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An infinite semigroup S such that every nontrivial homo-
morph of it is isomorphic to S is called an HI semigroup,
Every commutative HI semigroup is a group and thus it is
isomorphic to the group Z(p)~, for some prime P. An infinite
Brandt semigroup is HI if and only if it has a trivial struc-
ture group. An inverse HI semigroup containing a primitive
idempotent is either Brandt or else it is isomorphic to a
trasfinite chain of extensions of a Brandt semigroup K by
isomorphic copies of K (where K has the trivial group as its
structure group)., Necessary and sufficient conditions are
given for a semigroup of the latter type to yield an HI
semigroup and an example is constructed.

In his monograph Infinite Abelian Groups, I. Kaplansky in-
cludes as exercises the following results concerning an infinite abelian
group G:

(1) If every subgroup of G is isomorphic to G, G is cyclic.

(2) If every subgroup of G is finite, G is isomorphic to the
group Z(p~) for some prime p.

(8) If every proper homomorph of G is finite, G is eyclic.

(4) If every nontrivial homomorph of G is isomorphic to G, G
is isomorphic to the group Z(p~) for some prime p.

In generalizing these results to semigroups, (1) can easily be
disposed of. Suppose S is a semigroup such that every subsemigroup
of S is isomorphic to S. It is clear that S must be cyclic, say
S ={a,a* ---}. However, T ={a*a% ---} is a wnoncyclic subsemi-
group of S and thus 7 is not isomorphic to S, a contradiction.

In [3], Jensen and Miller prove that any infinite semigroup S such
that every subsemigroup of S is finite is a group. Thus in particular,
if S is commutative, S is isomorphic to Z(p~) for some prime p.

Defining an HF' semigroup to be an infinite semigroup with the
property that every proper homomorph is finite, it is shown in [3]
that a commutative semigroup S containing at least three elements
is an HF semigroup if and only if S can be (isomorphically) imbedded
in an infinite cyclic group with zero adjoined. In [2] the structure
of HF inverse semigroups is investigated. The structure of all HF
inverse semigroups that contain a primitive idempotent is determined
up to the determination of all HF groups. The author is unaware
of any general results concerning nonabelian HF groups although
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obviously some exist, e.g., any infinite simple group.

Throughout this paper, E; denotes the set of idempotents of the
semigroup S and A* denotes the set of nonzero elements of any
AcSS. If S isa Brandt semigroup with structure group G and index
set 4, we write S = B(G;4) and we denote the elements of S* by
{(t,9,9)11,7€4,9<¢G}. Then

o o (Gygd g i =1

9,00, ¢, 5') = 0 otherwise .
If I is an ideal of the semigroup S, we identify (S/I)* with S\I =
{xeS|xel}. Thus S/I= (S\I)U{0}, where 0 is the zero of S/I.
Except when variations are noted in this paper, the terminology and
notation is the same as that used in [1].

1. Commutative HI semigroups.

THEOREM 1. If S 1s a commutative HI semigroup, then S is a
group.

Proof. Assume that S is not a group. Thus there is an ¢ S
such that xS = S. Then S = S/xzS so S contains a zero. We first
show that under this assumption S is nil.

Let Z={xeS|xy =0 for some yeS*}. Since Z is an ideal of
S either S= S/Z or S= 2. If S= S§/Z, it follows that Z = {0}, so
S* is a proper subsemigroup of S and the map ¢: S —{0,1} which
sends each element of S* onto 1 and sends 0 onto 0 is a homo-
morphism of S onto the multiplicative semigroup {0, 1}, a contradic-
tion of the HI property of S. Thus S = Z.

For a fixed element a e S* define the set A = {xreS|xa" = 0 for
some postive integer n}. Clearly Aisanidealof S. If a¢ A, aeS/4
and since Z = S = S/A, there is an element b€ S\A such that abe A4,
say (ab)a™ = 0 or ba™' = 0, so be A, a contradiction. Thus ae A and
hence a is nilpotent. Since a was arbitrary it follows that S is nil.

Let x€ S such that ze«S, say « = ze. Then x = xe™ for each
positive integer n. Since S is nil, this implies that x = 0. Thus, if
zeS*, zeS/xS and S/xS=S. But «(S/zS)=0 so there exists
y€S* such that yS=0. Let J={xeS|2S =0} Jis an ideal of
S so either J =S or S= §/J. If S=J, every nonempty subset of
S is an ideal of S and thus S = S/4 for each A S, 4 + ¢@. Clearly
this is not the case. By a similar argument, it follows that
S =S8. We now have S = §S/J, so there is an a€S/J such that
a(S/J) =0, ie., a(S\J)cJ, and hence aScJ. Therefore, aS =
aS*CJS =0, so aS = 0. But this contradicts the choice of a, and
our proof is complete.
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COROLLARY. If S 1is a commutative HI semigroup, then S =
Z(p™), for some prime p.

2. Inverse HI semigroups containing a primitive idempotent.
Following the notation of [1], p. 72, let J(z) = S«S" and I(x) =
{ye J(x) | J(y) = J(x)}. It easily follows (see [1], p. 73) that if J(x) # @,
I(z) is an ideal of S such that J(x)/I(x) is either 0-simple or the null
semigroup of order 2.

LemMA 1. If S is an inverse HI semigroup, either S is simple
or else S = 8S° and S contains a unique 0-simple ideal K contained
in every monzero ideal of S.

Proof. Suppose S is not simple, say a e S such that S # SaS =
S'aS* = J(a). Then S = S/J(a), so S containg a zero. It follows
from the remark above that J(a)/I(a) is O-simple. S = S/I(a) implies
S contains a 0-simple ideal K = J(a)/I(a).

Let U denote the union of all ideals B of S such that KN B = 0.
U is a proper ideal of S(K = 0) so S= 8 = S/U. Since KN U =0,
we can consider K as an ideal of S. It easily follows that every
nonzero ideal of S has nonzero intersection with the 0-simple ideal K.
S = S implies the desired result.

We call this unique 0-simple ideal the kernel of S.

LEMMA 2. Let S = S° be an inverse semigroup and let B be an
ideal of S. Then B is a Brandt subsemigroup of S if and only if
B = SeS for some primitive idempotent ¢ € S.

Proof. Let e be primitive in S and let I be an ideal of S such
that IS SeS. Suppose e¢l and let fe E,SIZ SeS, say f = aeb.
Then a~'fb~' = he, where h = a~'abbc E;. If he =¢, ec SfSES I,
contrary to our assumption. Therefore, by the primitivity of e,
he =0, so f = aheb =0 and thus E, = {0}. It follows that I = {0}.
Clearly (SeS)* = SeS, so S¢S is 0-simple and hence Brandt.

Conversely, suppose B is Brandt ideal of S and let ec E,..
Clearly B = SeS. If feFE, since ¢f € B and (ef)e=ef, either ¢f = 0
or ef = e, 80 e is primitive in S.

THEOREM 2. The Brandt semigroup B = B(G; A) is HI if and
only if |G| =1 and 4 is infinite (i.e., if and only if B is homo-
morphically simple and infinite).

Proof. By [5], B(1; 4) is a homomorph of B and |B(1;4)| = 2.
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Hence B is HI if and only if B = B(1; 4) where A4 is infinite.

LEMMA 3. Let S be an inverse HI semigroup with Brandt
kernel K. Then K = B(l; A) for some index set A.

Proof. Let p be a congruence relation on K such that | K/o| > 1.
If p’ denotes the identity extension of o to all of S (z0’y if and only
if @ =y or zpy), it follows from [2] that o’ is a congruence relation
on S. Since |S/p'| >1,S = S/p’. Thus K, the unique Brandt kernel
of S, is isomorphic to K/o’ = K/p, the unique Brandt kernel of S/o’.
It follows from Preston [5], that B(G; 4) = B(G8; A) and thus G = G¢
for every homomorphism 6 on G. Therefore G = 1.

THEOREM 3. Let S be an inverse HI semigroup containing a
primitive idempotent e. Then S satisfies one of the following:

1) S is an HI group,

(2) S is an HI Brandt semigroup,

3) S has a transfinite composition series such that every factor
18 isomorphic to a (fizxed) Brandt semigroup B(l; A) for some index
set A.

Proof. If 0¢ 8, S is simple so SeS = S. Therefore Ky = E; s =
{e}, so S is a group.

Next agsume 0¢ S. If SeS =S, it follows from Lemma 2 that
S is Brandt, so suppose SeS = S. By Lemma 3, the kernel K =
SeS = B(1; 4) for some index set A. If xzeS* then S= S/I(x) so
S/I(x) contains a unique kernel K = K. By the remark at the
beginning of this section, J(x)/I(x) is Brandt and hence it is the
Brandt kernel of S/I(x); that is, the factor J(x)/I(x) in the composi-
tion series of S is isomorphic to K. Moreover, S cannot contain a
maximal proper ideal A since this would imply S = S/A is 0-simple.
Thus the composition series is infinite.

THEOREM 4. The ideals of an inverse HI semigroup S contain-
ing a primitive idempotent are well ordered by inclusion such that
for each proper ideal A of S there is a unique tdeal A’ of S with
the properties (1) AC A’ and (2) AC B implies A’ < B for any ideal
B of S. We call A’ the successor of A.

Proof. If 0¢8S, S is simple and the theorem holds trivially, so
assume 0cS. Suppose S has ideals A and B such that A £ B and
BZ A. Then S=S=8/(ANnB), and A= A/(ANB) and B=
B/(AN B) are ideals of S such that AN B =0, a contradiction of
Lemma 1. Thus the ideals are linearly ordered by the inclusion
relation.
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If A is a proper ideal of S, S = S/A so S/A contains an ideal
K = K (the Brandt kernel of S). Then K is of the form A’/A for
some ideal A’ of S. Since inclusion linearly orders the ideals, it
follows that A’ is unique. Clearly A’ satisfies conditions (1) and (2)
of the theorem.

Next let &7 denote a nonempty collection of ideals of S. Let
B = N{A|Ae .}, so either B=S (and hence Be. and B is the
least element of .o7) or else S = S/B. Let B’ denote the successor
of B and let xe B'\B. It follows from the definition of B that there
is an ideal A4, e .o such that x¢ A,. By Lemma 1 applied to S/B = S
we have B< A, B’. Therefore, B= A, ¢.” and B is the least
element of .o~

THEOREM 5. Let S be an inverse semigroup containing a primi-
tive idempotent ¢ such that S is the union of the chain of ideals

{0} = S, cS,cS,c---
and such that for each i =1,
Si/S;—. = B(1; 4)

where A is some (fized) index set. Then S is HI if and only if
for each 1 =2, there ewxist distinct idempotents f, g, and g, with
fe8\S;—. and g,, 9,€ S;-\S;—, such that g, < f and ¢, < f. Further-
more, if this is the case, then every idempotent of S)\S,_, has at
least two nonzero idempotents under it.

Before proving the theorem, we introduce the following notation:
By =8,\S,-,n=1.
Thus S, can be considered as the extension of S,_, by B,. Note
that B, = S, is the kernel of S.
B, = B(1,; 4) ={(t,n,7) 3,5 € 43 U{0,}
where
(t,n,g) if =1

i; n’j i,y n, i) = .
( i 7 0, otherwise .

Therefore, under the multiplication of S, if j = ', the above product
remains the same, while if j # ', the above product lies in S
For simplicity, we write

n—1le*

Cn,i = (7:, n, ?') .

Thus, the theorem asserts that S is HI if and only if for each n = 2
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there exists 4, r, se€ 4 such that
(1) €4,; > €,,,, and €,; > €, ,,, where e, ., # €, ...

Proof of Theorem 5. First assume that S is HI. It follows
from Lemma 2 that for each i€ 4, e,; is not primitive in S so there
exists v, = v,(1) € 4 such that e,, < e,;. Assume inductively that for
each i¢e4, there exists v, , =v,.,({)ed such that e¢,,,  <e,,.
Since S = S/S,-., it follows that for each 7e 4 there exists v,e4
such that e,, < €.,

Suppose that for each i€ 4,e¢,; has exactly one nonzero idem-
potent under it. Let p be the congruence relation on S generated
by the relation o, = {e,,, ¢,,}, where ¢,, < ¢,,. If p is not one-to-one
on S, it follows that S,/0 =0 so there exist x,yeS such that
xe, ¥y #+ 0 and ze,,y = 0. Therefore the idempotent ¢ = z'we, Yy #
0. Since ¢ < e,,, it follows from our assumption that either e = ¢,, or
¢ = ¢, Thus in either case, we have

6, = €, €= 6,006, Yy " = 726, yy =0,

a contradiction. Therefore, o merely identifies corresponding terms
of B, and B,. Relabeling if necessary, we have e¢,; < ¢, ; for each j
in 4, and by induction e, ; < €,.,;,n =1,j€ 4. Define o to be the
congruence relation on S generated by the relation

0y = {(€nss €n) [ M, m = 1,0€4}.

Clearly ¢ is one-to-one on S,, and since S/o has no proper nonzero
ideals, we cannot have S = S/o, a contradiction.

To prove the sufficiency of the condition let S be an inverse
semigroup of the type described in the theorem and suppose that for
each n = 1 there exist distinct a(z) and b(n) in 4 such that

en,a(n) < en—l—l,x and en,b(n) < 6fn+1,1 ’

and let ¢ be a congruence relation on S that is not one-to-one.
Sinece zry implies zx—tyy~—* and x~'zry 'y, it follows from the strue-
ture of S that 7 is not one-to-one on K.

If e,,7e,., %+ v, then e,, e, ,e,, so that we may assume with-
out loss of generality that there exist integers » and m with n > m
and 7, s€ 4 such that

€1, TCm,s
Then

(2) @, n, e, (r, n, 1)z(1, 0, r)e,,(r, n,1) .

Upon multiplying both sides of (2) by e,_,., we obtain the relation
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€q1..TC,,, Tor some r < n — 1 and some se 4. As above, this implies
€4-1,1T€y,,.,, Where u, <n — 1.

(If e,,., = €,_,, multiply both sides of (2) by e,_,;.)

Continuing in this manner we conclude that e,,70 and thus by
the transitivity of ¢ we conclude that |S,/z| = 1. If there exists
an integer N such that = is not one-to-one on S, but is one-to-one
on S/Sy, then S/z = S/Sy = S. If no such integer N exists, |S/t]| =
1. Hence S is HI.

The final assertion will follow if, when S is HI, for each ¢ ¢ 4,
there exist »,se 4, r # s, such that

e;>e,and e,;>e,.

Without loss of generality assume e,, > ¢, and e,, >e¢,,. For each
1€4,

(¢,2,1)1,1,1) = (a;, 1, 1) for some a;c 1,

and
(¥, 2, 1)(2, 1, 2) = (b;, 1, 2) for some b,;e 4.
Therefore
(#,2,1)(1,1, 13,27 = €1,0;
and

(7:7 29 1)(2’ 1’ 2)(15 2, 7’) = el,bi .
Clearly e, < ¢, and e,, < e,;. Furthermore,

el,aiel,bi = (i’ 2) 1)61,1(17 2’ ?’)(i’ 2’ 1)61,2(i1 2! Z)
= (1: 2, 1)31,162,131,2(]-, 2, ’L) = (’L, 2, 1)61,261,1(1, 2, ?') =0.

Therefore, a; = b;, and the proof is complete.

We conclude with an example of an HI inverse semigroup of
the type described in Theorem 5. Let N denote the set of positive
integers, and let {B,|ne N} be a collection of pairwise disjoint
isomorphic copies of the Brandt semigroup B(1l, N). As in Theorem
5, write the nonzero elements of B, in the form (i, n, j), for 4,5 € N,
let 0, denote the zero of B,, and write 0 for 0,.

Let S, = B, and let S,,, be the extension of S, by B,,, where
multiplication is defined as follows:

If a,BeSn: aofl=ap.
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aB if aB+0,.,

If @, BeB},,acB = . .
R e B, o {0 if af =0,,,

Products between B}., and S, are defined recursively as follows:

@2i—-1,n—1,8) if r=25—-1,
@ n 9 e(r,n—1,8) =42, n—1,s) if »r=275,
0 otherwise .
(s,m—1,7)0 (4, m, 1) = [(4,m,7) o (r, n — 1, 8)]
(@ mg)e(r,m—k —1,8) =[(t,n,J5) (fir), n — &, f(r))]
(r,m—%k—1,s),

where f(r) is the greatest integer less than or equal to rti

2
(8,%——]5—*1,1")0(_’]',%,?:):[(’I;,%,j)o(’r,’n—k—l,S)l—l
(2,1,7) 0 =00(,m,J5)=0.

Defining S = U.,.S., it can be shown that S is a semigroup as
follows:

Let ¢, = (i, n,7), ¢, = (r,m,s) and ¢, = (u, p,v). First observe
that (4.6.)6: = ¢(¢s9s) If | —m| =<1 and |m — p| = 1. Because of
the way multiplication is defined it is sufficient to consider the
following cases to show this: () m==n, p=n—1; (i) m=p =
n—1;{i)m=n—1, p=an; (v m=n+1, p=n; (v) m=n—1,
p =n — 2. Associativity can be shown in each of the above cases
by direct computation. Clearly this can be generalized to show that
any product where consecutive factors come from B} U Bf, with
|7 — 34| =<1, can be associated in any manner.

Next, observe that e,,, < €,.1, 70 < €nisson < +++, Where f¥(r) =
f(F¥r)). Thus every product in S can be written as a product where
consecutive factors are of the form (%, n,7)o (r, m,s) such that
|n — m| < 1. Therefore, applying the observation made above, we
see that S is a semigroup. Furthermore,

€1 < €,.,,, and e, , < e, foreach n =1,

so by Theorem 4, S is HI.
The following example illustrates the associativity of S:
Let ¢, = 3,7,2), ¢,= (38,7 —1,2) and ¢; = (3, n — 2,2). Then

(¢1¢2)¢3 = (5: n — 1, 2)¢3 = (9) n— 2’ 2)
and

¢1(¢2¢3) = ¢.(5, m — 2» 2) = [¢1(3, n — 1, 3)](55 n — 2’72)
=06B,7n~-1,306,7n—2,2 =9, n—22).
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The author wishes to thank the referee for his helpful sugges-
tions which led to Theorem 4.
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