Pacific Journal of

Mathematics

POLYNOMIALS IN LINEAR RELATIONS. II

MICHAEL JOSEPH KASCIC, JR.




PACIFIC JOURNAL OF MATHEMATICS
Vol. 29, No. 3, 1969
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The study of linear relations is continued in the setting
of the theory of locally convex linear topological spaces. The
investigation is limited to the polynomials in one fixed closed
linear relation, Conditions both on the relation and on the
locally convex space are discussed that are sufficient or neces-
sary and sufficient for all the polynomials in this relation to be
also closed,

The reader is referred to [1] for full details of the algebraic pro-
perties of linear relations, and to [4] for a summary. Since we are
concerned here with a special class of linear relations in locally convex
spaces, we present a compendium of definitions tailored to this case.

Let X be a locally convex space equipped with the Mackey-Arens
topology. A linear relation in X is a linear subspace of X X.
This concept generalizes that of an operator on X. If T is a linear
relation in X, the definitions of the domain and range of T, D(T) and
R(T) respectively, are obvious.

If S and T are linear relations in X,

S+ T={x,y+2):(xyeSx,2eT}
ST ={=72:3yeXs(x,yeT,(y,2) eS8}

are linear relations in X. If A is a complex number, we may consider
A as the linear relation {(z, Ax):xe X} in X. We write AT for \.T.

Combining the three operations defined above, we can arrive at
a well-defined notion of a polynomial in a linear relation. To avoid
the complications treated in [1], we shall assume that the coefficient
of the highest power of the linear relation is always nonzero.

Finally a linear relation is closed if it is a closed subspace of
XPp X

2. Polyclosed relations. If T' is a closed linear relation, and if
for every polynomial P, P(T) is a closed linear relation, then we shall
say that T is polyclosed. There exist closed linear relations in Hilbert
space that are not polyclosed. This is demonstrated in the following
example, originally due to Arens.

ExamMPLE 2.1. Let [* be the Hilbert space of square summable
sequences of complex numbers, and let X =P I*. Let A be the
operator on !* such that A(x, ., ---) = (x,/1, 2.,/2, /3, -+-). The do-
main of A = [?, A is continuous, and hence A is a closed operator.
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The range of A is a dense subspace which we shall call M. For every
xeM,yel?, let T(x,y) = (Ay, A~'z). It is easily seen that T is a
closed linear relation since A and A~' are. Let us now consider 7'2.
Tz, y) = T(T(x, v)) = T(Ay, A™'x) = (AA 2, A Ay). It is easily seen
that for every xe M and yel*, AA™'x =2 and A'Ay =y. Thus T
is the identity on the domain of T and is not defined elsewhere. The
domain of T however, is M P I* which is certainly not closed in X.
Thus T?is not closed in X X. Thus T* is not a closed linear rela-
tion and T is not polyclosed.

In the following sections we will seek generalizations of [4, 3.16]
which we present below as 2.2. In 2.2 we shall assume that all to-
pologies are relativized Mackey-Arens topologies, a standardization we
shall continue throughout the paper.

THEOREM 2.2. If T s a closed linear relation on X such that
for some v C, R(T — \) is closed and (T — \)™ is single-valued and
continuous, then T 1is polyclosed.

3. Selective relations. If X is a locally convex space, we may
imbed it in a linearly homeomorphic manner in a complete locally
convex space X. If T is a closed linear relation in X, then we may
speak of T, i.e., the completion of T considered as a subspace of
X X. It is obvious that 7N X@ X = T since T is closed. We
shall call T left selective relative to X if TN XP X =T, right selec-
tive relative to X if Tn X X = T, and selective relative to X if
it is either left or right selective relative to X. We omit the phrase
“relative to X whenever there is no danger of confusion.

First let us show that there is a large class of selective relations
in noncomplete spaces.

ProroSITION 3.1. Let T be a continuous operator with closed
domain. Then T is right selective,

Proof. It is well known that if 7 is continuous then it has a
continuous extension T to the completion of its domain. We shall
first show that TN XPX =T. Let (&, 2)ceTNXP X. Then

v, e D(TYN X = D(T)

since it is closed. Since 7 is an extension of 7T, #, = T%, which is an
element of X. Thus 7N X & X = 7. All that remains is to show
that 7= 7. First let @, = Tx,. Since T is a continuous extension
of T, Tx, =lim Tx, for any net », — x, where all 2,¢X. For all
@, (&, Te,)e T. Since T is closed, (limx,,lim T%,)e T because both
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limits exist. But (limz,, lim T%,) = (x,, ;). This shows that Tc 7.
Almost the identical arguments in reverse show that T-> T. Thus
7= T, and T is right selective. Note that if 7' is a continuous
operator on a closed domain, then T is left selective since the defini-
tions are symmetric.

However an operator need not be continuous to be selective.

ExAMPLE 3.11. Let X = C=(]0, 1]) with the sup norm topology.
Then X = C([0,1]) with the sup norm topology. Let D be the dif-
ferentiation operator on C=([0,1]) and let T = D~'. T is a many
valued relation with a singlevalued inverse defined on all of C=([0, 1])
and 7 = D where D is the differentiation operator defined on
CY]0,1]). It is well known that 7' is not continuous. Nonetheless
T is both left and right selective. For if (v, a;)e TN X @ X then
x, is the derivative of x, which is in C=([0, 1]). Hence 2, is in C>([0, 1])
also. Thus (x,, z,) € T. H@“@eTﬂX@X;mwxf{k@M&%

constant and again z, € C=([0, 1]).

In essence, the important fact about selective relations is that if
T is polyclosed as a subspace of X X, then T is polyclosed as a
subspace of X P X. There is a possibility of confusion when we say
T is selective, because it is a subspace of XP X, XP X and XP X
as well as X X. As a matter of convention, 7 shall always be
considered as acting in X, and T in X. Thus even if 7 = T, we
shall use both symbols remembering which spaces we are considering.
This convention shall also apply to the special linear relation )\ for
every » e C.

LEMMA 3.2. For every closed linear relation T and each e C,
~ — I~

T—x=T-—X.
Proof. Direct verification.

ProrosITION 3.21. Let T be a closed linear relation such that
T — ) s selective for some neC. Then for every polynomial P,
PTYNX@ X = P(T).

Proof. Let us first consider T to be selective. We will use in-
duction. For polynomials of zero degree, we may apply 3.1. Now
we assume the proposition true for every polynomial of degree < «.
Let P be a polynomial of degree n + 1. From [1,2.3] there exists a
polynomial @ such that P(T) — @ = ToQ(T) = QT)-T. Thus

PT) - aNXPX=T-QHNnXPX=QT-TnXPX.
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Suppose T is left selective. We will show
T QHNnXPX=(TnX®X)-@THnXPX).

Right selectivity of T is treated mutatis mutandis using Q(T). 7.
Let (2,7)e ToQ(T)NX@P X. Then there exists 2, such that
(%, #,) € Q(T) and (¢, x,) e T. Since T is left selective, #,€ X. Thus
(@, 2)eQTHINXPX and @, 2)e TNXPX. Now let

@, 2)e(TNXPX)(THNXPX).

Then there exists x,e€ X such that (x,, ;) € Q(T) and (,, #,) € T. Then
(., 2) € ToQ(T) and certainly », and x,c X. We are now reduced to
the statement that

PT)-ONXBX=(TnX®X)- QTHNnXPX).

We may rewrite the right hand side as T Q(T) by our induction as-
sumption. Thus (P(T) - &) NX@ X = T-Q(T). To finish the proof
we need only show PTYNXPX —a=P(T)-a@NXPX. This
is easy since the left hand side consists of pairs of the form (z,y —
azx) such that (x,y)e P(T) and x,y< X while the right hand side
consists of pairs of the form (x, ¥y — ax) such that (x,y)e P(T) and
z,y —axe X. These clagses obviously are the same. Now suppose
T — x is selective. Given a polynomial P, there exist a unique poly-
nomial P, of same degree such that P(T — X) = P(T). By 3.2

~ ~ N
P(T — \) = P(T — ).
We have already proven
v
P(T—MNXPX=P(T—-N).
Thus P(TYN X P X = P(T). This completes the proof.

We are now prepared to prove the important theorem concerning
selective relations.

THEOREM 3.22. Let T be a closed linear relation in X such that
(T — \) is selective for some ve C. If P is a polynomial such that
P(T) is closed in X, then P(T) is closed in X.

Proof. First assume T is selective. If P(T) is closed, then

~~ .
P(TYc P(T) = PT).

N ~ N J—
Thus PT)NXPXCcPIT)NXPX. But AIT)YNnXH X = P(T), and
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by 3.21, P(T)N X P X = P(T). Thus P(T)c P(T). The other inclu-

sion being obvious, we have that P(T) = P(T). If T — \ is selective,
choose @ such that Q(T — ) = P(T) and repeat the argument.

COROLLARY 3.23. Let T be a closed linear relation in X such
that (T — \) s selective for some e C. If T is polyclosed in X,
then T 1is polyclosed in X.

We will finish this section by giving an example to show that
the converse of 3.23 is false. Let us go back to the Example 2.1,
redefining X = M@ I*. T can indeed be considered as a closed linear
relation in X. Since T = T, T is selective. 7T is not polyclosed as
was shown in 2.1. However, it can easily be shown that T is poly-
closed. Since T* is nothing more than the identity on X, any poly-
nomial in 7 equals a linear polynomial which is closed.

4. Polyclosed relations in complete spaces. Let us address
ourselves to the question of proving polyclosedness of 7. Thus in
this section we shall be concerned with complete spaces. Before de-
aling with this case, let us introduce some new concepts that do not
demand that X be complete.

Let us define the generalized graph of any relation. For n =1,
G (T)={(=,, =, ---, x,) such that for k. = 0,1, ---,n — 1, (x,, z,..) e T}.
For n = 0,G,(T) = X. Thus G,(T) is a subspace of X"*'. We topo-
logize it with the relativized product of the Mackey topology taken
(n + 1) times. The name “generalized graph” is justified in that for
n=1,G(T) is T, and for single-valued T would be the graph of T
in the classical sense. The following proposition establishes the prin-
cipal property enjoyed by the generalized graph.

ProrosiTION 4.1. If T is a closed linear relation, then for every
n=0,GA(T) is a closed subspace of X",

Proof. The case for m = 0 being obvious, let (], ---, 2}) be a
net in G,(T) such that }, —x, for £ =0,1, -+, n, or (&}, x], «++, x.)—
(o, @1, *++, Z,). Then (i, 2,,) — (%4, ry,) and since 7T is closed,

(g, wp2) e T for £ =0,1,---,n. Thus by definition

(xOy Lyy o0y xn) € Gn(T) .

COROLLARY 4.11. If T s a closed linear relation in a complete
space X, then for every m = 0, G, (T) s a complete subspace of X"+,

Because of the fact that closedness of 7T implies closedness of
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G.(T), if we can connect G,(T) with P(T), we then have a possible
means of ascertaining whether P(T) is closed. This connection is
provided by the realization map, (P, T,°). For a fixed n" degree
polynomial P such that P({) = a, + a,t + --- + a,t", and a fixed T a
closed linear relation

"#(Pi T’ (xOy Ly o0y xn)) = (xw Zn: a’kxk> .
k=0

The reader can easily show that (P, T,°) is indeed a mapping from
G,(T) into P(T). The crucial fact about + is that it is onto. This
fact is essentially due to Arens [1, 2.2]. However, Arens did not de-
fine the realization map explicitly, and stated his proposition directly
in terms of elements of 7. We present the state of affairs as a pro-
position.

ProposITION 4.2. For a fixzed polynomial, P, of degree n and a
Jized closed linear relation T, (P, T,°) is a continuous linear map
of G.(T) onto P(T).

Proof. See [1,2.2].

It is easy to see that in general 4 is not a one-to-one map. For
instance, let T = X @ X and let P(t) = t*. Then the null space of
(P, T,®) = {(0, x,, x,): x, + x, = 0}. We shall say that a linear relation
has a unique decomposition or is a wunique decomposition relation
(abbreviated u.d.) if and only if for every polynomial P, v(P, T,°) is
a one-to-one map. By means of the next proposition, we see the use-
fulness of this concept as a generalization of an operator with a non-
empty resolvent. First we prove the following lemma.

LeEMMA 4.3. Let T be a linear relation, and for k. =0,1, -+, n,
let y, = 350 (=N (5)xy_;. Then the map f such that

S, @1y o0y 20) = Yoy Y1y ==+ Yn)
18 a linear homeomorphism of G.(T) onto G.(T — \).
Proof. We first show that (y,, v, +-+, ¥.) € G.(T — \) for
(%o, ®yy + o+, 2,) €GL(T) .

This is so if and only if (y;, ¥s)€T — X for £ =0,1,.-.,n — 1, if
and only if (v, ¥pse: + My) e T for £ =0,1,..-,n — 1, Substituting
for ¥, and y,., we get
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& +1 [k 1 k [k
(g( A)? ( )xlc —iy ; (—k)’( jj_ )wk~i+1 + A %(_k)z( ?:)xk—i)

+1 k+1 k
(Z (—n)' ( >%k~u Z (=) ( . )xk—i»‘rl - Z (—N) ( >xk~i+1>
1 —1

= (Tp, Xps1)
4 k
+ <§i (_)’)i< )xk_“ Z {( 7\’) <k+1) xk—iﬂ_(—)\:)i(i fl) fl?k_iﬂ}) .

Since (x,, x,,,) € T we are reduced to showing

;(( A)E ( >xk o (=) [(k j 1) — (iﬁlﬂxkﬂ-ﬂ) eT.

Let us consider each term in the sum

S ) e
L),

. . E+1 k
Direct calculation shows . |. Hence
) )

=1

=2, (‘7“)"“( )(a’k~w Tpir1)

‘Since each (x,_;, 2,_;+1)€T,q. € T. Thus f maps G,(T) into G, (T—2N\).
If we let ¢ be the map on G,(T — \) defined by

I Yoy *++y Yu) = (X, ==+, 2,)

k
where 2z, = 35 A | Jy,_; for k=0, ..., n, the same argument used

above shows that ¢ maps G, (T — \) into G,.(T). If we can show
feg =1, and gof = 1,, then we will have proven that f is a bijec-
tion of G.(T) onto G (T —\) and f*'=g. Let (%, ---,2,)cG.(T)
and (gof) (@, = ++, %,) = Ry +++,2,). Then

k kok=i N AV AN
ZM< )yka %%K“(—k)(j)( i )xk—j—i°

We may rearrange the sum as follows

Kk ) kN — j
= >3 M(_)‘)h_]( )( .)xk—h
=0 7=0 J/\h — 3
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or
Ze = zk: I.h (_k)j(_x)hﬂ(kf)(k B J.)}xk-—h + % .
h=1 {5=0 g n— 7
But
62 =GG)
iN\h—=3] \nJ\j
and
k h h h
%(—1)1‘(3,) B Z‘o(‘l)j(+1)h"j(j> = (-1 +1r=0.
Thus

k h A ENk —-j
zk—xk:Z)"h{Z(_l)hH]< )( .)}xk—hzo .
h=1 i=1 7 /\h — 3

Similar arguments show that fog = 1,. Thus f is a bijection and
f'=g. That f is linear and a homeomorphism is now obvious from
the form of f and f~'. This completes the proof of the lemma.

ProrosiTioN 4.31. If T is a linear relation such that T 1s single-
valued or such that (T — )™ is singlevalued for some neC, then T
18 a unique decomposition relation.

Proof. We must show that for each polynomial P, the null space
of (P, T,°) is {0}. The null space of

WP, 1,°) = {(0,, -+, 2): 3} = 0

where P(t) = 3 %, a;t'. If T is single-valued, it is obvious that 7(0)=
¢, = 0. This argument may be continued to show that x, =0,k =
0,1,.-+, n.

Next let us suppose that T is single-valued. Since

n n n
Saw =0, T-l( 5 am) = Saw., = 0.
=1 = =2

Repeated application of T-* shows (T 'C~,ax;) = a,x2, = 0. Thus
2, = 0. Since (TH"*C L, amx;) = a,2, + a,_2, = 0,2, = 0. Continuing
in this manner we get ¢, =0,k =1,.--,n. If (T — )\ is single-
valued, we can use Lemma 4.3. Since

n n i . 7 n n—h . j + h
>ax; =0, I Va»i( )yi—-k =3, > aj+h7x’( )’!/h =0.
=1 1=1 k=0 k h=0 j=0 h
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Since (T — \)™* is single-valued, we have already established that
4, =0,h=1, .-, n. Because the map f defined in 4.3 is a bijection,
2, =0,k=1,--.,n. Thus T has a unique decomposition.

The above results also show that if T is a unique decomposition
relation, then for every polynomial P of degree m, there exists one
and only one polynomial @ of degree » such that P(T) = Q(T — )
and then the following diagram is commutative.

¥(P, T,°)
—

P(T) G.(T)
(4.32) H If
QT - &I 6 r ).

5. Sufficient conditions for polyclosedness. We are now ready
to state the main theorem of this paper. The proof will be quite
direct since the foundation for it has been laid in previous sections.

THEOREM 5.1. Let X be complete and T a closed linear relation
with a unique decomposition. If (P, T,°)" is continuous, then P(T)
1s a closed linear relation.

Proof. Since G,(T) is complete and (P, T,°) is a linear homeo-
morphism, P(T') is complete and hence closed as a subspace of X P X.

COROLLARY 5.11. Let X be complete and T a closed linear rela-
tion with unique decomposition such that for every polynomial P,
(P, T,°Y™" is continuous. Then T s polyclosed.

ProprosITION 5.12. Let T be a closed linear relation (X not neces-
sarily complete) with a unique decomposition such that (T — \) is
selective for some e C. If (P, T,°)™" is continuous for every poly-
nomial P, then T and T are polyclosed.

Proof. Combine 5.11 with 3.23.

ProrosiTiON 5.2. If T 1is a closed linear relation such that
(T — M) is a single-valued continuous operator for some e C and
X is complete, then (P, T,°) is continuous for every polynomial P.

Proof. First suppose » = 0. Let (2}, 37, a;2!) be a Cauchy net
in P(T). Then «} is a Cauchy net in X as is >',ax/. Since T
is continuous, T-'(a%] + -+ + a,2L) = ax) + --- + a,2,_, is Cauchy.
Since «] is Cauchy, ax] + -+ + a,2._, is Cauchy. We repeatedly apply
T-' until we arrive at the fact that a,x] is Cauchy. We may then
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retrace our steps to find that («, «I, ---, 1) is a Cauchy net in X"+,
Since (P, T,°)™* is a closed linear relation, and as an operator it
takes Cauchy nets into Cauchy nets, it is continuous. To generalize the
above proof to the case \ = 0, combine it with the fact that 4.82 is a
commutative diagram.

We may now fit together the pieces to produce the proposed ge-
neralization of 2.2,

THEOREM 5.3. Let T be a closed linear relation such that R(T —X\)
is closed and (T — \)™* is continuous for some e C. Then T — ) is
selective and (P, T,°) is a linear homeomorphism for every poly-
nomial P. Consequently T (and T) is polyclosed.

Proof. Combine 8.1, 5.12 and 5.2

6. Necessary and sufficient conditions for polyclosedness. For
u.d. closed linear relations in a complete space, we have found that
a sufficient condition for (P, T,°)™* to be continuous is for P(T) to
be closed. We now seek conditions on X such that the continuity of
(P, T,°)~" is necessary as well. The basic tool which we shall use
is the generalized closed graph theorem. This theorem has undergone
many improvements since the first version wasg proven by Banach [2].
For up to date information, the reader is referred to [3] and [5].
We shall avail ourselves of the following version.

CLOSED GRAPH THEOREM 6.1. [Ptak, Robertson and Robertson].
Let X be a tonnelé locally convex space and Y a B,-complete (resp.
B-complete) locally convex space. If fis a one-to-one linear map (resp.
linear map) of X into Y such that the graph of f is closed in X Y,
then f is continuous.

Proof. See [5, 1V, 8.5].

We shall make the following definitions: X is a (PB)-space if and
only if X" for every n = 1 is B-complete and, each closed subspace
X @ X is tonnelé. X is a (PB,)-space if X" for every n =1 is B,-
complete and each closed subspace of X @ X is tonnelé.

That each of these classes is sufficiently large to be of interest
is guaranteed by

ProrosiTiON 6.11. If X is a Frechet space, it is a (PB)-space.
If X is a (PB)-space, it is a (PB,)-space.
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Proof. See [5;1V, 6.4]

We may now state the following propositions that act as partial
converses of 5.1 and 5.11.

PROPOSITION 6.2. Let X be a (PB,)-space and T a closed linear
relation in X with a unique decomposition. For a fixzed polynomial
P, P(T) s closed if and only if (P, T,°) is a linear homeomorphism.

Proof. The sufficiency has already been proven. To show neces-
sity, suppose that P(T) is closed. Since X is a (PB,)-space, P(T) is
tonnelé considered as a subspace of X @ X. Since G, (T) is closed, it
is B,-complete. Hence (P, T,°)* is a closed map from a tonnelé
space into a B,-complete space. By 6.1 (P, T,°)™" is continuous.
Hence (P, T,°) is a linear homeomorphism.

COROLLARY 6.21. Let X be a (PB,)-space and T a closed linear
relation with a unique decomposition. T is polyclosed if and only
if (P, T,%) is a linear homeomorphism for every polynomial P.

Due to the fact that quotients of B-complete spaces by -closed
subspaces are again B-complete, in the class of (PB)-spaces we may
strengthen 6.2 and 6.21 to closed linear relations that do not have a
unique decomposition.

ProprosITION 6.3. Let X be a (PB)-space and T a closed linear
relation. For a fixed polynomial, P, P(T) is closed if and only if
(P, T,°Y is a topological homomorphism.

Proof. Since G,(T) is closed, it is B-complete. Since (P, T,°)
is continuous, N(y(P, T,°)) is a closed subspace of G,(T). Hence
G.(T)/N@(P, T,?)) is also B-complete. If (P, T,°) is a topological
homomorphism, then it induces a canonical linear homeomorphism of
GAT)/N((P, T,?)) onto P(T). Thus P(T) is B-complete and obvious-
ly closed. Conversely, if P(T) is closed, it is tonnelé and the canoni-
cal linear bijection induced by (P, T,°) is a linear homeomorphism
and hence (P, T,°) is a topological homomorphism.

ProrosiTiON 6.31. Let X be a (PB)-space and T a closed linear
relation. For T to be polyclosed, it is mecessary and sufficient that

(P, T,°) be a topological homomorphism for every polynomial P.

Thus in (PB)-spaces, 6.31 characterizes the polyclosed linear rela-
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tions as those whose realization maps are all topological homomor-
phisms.

7. Completing the generalized graph. Let us return to the
case where X is not necessarily complete. We will say that a closed
linear relation has a wuniformly completable generalized graph if and
only if G.(T) = G.(T) for every n = 0. An example of such a linear
relation is afforded by Example 3.11. This can be easily seen by rea-
lizing that if (z,, 2., ---, ®,) € G,(T) then z,e C"([0, 1]) and z,=2,"",
The Weierstrass approximation theorem guarantees that there exists
a sequence of polynomials p; such that p{¥ — x{¥ for £k =10,1, ---, n.
Since (p{™, pi*~Y, -+, ;) € G,(T), we conclude that

(xOy Ly ooy xn) € @n(T) .

The usefulness of this property can be seen in the light of the fol-
lowing simple proposition.

ProrosITION 7.1. For a fixed polynoznial P, and a fixed closed
linear relation T, 4(p, T,°) = w(P, T,°)| G.(T).

Proof. Both of these mappings are continuous linear extensions
of (P, T,°) to G,(T). Thus they must be equal.

COROLLARY 7.11. Let T be a closed linear vrelation with a uni-
formly completable generalized graph, and P a fixed polynomial.
Then 3(P, T,°) = (P, T,°). Thus if w(P, T,°) is a linear homeomor-
phism, then (P, T,°) is also.

Proof. If (P, T,°) is a linear homeomorphism, then (P, T,°)
is also. Hence the same is true for (P, T,°).

COROLLARY 7.12. Let T be a selective closed linear relation with
a uniformly completable generalized graph. Then if (P, T,°) s a
linear homeomorphism for every polynomial P, T (and T) is poly-
closed.

Proof. By 7.11, 4(P, T'°) is a linear homeomorphism. Hence T'
is polyclosed. Since T is selective, by 3.23, T is polyclosed.

This result reflects the basic fact found in all our results, name-
ly that to prove that T is polyclosed, we have had to prove that T
is polyclosed as well. Unfortunately the conjecture that this is always
the case is false, even under the restricted hypotheses of selectivity
and uniformly completable generalized graph. This can be seen by
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considering the example following 3.23. Since T = T, T is selective
and has a uniformly completable generalized graph. However, we
have already seen that 7T is polyclosed (as a subspace of X P X)
whereas T is not. Note that (P, T,°) is not a linear homeomorphism
in this case even for P(t) = t.

The result derived in 7.1 suggests that it might be profitable to
consider (P, T,°) as a restriction. An instance of this is provided
by the following proposition.

ProposiTiON 7.2. Let X be a complete space and S a polyclosed
linear relation such that (P, S,°) is a linear homeomorphism for
every polynomial P, Then for every closed linear relation T such
that T S, T is polyclosed.

Proof. (P, T,°)* = (P, S,°)™ | P(T) and thus is continuous.

COROLLARY 7.21. Let X be a (PB,)-space and S a polyclosed
linear relation with a unique decomposition. Then for every closed
linear relation T such that T < S, T is polyclosed.

Proof. If S is polyclosed, then (P, S,°) is a linear homeomor-
phism for every polynomial P. An application of 7.2 completes the
proof.

We have seen that for the case where T' is single-valued, it is
not necessary for 7' to be continuous for (P, T,°) to be a linear
homeomorphism. For our final result we present a specialization under
restricted hypotheses where a continuity condition is necessary and
sufficient for (P, T,°) to be a linear homeomorphism.

ProrosITION 7.3. Let T be a closed linear relation such that
Jor some e C, (T — N)7* is single-valued, and such that there exists
a continuous linear map F:. D(T — \) — X such that FC(T—X\). Then
(P, T,°Y 1s a linear homeomorphism for every polynomial P, if and
only if for every n =1, (T — \)~" is continuous on N((T—N)"").

Proof. Let us consider the case )\ = 0. First suppose T-'is con-
tinuous on N(T-"). Let P(t) = S\r,a,tt. Let (x} 2, a,xl) — (2, ¥).
We may consider z, = y = 0 without loss of generality. Then 2] — 0
and >, a.xf— 0. Let m{ = F(x}) — «. Then m]e N(T™) since
(x}, F(x}))e T. Next let m) = F(x]) — . Again %} < N(T-"). Thus
Fa}) =} + m) + F(m]). Let m} = mi + F(m}). Then m]e N(T™?
since (0, m))e T and (mi, m})e T. Also F~'(m}) = m] + F~(m}) = m].
Continuing in this manner we get F'*(z}) = x] + m] where m] e N(T™*)
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and F~*(m}) =m}_, for k=1,---,n. Thus

n " n
Dl = X a N + X ami— 0.
= =

k=1

Thus >, am)— dr — a, F*]) = 0. Since
Z"‘ aymie N(T-") , Tﬁl(i akm,l> = i Qs M,
k=1 k=1 k=1

is convergent. Repeated application of 7! implies that a,m! is con-
vergent and hence m] is convergent. Proceeding back up the line,
we get mj convergent for £k =1, ---,n. Thus x}=F"*])—m, is con-
vergent. Thus (x, ---, «}) is convergent. Since (P, T,°)™" is closed,
it is continuous.

Conversely if (P, T,°) is a linear homemorphism for every poly-
nomial P, let m] be a net in N(T—") such that m}, —0. Let P(t) =
t*.  Then (0, m{, ---, m,_,, m.)— (0, m,, +-+, m,_, 0). Since T is
single-valued, m, = 0 for k=1, ---,n — 1. Hence T '(m]) = mi_,—
0 and 7' is continuous on N(T—").

To prove the proposition for A = 0, use the commutativity of dia-
gram 4.32,

COROLLARY 7.31. Let the hypotheses of 7.3 be satisfied with T
being selective and having a uniformly completable generalized graph.
Then +f (T — 1)~ is continuous on N((T — X)™™) for n =1, T as well
as T is polyclosed.

Proof. Apply 7.12.

COROLLARY 7.32. Let the hypotheses of 1.3 be satisfied with X
being o (PB,)-space. Then T 1is polyclosed if and only if (T — )™
18 continuous on N({(T — N)™) for n = 1.

Proof. Apply 6.21.

We will conclude by proving that T as defined in Example 3.11
is polyclosed. This is done by application of 7.31 for » = 0. The
only facts we must verify are that there exists the proper continuous

F and that T-'is continuous on N(T—") for n = 1. Let F(x)= Stx(s)ds.

Certainly F' is continuous, is defined on C>=({0, 1]) and <x, gtx(s)ds> eT
for every xe C=([0,1]). N(T™) consists of polynomials of éegree <m.
But it is easily seen that T, namely differentiation, is continuous
on such a space. Let P, be a sequence of polynomials of degree <=,
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such that P,— 0. Then the coefficients of each ¢,7=0,.-+, 7 —1
converge to 0. Thus P, — 0 also.
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