = lg%.erolanl LR 2fFoI:;:,2Z:erg(|a“| + la.P)
__1 (V.
—2‘Fl(21arlu<v 20T
+ ZV @, 1@ — V) N 1)
= {m~1>2|a,112+1ro|21a,212}

I

)fezv‘ﬂ o l'= (1 - 21;(,;)

zr7y) 1 -

1

(
(t-

since no translate V,, — 7z, contains I, by hypothesis. Our assertion
now readily follows.

2. A class of doubly-infinite matrices. We now translate the
theorem of the preceding section into a statement concerning a class
of doubly-infinite complex matrices M = («;,;);;-; whose entries a;;
are determined by a “group law?”.

DEFINITION 2. Let M = (a;;)7;-. be a matrix with complex
entries. We then write

~(I", 4, F)

if and only if

(i) I is a countable Abelian group.

(ii) 4 is a subset of I.

(iiily F: I'—¢.

(iv) There exists an ordering of 4 = {\, +++,\,, ---} such that
for all 7,j5e N,

a,; = FQ\ — ).

REMARK. For any M = (a;;)7;-;, with complex entries we may
take I" to be Q*, the multiplicative group of rational numbers, and
A4 to be P = {p,: ne N*}, the set of all positive integral primes, upon
defining F' by

F(r) = {ai,j if r = pi/p;
0 otherwise .
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We then have M ~ (Q%, P, F).
Under suitable restrictions on (I", 4, F') we shall be able to compute

the norm and quadratic norm of the matrix M, which are defined
as follows:

DEFINITION 3. The norm of M, | M|, and the quadratic norm of
M, | M|,, are defined by

| M| = sup [[MX|,, |M| = sup |(MX,X)|,

X|lgs1 Xllg=t

where X = ({x;}) ranges over elements of the complex Hilbert space
I* with only finitely many «; = 0, and MX = ({3;a;,;2;}).

LeMMA 1. If M induces a bounded operator on I*, then

() |M|= sup || MX|, G |Ml= sup |(MX, X)|,

where X = ({z;}) ranges over all elements of I! (with || X[, =1
Hence in this case | M| is the standard morm of M considered as a

bounded linear operator on [

Proof. For xecl? let X, be the projection of X on its first n
components (0 elsewhere). Since M is bounded and consequently
closed, lim, ., MX, = MX and (i) follows since X, has at most =
nonzero components. Also

and therefore

| (MX, X) — (MX,, X,)|
S IMEX - X)L Xall + | MX LI X — X, |, —0

as n— oo, and (ii) clearly follows.

THEOREM 2. Let M ~ (I", A4, F') where

(i) FeAWl), ie., F=F for some fe L{G).

(ii) To each finite subset I'y = I" there corresponds a v = v(I7)
such that v+ I') S A.

Then | M| =|M|; = ||flle.

Proof. Assume A = {\, -+, \,, ---} a8 in Definition 2, and set
V.={\, -+, n,}. Then hypothesis (ii) clearly implies {V,} € T.. The
theorem will follow from the two inequalities

(1) M| =Sl

(ii) [ flle = | M|y,
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since | M|; < | M| by the Cauchy-Schwarz inequality.

(i): If [|flle =+ there is nothing to prove. Otherwise
fe L(G) N L=(G), and therefore the operator M': L*(I")— L*(I") de-
fined by

M'p)n) =2 F(v — Dgpt)  (pelXD), vel)

has norm |M’| = |/ f|l. by [3], §3.2., p. 441. Hence if we only
consider ¢ with support in 4 and restrict v to 4, M’ restricts to an
operator M": LXA) — L*4) with |M"”|<|M’'|. Now consider the
isometry of I* onto L*) given by X = ({z,}) ~ @ where o()\,) = 2,
for ne N*. Then for this ¢ = ¢, and ;€ 4,

(M"P)n) = 2% Fhi — Mp(h) = ;F i = M)p(hy) = gaiﬂj

which is the <™ component of MX, and therefore |M|=|M"|<
[ M'| =] flle (and thus M induces a bounded linear operator if
[l < +00).

(ii): For me N™, consider the isometry of L*(V,) (which is none
other than n-dimensional Euclidean space) into [I* given by ¢ — X,
where X, = ({x¢}) and 2¢ = p(\;) for 1 =<j<mn and 0 otherwise.
Hence X, has only finitely many nonzero components, and each
X e l* with only finitely many nonzero components is in the image of
LAV,) under the above isometry for » = n(X) sufficiently large.
Now consider F, on L¥V,):

Fv, 2, v, = 22 20 Fv — A)P(N)P(Ns)

1fign 15)=n
= Z a{i’jxjfi == (MX(;, Xg;) (in ZZ) .
But by Theorem 1 (i) lim max l(F,, ?, @), | =1l fll. and therefore
n—oe ||@]lp=
| M|, = || f|l. since

| M|, = Sup. JMX, X)| =lim max |(Fy, 9, @)y, | = [ fll .

n—oo ||¢] PEY
ﬁeo flmtely

COROLLARY 1. (1) Hypothesis (i) of Theorem 2 is satisfied if
(iy SHFMF < 4o

(2) Hypothesis (i) of Theorem 2 is satisfied if
(iiy A+ A4S 4 and (i) 4 generates I' .

Proof. (1), (i)’ implies f(x) = >}, (7, 2)F(v) € L}(G) and therefore

also fe LYG) since G is compact and hence of finite measure. Clearly
F = fe A(D).
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(2) First note that any element of I" is the difference of two
elements in 4, ie., I'=4 — 4. For by (ii)”, if vyeI’ we have
Y=N, + +e + N — --+ —\;, for some suitable finite sequence of
integers ¢, -++, %, (if no terms with a plus sign occur we may take
k = 0, if none with a minus sign occur take % = n). But by (i)Y,
Yh=N d e N €d i ES>0, v=0, F e N €4 i B <
If ®'=0 we may write vy =% — (\, + --+ + A, + ) and similarly
T=MN + cor + N, +A) — i B = .

Now let I'y={v, ---,x;} be a nonempty finite subset of I
Then for appropriate a;, b;¢ N* we have

71':7\144:—%:1,1: (1§i§k).

Consequently, for 1 £ 1<k,
Vi = Ny + Ag, A ee e +ibi+ e N, = (g e N

where (*) denotes deletion of a term. Hence if we set 7=
Ny, 4 +++ + Ny, We have v + ', & 4 since

1

Moy F Np, oo +’)§bi+ cee €4

by (i)

We now apply Theorem 2 to completely solve the norm evalua-
tion in the case M ~ (I", 4, F') where F = 0 and A satisfies (ii). We
make use of the following simple lemma.:

LemMA 2. If M = (@;,;)7= and M' = («; ;)s;=, where

a;=za; =0 for all ©,7e N+

then

(1) | M| = sup | MX|, |Mi :HSle(MX’ X)

zllg=l z{lg=
where X = ({x;}) has only finitely many mnonzero coordinates, all
positive,

(i) M| =M, M| <|M|.

Proof. For X = ({x;}) € I* we define X* = ({|z;]}). Note || X||, =
1X*|l, and X* and X have the same cardinality of nonzero co-
ordinates. Also, «;; =0 clearly implies ||MX|,<| MX*|, and

[(MX, X)| < (MX*, X*) and (i) readily follows. But «;;=a};=0

also implies each component of M’'X+ is dominated by the correspond-
ing component of MX* and hence (ii) follows from (i).

THEOREM 3. Let M ~ (I', 4, F') where
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(i) F(v)= 0 for all ver.
(ii) If I'y is any finite subset of I' there exists a v = v(I',)
such that v + I'y S 4. Then

M| =|M|, = rZ‘}F('Y) (possibly + o) .

Proof. Since | M|, < | M| it suffices to show that

O IM=2Fm, @ [M=XF).

If 3,.-F(7) < + < there is nothing to prove since in this case
the result is included in Theorem 2 because f(x) = >, (7, 2)F(7) is
a continuous function on G, F = 7, and || fll. = f(0) =3, .-F(v).

On the other hand, if >,..F(7) = + then F may not be in
A(I") and hence we cannot apply Theorem 2 directly. Clearly (1) is
true in this case and we need only verify (2). Let I” = {7, -+, 7.}
be any finite subset of I" and define

Mr' = (“5,})21:1

where

.o {F('yy) if Ny — N, =v, el
0 otherwise ,

25

i.e., Mpr ~ (F, A, F['/) Where Fp/(/\/) = F('Y)II’/(’Y)- Since F 2 0, a’m- _Z.
al’; =0 for i,je N*, and Lemma 2 implies | M|, = | M, |,. But by
Theorem 2

| M |, = ess sup TXE;,(% 2)Fr(7) =72;,F(’7)

since >, . (7, 2)F.(7) is continuous and F,, = 0. This in turn implies

| M|, =z sup >, F(7) = +oo .

[Fti<+ooret’

COROLLARY 2. Under the hypothesis of Theorem 3.

M| = M) =sup (3 ;) =sup( 3 a).

ieNt Njent jeNt Nient

Proof. We prove only | M| = |M|, = sup;ey+(3,je v+, ;) the proof |
of the other equality being similar. By Theorem 3. we need only
Verify SupieN+(ZieN+ai,j) = ZTGFF((Y% First

_Z+ai,j = _Z+F()"i_“)"j) =X FM=sXYF().
jenN jenN rel,—4 vel
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Let I"={v,-+-,v.,} be any finite subset of I" and let I, =
{0, —v,, »-+, —7v,}. Condition (ii) insures the existence of an a € I" such
But

that ¢ + I'y < 4. In particular ae 4, say & = Ny

e -ry=a—@+I)S  y—4,

and thus for 7 = k(a) we have

Ses= S F0)zSF0

iEwt re diia—

since F' = 0, and our assertion follows.

3. An application. In this section we apply the results of
§ 2 to evaluate the norm of a special type of linear operator.

DEFINITION 4. Let T be the circle group, considered as the real
numbers B+ mod 27, and let L* = L¥T, dt) be the associated Hilbert
function space with respect to normalized Lebesgue measure. Let

7 < L* be the submanifold
A = {fe L g ftydt = 0} .
T

Furthermore, let Z' = Z ~ {0} and for a = {a¢,},., € L'(Z’) define
H,: 7 — _# by
(H.F)(@) =n€§;l!,anf(nt)

(where equality of functions is to be taken in the L*? sense).
We now show that the mapping « -~ H, is a one-to-one bounded
linear transformation from LYZ’) into .~ *, the dual space of .#.

For
VHfI: = | 5 aufnt) S an7md) |

S e fedfimh)|| < 3 la,||anl [ fnOfm) |l

= |lalIF

m,ne Z!

S lautlanl I F@OL 1| fmt) L = ( 3 lau]) 1171

myne

since || f(nt) |, = || f(¢) ], for all neZ’.
Also, fe _ implies H,fe _# since

<

=l

Therefore || H,|., <|lall.

[, N0 = 3, 0. smvar =0,

Therefore, since H, is clearly linear, H,e_#* and the mapping
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a~> H, is bounded and linear from LYZ') to _#*. Finally, the
mapping is one-to-one since

H,(¢") = Y a,e" =0=a=0.

nez’

We now apply Corollary 1 to evaluate the norm of H,.

THEOREM 4. Let a = {a,},., € LNZ’), and for rec@Q* let

Firy= 3, a.@, .

min=r

Then

| H, |, = max | 3 (r, )F(r)|*

meQx reQx
where Q% is the compact dual of the discrete group Q.

Proof. Let fe_# and let the Fourier expansion of f be
f@) = 3>, be™.
mez’
Then

(H ) = n%, a, f(nt) = n%/ a,l S bmeimm]

mez'
— E anbmeimnt — Z Cpeipt ,
m,neZ’ ez’

where ¢, = Dnnep mnez@:bn, and L* convergence is the justification
for the rearrangement of summation. Therefore

NH.fE= 3 e, = 5 ( S oab, S an,bm,)
vez’ ve2 \mi-p mies
m,neZ mryn' € gt

= 3 ababe =3 {( 3 a@).b.)

m,n,m’,n’ ez n,n’ €z’
mu=m'n’ nln=m/m’

where the manipulation of the quadruple sum is justified by absolute
convergence :

5 1@8aabe = 3 Jauilanl( 3 (bl (ba)
RNy A4 n,n’ € Z' m,m’ ez’

m
m'n’ n'[n=mim’

< 3l llanl( 310 F) = lalklIfIE <+

n,n' €

by Cauchy-Schwarz. Upon setting
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Uiy = 3, Anly :F(l> for i,je 2’
miATil I,
and
M= (a;) (order Z’'=(1, —1,2,-2,.-.)),
we obtain

M~ (@2 F).

Also, upon identifying .# with &#* by f— X; = (b, b_,, b,, b_,, -++)
we have

| Hofll: = (MX;, X)) .

But
SIFn =2 |F(2)] s 5 S lallel
AR A
>0 >0
=(Slal)=llalt < +e
nezg’
and hence

f@w) = 3. (r, ®)F(r)

rEQx

is a continuous function on Q% with Fourier transform F. The
theorem follows wupon applying Theorem 2 (Corollary 1 (i)) to
M~ (Q,Z,F).

COROLLARY 3. If a = {a,},cp € LNZ’) and a, = 0 for all ne Z’,
then

| Heollop = Il ]l

Proof. By Theorem 4,

H Hvzp ||op = ma‘AX > (7, x)F(r)

zeQX reQX

S 1 F0) ) =lall

re@*

1
23(

since

0,2 0, [Fr)| = 3 a,a,, and 3| F()| = [lali.

X
m,nez reQ

But upon setting x = 0 we obtain
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1
2

1 1
S0, 0Fm |f=| 3 Fo) P=( = 1 F0) ) = llal,,
re@” reQx re@*
and thus the proof is complete.
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