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Let X be a separable Banach space, B(X) be the algebra
of all bounded linear operators on X, and & be the algebra
of all compact linear operators., This paper centers around the
general question of giving a construction of B(X) as a Banach

algebra starting from Z°.

It is a result of Schatten and von Neumann that if H is
a Hilbert space, then there is an isometric imbedding of B(H)
onto & **, where & ** denotes the second dual of &°. More-
over, each of the two Arens products on & ** coincides with
the multiplication induced on & ** by operator multiplication
on B(H), The proofs of these results make strong use of the
Hilbert space structure.

In this paper we generalize these results to a large class
of uniformly convex spaces, Moreover, we show that even
when B(X) is not equal to & ** it is still possible to con-
struct B(X) as a Banach algebra starting from Z°.

We now amplify the above statements. The theorem of Schatten
and von Neumann is proved in [9, p. 48]. See Civin and Yood [2,
p. 869] or Rickart [8, p. 289] for the result on the Arens products.

In § 2 we give basic definitions and elementary results concerning
Banach space bases and linear operators. In § 3 we prove the exis-
tence of an isometric imbedding from B(X) into Z”**, under the as-
sumption that X has a shrinking, unconditionally monotone basis.
Also, we show that under the same assumptions, a sufficient condition
for the imbedding to be surjective is that X be uniformly convex.
In §4 we prove that the imbedding is surjective (=) the two Arens
products on = ** coincide, and in that case they coincide with the
multiplication on & ** induced by operator multiplication on B(X).
Finally, we show that for a certain class of Banach spaces, B(X) is
characterized as the largest subset of & ** in which & is a 2-sided

ideal.
2. Preliminary definition and results,

DerINITION 2.1. A basis (¢;) in a Banach space X is a sequence
of elements of X, such that for each x € X, there is a unique sequence
of scalars (a;) depending on z such that lim,_.|| X%, ae; — x| = 0.
The coefficient a; is called the j™ coordinate of x. It is a theorem of
Banach’s that if you define ¢f by ef(e;) = 0;;, then ef is in X*. A
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basis is called shrinking if (e¢f) is a basis for X*. A basis is called
unconditional if for each z € X, the series 3.7, e/ (2)e; is unconditional-
ly convergent.

DEFINITION 2.2. If (¢;) is a basis for X, let U,x = 3,.c. e/ (®)e;.
Then (e;) is called a monotone basis if || U,x|| < llz|| for all x in X
and integers m.

DerinITION 2.3. If (¢,) is an unconditional basis and D is a sub-
set of the positive integers, let z” = 32 ;.p ef(®)e;. It is clear that
2? is convergent, since in a Banach space an unconditionally conver-
gent series is also subseries convergent. Then (e;) is called uncondi-
tionally monotone if {|{2?|| < ||#|| for all 2 in X and subsets D C w.

ProprosiTiON 2.1. If X s a Banach space with an unconditional
basis (e;), then X can be renormed isomorphically so that (e;) is an
unconditionally monotone basis.

Proof. The norm [{z|]" = sup {||x”|]: D is a finite subset of w} is
isomorphic to the original norm, and has the property that every rear-
rangement of (¢;) is a monotone basis for X[4, p. 73]. Suppose that
(e;) is not unconditionally monotone with respect to the new norm.
Then there exists a subset S C @ such that

oo ’ co ’
; el < || X ase;
= 2€8
Hence, for n large enough
’ 14
Z ae;) < Z a;é;
jsn jEm,j€8

But this contradicts the fact that if we rearrange the basis (e;) so
that we take first all the 7 in S and <, then it is a monotone basis.

Next we use a theorem of Maddaus to investigate &, the space
of compact operators and its dual.

NoraTioN 2.1. E;; will denote the elementary matrix with a one
in the 45 coordinate and zeros elsewhere.

DEFINITION 2.4. By a matrix concentrated in the j** column (row),
we will mean a matrix whose entries outside the j™ column (row),

are all zero.

THEOREM 2.1. Let X be a Banach space with a basts (e;). For
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each compact operator A, let A, be the operator whose matrix consists
of the first nm rows of A and zeros elsewhere. Then A is the uni-
SJorm limit of the A,.

Proof. This is proved in Maddaus [6].

ProrosiTION 2.2. Let X be a Banach space with a basis (e).
Then for each fixed j, the set of matrices of & concentrated in the
7™ row 1is linearly isometric as a Banach space to X*.

Proof. Let R be the matrix of an operator in & concentrated
in the j*® row. Define a(e,)=R;, and extend « linearly to finite linear
combinations of (e¢,). Let x = 372, be,. Then a(x) = 3., b0.R;, and
R(x) = p-1 bR )e;. Then since |a(x)| = || R(x) || for each such z, «
can be extended to a functional & ¢ X* and the map R — « is isometric.
This map is surjective because given a ¢ X *, define the matrix R con-
centrated in the j® row with R;, = a(e,).

ProrosiTion 2.3. Let X be a Banach space with an uncondi-
tionally monotone basis (e,). Then for each fixed 7 the set of matrices
of & concentrated in the j™ colummn is linearly isometric as a
Banach space to X.

Proof. Let C; be a matrix in & concentrated in the j* column.
Consider the map C;+— C,e;. Clearly ||Cje; || £ || C;ll. For the other
inequality, consider = = b;e; + 3..; b:e; with ||2}| = 1. Then by un-
conditional monotonicity |b;] < 1. Hence,

HCs |l = [ Cibse) || = [ Ciesll

ProroSITION 2.4, Let X be a Banach space with a shrinking
basis (e;). Then, with each f in & * we can associale a matric so
that f = g<{=) their matrices coincide.

Proof. First, we will show that the marices with a finite number
of nonzero entries span a dense linear manifold of &

Given a compact operator A and >0, choose n so that ||A—A4,[| <
(¢/2), where A, is the matrix consisting of the first » rows of A.
Let R; be the operator A, followed by the canonical projection onto
the 1-dimensional subspace spanned by [e¢;], for 7 =1,2,..-,n. The
matrix for R; is simply the j® row of A, and all other rows zero.
Using the fact that the map in Proposition 2.2. is isometric and the
hypothesis that (e¢,) is a shrinking basis, it follows that each of the
matrices R; can be approximated to within ¢/2n by deleting (i.e., re-
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placing by zeros) the tail of the j* row. Therefore, by the triangle
inequality A can be approximated to within ¢ by a finite matrix.

For f in &"* we can define the matrix (f;;) by fi; = f(F;;). Then
if f and ¢ have the same matrices they are equal.

PropoSITION 2.5. Suppose X is a Banach space with an wncon-
ditionally monotone basis (e;) and T is in B(X). Then the matrix
obtained by deleting (i.e., replacing by zeros) any set of rows or
columns from T is in B(X) and has norm < || T||.

Proof. Fix a subset D Cw. Define Px = 37 ,ef(x)e;. Then,
| TP@) || = [| Tl Peil = | Tl l«]l. Thus, || TP|| = || T]|. Also note
that the matrix for TP is formed by deleting the 7 column from 7T
for every j¢ D.

Similarly, || PT|| < || T|| and the matrix for PT is formed by
deleting the j** row from T for every j¢ D.

ProPO3ITION 2.6. Suppose X is a Banach space with an uncon-
ditionally monotone, shrinking basis (e;), and that f is in & *. Then
the matrix obtained by deleting any set of rows or columns from the
associated matrix for f, is the matrix associated with a functional
i & with norm <\ f|].

Proof. Fix a subset D Cw. Let d: " — & be the linear trans-
formation which deletes the 7 column for each j¢ D. Then its ad-
joint d* has norm 1. Note that (d*f)A = f(d4). Hence, the matrix
for d*f is formed by deleting every j* column for je¢ D.

The argument for deleting rows is similar.

PROPOSITION 2.7. Let X be a Banach space with an uncondi-
tronally monotone, shrinking basis.

(1) For each fixed j, the set of malrices in & * which are
concentrated in the 7% row 1is linearly isometric as a Banach space
to X**.,

(2) For each fized j, the set of matrices in < * which are
concentrated tn the 3 column s linearly isometric to X*.

Proof. (1) Let f;e=* be concentrated in the j* row. Define
sef)y=f;.. Extend ¢ linearly to finite linear combinations of (e¢f). It
follows from Proposition 2.2 that ¢ can be extended to a functional
in X**, Moreover, ||o]| =i f;|] since f; approaches its norm on com-
pact operators of norm one, concentrated in the j** row. The map
fi— ¢ is surjective because given ¢ € X**, the matrix whose j* row
is given by f; = (ef) and whose other rows are zero is in & *.
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(2) The proof is similar.

3. An imbedding theorem. We are now ready to give an iso-
metric imbedding of B(X) into & **.

THEOREM 3.1. If (e;) is an uncondionally monotone, shrinking
basis for the Banach space X, then there is a linear isometric map
from B(X)-— &** such that each A in & is taken onto its usual
image under the evaluation map of & — & **.

Proof. Given T in B(X) let R; be the matrix consisting of the
7 row of T with zeros elsewhere. Define @, in & ** by @,(f) =
S f(R;), where fis in &* and || f|| = 1. We must show that the
series 3.7, f(R;) is convergent. By Proposition 2.5.

|f(By, + -+ + B;)) | = I T]|

for an arbitrary set of integers {j,, ---, j.}, since the left side repre-
sents f applied to a compact operator formed by deleting rows from
T. It is clear then that the series }.7, f(R;) is unconditionally con-
vergent.

The map T+ @, is obviously linear, sinee matrix addition and
taking limits are linear operations.

= lim

n—oo

12:) | = | S AR) < IAIITH

(G R)

since >\7., R; is a compact operator of norm <||T||. Hence, @, is
bounded and || @, || =< || T'||. To prove the reverse, first, we note that
[l >.7-, B;|| approaches || T'|| as » approaches «. Then, given ¢ > 0,
take || >3-  R;|| > || T|| — e. Since >\'., R; is compact, we can find
by the Hahn Banach theorem a ¢ in &* of norm 1, such that

g(éRj>>HT||—e.

Then let g” be the matrix formed by deleting the columns of ¢ past
the n™. By Proposition 2.6., [|¢g”]| £ 1, and we have that @,(¢9") >
| T|| —e. Hence, ||9,| = || T|| and the imbedding is isometric.

Then as we noted in Proposition 2.4., the finite matrices form a
dense manifold of &. It is clear that @ and the evaluation map agree
on all finite matrices in &~ and hence on all of &

ProrosITION 3.1. Let X be a Bamnach space with an uncondi-
tionally monotone, shrinking basis. Then B(X) = &** under the
previous imbedding (=) the set of finite matrices in & * is a dense
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linear manifold. Moreover, in that case X 1s reflexive.

Proof. If the set of finite matrices is not dense in &*, then
there exists a nonzero F' in & **, which is 0 on all finite matrices.
However no @, for nonzero T in B(X) can have this property, since
if T has the entry T;; # 0, then @,(f:;)=T;; where f;; is an elemen-
tary matrix in <*.

Assume the finite matrices are dense in z*. Let © be an arbi-
trary functional in X**. Then by Proposition 2.7., = can be identified
with an fe @ * which is concentrated in the j® row. Since the finite
matrices are dense in &%, 37, fi:€, converges in norm to 7 and hence
X is reflexive.

Given Fe & **, define the matrix (F};) by F;; = F(f;;). F is de-
termined by this associated matrix. By reflexivity and Proposition
2.7., it follows that each column of F' represents an element of X
with respect to (¢;). Then let T, be the matrix consisting of the
first » columns of F. It is the matrix of a compact operator. Fur-
thermore @, (f) = F(f”) for each fe z*, where f” is the matrix
formed from f by deleting all the columns past n". Hence, || T, || =
|, || <||F||. Define the operator T by T(S..a;e;) = To(S)i, ae;).
T is well defined on the set of all finite linear combinations of the
(¢;), and has norm <|| F'||. Hence, it can be extended uniquely to a
bounded operator on all of X. It is clear that F' = @,, since F' and
@, agree on all finite matrices in =*.

The next proposition puts Proposition 3.2. into a more workable
form for applications.

PROPOSITION 3.2. Let X be a Banach space with an wuncondi-
tionally monotone shrinking basis (e;). Then, B(X) = & ** {=) for
each f in &%, || f¥|| — 0, where f~ is the matrix formed from f by
deleting the first N rows and N colummns.

Proof. We will show that the condition on the right is satisfied
{=) the set of finite matrices in = * span a dense manifold.

Suppose that the finite matrices are norm dense in = *. Given
¢ >0 and fe & * there exists a finite ¢ such that || f— g | <e. Then
since ¢ is finite we can pick N large enough so that f = (f — g)~.
By Proposition 2.6. ||[(f— )" || = || f— gl <e.

Conversely, suppose || /¥ || — 0. Given >0 choose N large enough:
N =11 —(f— /"] <e/2. The matrix for f — fV is not finite,
but can be approximated to within ¢/2 by a finite matrix.

The next proposition shows that if B(X) == & **, then the Banach
space X behaves very much like (¢,), the space of sequences which
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converge to 0.

ProposiTION 3.3. Let X be a Banach space with an uncondi-
tionally monotone shrinking basis (e;). If B(X) # &**, then for
every ¢ > 0, and integer n, we can find an x of norm 1, such that
x=2a, + -+ + x,, where each x; is a finite linear combination of
distinct sets of basis vectors and || ;|| =1 — e.

Proof. By the previous proposition there exists an f in &* such
that || /¥ || does not approach 0. The ¥ decrease in norm, since f¥+
is formed by deleting a row and a column from f¥. We can assume
without loss of generality that ||f¥||—1 and never achieve it as
N— ., Then, given A>0, there exists an integer N,: || /|| < 1+A.
Since the finite operators are dense in the compact operators there
exists an integer N; > N,, and a finite operator 7T, of norm 1: T, is
concentrated on the manifold X, spanned by [ey,, -+, e5:] and f*(T,)>1.
Let N, = N/ + 1. For f*: there exists a finite operator T, of norm
1, concentrated on the manifold X, = [ey,, * -+, ex;]: /7%(T,) > 1. Repeat-
ing this process % times, we can construct 7T, --., T, such that
fY(T,) > 1, and the T, are concentrated on disjoint basic blocks of
X. Hence

n<PUT) + ooe o+ fAT) = AT, + e + T)
<UUNT A+ - + Tall

and n/l + N < || T, + --- + T,||. This means that there exists an
of norm 1, where x = «, + --+ + z,, each %; is in X, and such that

o <@t TRl S N Tl 4 -+l Tl

However, A > 0 was arbitrary. By picking » > 0 small enough, we
can find T, ---, T,: the sum || T2, || + +++ + || T2, || is as close to n
as we wish. By unconditional monotonicity, each ||2;|| < 1. Thus,
|| Tix; || < 1. Hence, each || Tix;|| and ||«;]|| will be close to 1.

LemmMA 3.1. A wuniformly convex Banach space is reflexive.

Proof. See Wilansky [10, p. 109].

LEMMA 3.2. If X is a reflexive Banach space with a basis, then
the basis 1s shrinking.

Proof. See [10, p. 213].

THEOREM 3.2. If X has an unconditionally monotone basis (e;)
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and X 1is isomorphic to a uniformly convex Banach space Z, then
B(X) = &**.

Proof. For each z in X call its norm ||z ]|, and for its image in
Z call its norm |x|. Uniform convexity means that for every ¢ > 0,
there exists a d(¢) > 0 such that if z, 2’ are in the unit ball of Z,
and |@ — 2’| > ¢, then |z + 2'|/2 <1 — d(¢). Clearly, if we renorm
Z by multiplying the old norm by some constant, the renormed Z will
still be uniformly convex. Hence, we may assume without loss of
generality that there exists a constant M:||z|| £ |z| < M||x]|. Let
t = 6(1/2M). Choose r large enough so that, (1/1 — ¢)"(1/2M) > 1.
Suppose B(X) # & **. By Proposition 3.3. there exists an x of norm
1, such that 2 =, + -.- + 2., where each ||;|| = 1/2 and where
each z; is a linear combination of distinct (e;). We want to construct
an element v:||v|| > 1 and |v| < 1. This will contradict the fact that
ol = vl

Consider the following system of elements like the seeding chart
of a tennis tournament. In the first round put the elements w,, -« -, W,
where w, = (x, + --- + #,)/M and x; as above. Then we construct
the second round consisting of 2 elements by letting the »'™ element
of the second round be u, = (Wy—, + w,,)/2(1L — t). To form the n™
element y, of the third round, let

Yo = o (s + )
n 2(1 — t) 2n~—1 27

The elements for the other rounds are formed in the same manner.

We claim that every element in this system lies in the unit ball
of Z. For the first round, each w, is in the unit ball of Z, because
[|w,|| < 1/M by unconditional monotonicity. We can assume that two
paired elements % and «’ from the n' round are in the unit ball of
Z. Note that there exists an x,: w' = (/M1 — )" ")z, + other terms
not involving x,, whereas » does not involve any of the (e;) used in
expressing (x,). By unconditional monotonicity

1 1
—u'l = = = .
Il % %H:Mllxkil_ZM
Hence,
1 1
— > — d |————— N 1.
| % u|~2 an 2(1—15)(%—'—%)”

Thus an arbitrary element of the (»+1)*' round is in the unit ball of
Z. Let v be the element in the ™ round. Then, v={1/1—ty M}, +
other terms not involving x,. Hence ||v| > 1. This is impossible
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since |v]| < 1.

CoroLLARY 3.1. If X is isomorphic to a uniformly convex space
and has an unconditional basis, then B(X) is isomorphic to & **.

Proof. Renorm X so that the basis is unconditionally monotone.

ExAMPLE 3.1. The canonical basis for I? for 1 < p < o is uncon-
ditionally monotone and [ is uniformly convex, see Clarkson [3].
Lr[0,1] for 1 < p < o, has an unconditional basis and is uniformly
convex. See Pelczynski [7].

4. The Arens products. The two Arens products are defined
in stages according to the following rules. Let .& be a Banach algebra.
Let A, Be.o7: fe w*; F, Ge**,

DEFINITION 4.1.
(ffA)B = f(AB) . This defines f*4A as an element of .o7* .
(Grf)A = G(f*A) . This defines G¥f as an element of .o7* .
(F*G)f = F(G*f) . This defines F*G as an element of .o7** .
We will call F*G the first Arens product, or the m, product.

DEerFINITION 4.2,
(A42f)B = f(BA). This defines A}f as an element of .o7* .
(f#F)A = F(A;f). This defines f;F as an element of .o7* .
(FFG)f = G(f#F) . This defines F;*G as an element of .7 **,
F*@G is the second Arens product or the m, product.

It is proved in Arens [i] that m, and m, are both Banach algebra
products on &7 **, which extend the original multiplication on .
when it is imbedded in .7 **.

DEFINITION 4.3. A Banach algebra .o is called Arens regular if
the two Arens products coincide on o7 **,

DEFINITION 4.4. Let E, be a net of elements in the unit ball of
.. Then E, is a weak identity if for every Aec .o, fe . 7%, both
AE.A) — f(A) and f(AE,) — f(A).

LEmmA 4.1. If 7 has a weak identity E,, then there exists
an element Ie .o7**, which 1s simultaneously (1) a right identity
for m, (2) a left identity for m,. Call such an element I a simul-
taneous tdentity.
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Proof. (1) is proved in [2, p. 855]. The proof of (2) is similar.
A subnet of the {E,} converges to I in the weak star topology.

DEFINITION 4.5. Let X be a normed space. Then, f,— f in the
bounded weak star topology {=) the {f.} consititute a bounded set
and f,— f in the weak star topology.

LEMMA 4.2. o7 is Arens regular {=) there is a multiplication
my; on Y which extends the multiplication on 7 to 7** in a
way such that (1) F*G is weak star bounded continuwous in F for
each fized G and (2) F*G 1s weak star bounded continuous in G for
each fixed F'.

Proof. Arens {1, p. 843].

THEOREM 4.1. If X is a Banach space with an unconditionally
monotone, shrinking basis (¢;), then B(X) = & ** (=) % 1is Arens
regular.

Proof. Assume B(X) = & **. We claim that ordinary matrix
multiplication satisfies (1) and (2) of the above lemma. Let S,, S, and
T all be in the unit ball of B(X) and S,— S weak star. Let f;; be
the matrix in &* with a 1 in the 45" coordinate and zeros elsewhere.
First, we claim that (S,T)f:;; — (ST)f;;. Clearly, only the ™ rows of
S. and S and the 7 column of 7T are relevant. By Proposition 2.3.
given ¢ > 0, there exists an integer n such that the tail of the j®
column of T after the first n terms has norm <¢/2.

Since S, — S weak star, it is clear that S, approaches S coordinate-
wise. Let « be large enough so that each of the first n entries of
the 4" row of S are within ¢/2n of the corresponding entry of S.
Then [(S.T)f:;—(ST)f:;| < e. Hence, (S.T)f;; — (ST)f:;. Since B(X)=
& ** implies that the finite matrices are norm dense in % *, it follows
that for arbitrary gez*, (S,T)g — (ST)g. The argument that (2)
is satisfied is similar.

Now assume B(X) %= & **. Then the finite matrices do not span
a dense manifold of #*. Hence, there exists a nonzero F' in & **
which is 0 on all finite matrices. Let E, be the matrix in & with
ones down the first = entires of the diagonal and zeros elsewhere.
Then, (F,) is a weak identity since it is actually an approximate iden-
tity by the fact that finite matrices are norm dense in %

Let I be the simultaneous identity in Lemma 4.1., and fe & *.
By Theorem 3.2. [1]

(FI)f = lim [(Fy°E,) f] = lim [E.(f7F)]
= lim [(f;*F)E,] = lim [F(E,7f)] .
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However, Eff is the matrix in & * which consists of the first »
columns of f, and thus can be approximated in norm by a finite matrix,
since the basis is shrinking. Hence (F*I) = 0 whereas F*I = F.

LEMMA 4.3. If there is a continuous homomorphism of the
Banach algebra .o7, onto the Banach algebra .o, and if the mul-
tiplication in &7 is regular, then so is the multiplication in o7,

Proof. Civin and Yood [2], Corollary 6.4.

COROLLARY 4.1. If X is a Banach space with an wunconditional
basis (e;), and which is isomorphic to a uniformly convex space, then
its space of compact operators is Arems regular.

Proof. By Proposition 2.1., X can be renormed isomorphically to
X’ so that (e;) is an unconditionally monotone basis for X’. Let ¢ be
an isomorphic map from X to X’. Then the map A+ i~*A7, where
Ae ¥, is a continuous homomorphism from &’ onto %

THEOREM 4.2. Let X be a Banach space with an wnconditionally
monotone, shrinking basis, and for which the matrices in & * with
a finite number of rows are norm dense. Then B(X) = {F e &**:
FFA and AFF are both in & for all Ae &’}. Furthermore, each of
the Arens products coincides with operator multiplication on B(X).

Proof. Let F be in "**. Let D, denote the elementary matrix
E;;. Call D;F the j™ row of F. Note that D}F is concentrated on
the 7 row of matrices in «"*. In fact,

(DLF)f = D(F*f) = (F*f)D; = F(f*D;) .

But the matrix for f*D, is easily seen to be the matrix formed from
J by deleting all but the j* row. By Proposition 2.7., the 7 row of
F can be identified with a functional in X***,

Call F*D; the j™ column of F. It is concentrated on the j*
column of matrices in & *, because D% f is the matrix formed by de-
leting all but the 5 column of f. Then by Proposition 2.7. it can
be identified with an element of X**,

We claim Fe B(X) {=) each of its rows is in X* and each of
its columns is in X. Suppose Fe & ** with each of its rows in X*
and columns in X, Let T be the actual matrix formed by writing
down the columns of F as elements in X with respect to the basis
(¢;). Let T, be the first n columns of T. It is a compact operator
since each column is in X. Also by Proposition 2.6.
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WTull =P, [l = | FI|

where @ is the isometry defined in Theorem 3.1. Hence, the {T,} de-
fine a single bounded operator on the dense linear manifold of finite
linear combinations of (e¢;). This bounded operator has the same matrix

as T.
Clearly @, and F' agree on any elementary matrix in & *. Hence

they agree on any matrix in & * concentrated in a single row, since
each row of F' is in X* and the (¢}) form a basis for X*, Then by
the hypothesis that the matrices in & * with a finite number of rows

are dense, @, = F..
Conversely, if Fe B(X) it is clear that its generalized rows and

columns will be in X* and X respectively.

Using this characterization of B(X) as a subspace of & **, it is
clear that if F'¢ B(X), then for some j either DjiF or F}*D; lies out-
side B(X) and hence outside . But D; is a compact operator.

To finish the proof we will show that on B(X), m, is equal to
operator multiplication. The proof for m, is similar.

Clearly it is enough to show that (ST)f; = (S¥T)f; for f,; a matrix
in &°* concentrated in the j* row and where || S| = || T'|| = || f;||=1.
Given ¢ > 0, we can approximate the j* row of S in norm to within
¢ by deleting after the first » terms for n large enough.

Then

(ST)fJ = (Sj1T11 + Sj2T21 + e+ SinTnl)fjl
+ (Slelk + szTzk 4+ e+ Sj'n T'nk)fjk

+ (error term <eg).
We claim that (T}f;) is concentrated in the j** row. In fact,
(TFf) B = T(fiEn) =0 if m#7

whereas (T*f;)E;, = dot product of k™ row of T with j* row of f,.
Then,

S(T¥f;) = (Tufin + Tafn+ o+ +)Sa
+ (Tnlfjl + Tnzsz + s +)SJ’IL
+ (error term <e).

Hence |(ST)f; — (S¥T)f;| < 2e, since for a finite collection of conver-
gent series
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S(@+ e +ap) =3+ e+ Sa
k=1 k=1 k=1

=3

DEFINITION 4.6. A shrinking basis (¢;) for a Banach space is cal-
led boundedly growing if there exists an ¢>0 and an integer », such
that =, + -+ + x, < n — ¢ whenever the z/s have norm 1 and are
linear combinations of distinet basic vectors. For example the canoni-
cal bases for ¢, or I°,p > 1 are boundedly growing. Finite direct
sums of boundedly growing Banach spaces are boundedly growing.
Also 1?(X;) for p > 1 is boundedly growing if the X, have a common
n and e.

COROLLARY 4.2. If a Banach space X has an wunconditionally
monotone, boundedly growing basis them B(X) is the largest subset
m E** wn which & 1is a two sided ideal,

Proof. In proving Proposition 3.3. we showed that if the finite
matrices are not dense in &°* then the basis is not boundedly grow-
ing. Similarly, if the matrices with a finite number of rows are not
dense in &*, then the basis is not boundedly growing.
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