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In this paper we discuss results leading to a description
of an algebraic structure constituted by power series with the
same maximum term in several complex variables, and use the
description to estimate the maximum modulus of any of the
series in terms of its maximum term and its central index,
and obtain some useful asymptotic relations. We observe that
certain crucial Valiron-type theorems, in the case of several
variables, are by no easy or routine means reached through
Valiron-type techniques.

The relations among the maximum term, the central index and
the maximum modulus of a power series are extensively studied in the
case of a single complex variable (see, e.g., [7]-][9]). While a number
of Wiman-type theorems are extended to the case of several complex
variables (see [1], [4] and their bibliographies) we find only some unsat-
isfactory attempts made to extend the Valiron-type results to the case
of entire power series in two complex variables (see § 6). Analogous
to the case of one variable the Valiron-Wiman-type results contribute
in their own way to the study of partial differential equations, and
to obtain some such analogues (e.g., of [5],[6]) we need relations
between the growths of the maximum term and the central index of
a multiple power series along with certain Wiman-type theorems
stronger than the ones available at present. In this paper, however,
we limit ourselves to some Valiron-type results and attempt a systematic
presentation, which in particular enables us to indicate certain open
questions.

1. Notation. We write &’* for the cartesian product of the
field of complex numbers with itself & times and indicate its elements
(points): (2y, 2, ==+, ), (|20, <o oy |20 ), (7 ooy 1)y (04, = -+, 1) ete. by

their corresponding unsuffixed symbols z, | z|, 7, n, etc., when it is easy
to understand from the context. Throughout £ = 0, stands for a
nonempty open complete k-circular region in &* (see § 3,3 of [3]) with
centre at 0 = (0,0, -+, 0), the zero element of =*. We write

|2]| =]r:r = |z] for some z¢ Q]
and

Ot =[rire|L|, nor;, =0],
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and regard these as subsets of the k-dimensional euclidean space &,
In connection with any », se * we say (i) that »r < s or s = r, if and
only if »,<s; for 1 <4 <k, (ii) that r < s or s > r, if and only if
r < s but » is not = s, and (iii) that » € s or s > r, if and only if
r;<s; for 1<5<k.

Throughout & = & (Q) stands for the family of all power series
with centre at 0 and absolutely convergent in 2. Under conventions
similar to those for indicating the elements of * we indicate A € & by

Az) = 3 a,2",
ne.y

where (always)
N =N, =[n:ne|&*|, each n; is a rational integer],

2" =2hgyr -0 23k (25 = 1 even if 2z, = 0) .

Corresponding to an Ae . &% we define the functions (mappings):
the maximum term g = p{A4}, the central index v = v{4} = (v,, - -+, V)
and the maximum modulus _# = _#{4} on | 2] by

ﬂ(’i") = ﬂ(qﬂ, A) = I,,}’]éa/‘,}/{ (I Qy, | Tn) y
max [n;: {a, | r" = pu(r)], if u(r)>0,
0,if u(r)=0,for 1<j=<k,
(1) = A (r, A) = max | A(z) | .
lz|=7r

vi(r) = vy(r, 4) =

We say that a mapping f with domain D in a euclidean space and
also with range in a euclidean space is increasing (in D), if and only
if f(r) £ f(s) for any r,se D such that » < s.

2. Fundamental properties of ¢ and v. Throughout this section
we work with the same power series Ac.&# . We start with

THEOREM 2.1. Let p, re| 2| and let u(p) and p(r) be both positive.
Then the line integral,

I= ST Loy() dac.
x;,

pi=1 j

taken over any connected polygon in || with sides parallel to the
axes and from p to r, (i) ewists, (ii) is tndependent of the polygon
and (iii) is such that

log p(r) = log p(p) + I .

We need three lemmas.
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LEMMA 2.2. Let k> 1. Corresponding to any re|z*|, let
P = 79 denote the formal expression (v, «««, Ti_y, *y Tity *+*, Tx) and
let |2]|; denote the section of |£2| corresponding 7, i.e., the set [r;:
re|R21]]. Let |2]|; be nonempty. Let p; and v;; be respectively the
sections of  and v; corresponding to v, defined on |2|; by p(r;) =
w(r) and vi(r;) = vi(r).

Then t; and v;; are respectively the maximum term and the
central index of the power series im one variable (z;) converging in
[Q1; viz.,

2.3) S
n €.F 1
where
o = tin; = max (g frpr - 735 e )

(Rysees 1RG5 np) €4 g

Proof of 2.2. After a complete statement the lemma is a straight
forward verification. To see the idea of the lemma more quickly one
might consider the special case where £ = 2 and look upon 4 as a
double series arranged in rows and columns in a “natural manner”.

The following two lemmas are well-known (see, e.g. [7]). They
however admit simple proofs (with no appeal to geometric intution),
which we briefly indicate.

LEMMA 2.4. Let k=1. Then (i) v s increasing and right
continuous and its discontinutites form a set discrete im | Q|; (i) p
18 tnereasing and continuous in | 2.

Proof of 2.4. (ii) is a simple consequence of (i), which is easily
proved (see also (2.6), (2.10), (2.14)).

LemmA 2.5. Let k =1. Then Theorem (2.1) holds in this case.

Proof of (2.5). It is sufficient to consider the case p < », which
we do. By (2.4) (i) there exists a finite dissection of the closed interval
[p, r] specified by p = d, < d, < --- < d,, = r such that v is continuous
in each of the open intervals (d;,d;;). Now by (2.4), ¢ does not
vanish in [p,#] and for j =0,1,.--,m — 1,

1(d;i,) = p(d;y, — 0) = |a/u(dj) | d;ij) ,

which proves the result with d;, d;,, respectively instead of p,r and
hence proves (2.5) itself.
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Proof of 2.1. By (2.2) and (2.5), (i) and (iii) hold in case the
polygon under consideration is a straight line segment parallel to one
of the axes (say to the jth). The proof of (i) and (iii) may now be
completed by using induction on the number of the sides of the
polygon. (ii) is implied by the rest of the theorem.

We also require some extensions of (2.4) for £ > 1, with which
we shall be concerned in the rest of this section. These extensions
need a different approach and in particular we start making use of
the openness of 2 (see (2.14)).

THEOREM 2.6. £ is (i) wncreasing and (ii) continuwous in | 2.

(i) of (2.6) is obvious. Before considering (ii) it is convenient to
prove a lemma, which is required a few more times later.

LEMMA 2.7. Let re|Q| and p(r) > 0. Then there exists a
netghbourhood V of r w.r.t. | 2| and a finite subset <~ of 4, such
that for teV,

p(t) = max (|a,| ") > max (a,|¢) .

Proof of 2.7. Since 2 is open in &% there exists an se| 2] such
that s > r. It is easily seen that p(r/2) = p(r/2,---,r,/2) is also
positive and hence there exists a finite set < & .+~ such that
la, |s” < p(r/2) for ne 4" — &, which by virtue of the obvious (i)
of (2.6) implies the lemma, when we take V =[t:7/2 <t < s].

Proof of 2.6. By virtue of (2.7) we need only prove the continuity
of p at points re|R2]|, where p(r) = 0. Let re|2], #(r) =0 and 6
be a positive real number. As in the proof of (2.7), there exists an
se|Q] and a finite subset & = <7(6) of _#; such that » < s and
la,|s" <o for me_y” — <. This together with the fact that
max [|a,|t": me <] defines a function continuous and vanishing at
t = r, completes the proof.

It is not true that v is increasing for k > 1, as is shown by

ExamMpPLE 2.8. Let £ > 1,02 = &* and 4 be the power series of
&, which converges at each ze &* to 1 — k + > %, expz;. Then

vy(r) = [r;] or 0,

according as »; = or < max{r, ---,7,} In particular v(,---,1) =
@, ---,1), while v(1.5,1.55,1.555, ---) = (0,0, ---, 0, 1).
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However one might consider different extensions of the fact that
y is increasing for &k = 1. We state, mainly for later use, the following
obvious consequence of (2.2) and (2.4).

COROLLARY 2.9. vy, is increasing and right continuous in the
Jjth variable (i,e., the v;;: of (2.2) is increasing aond right continuous
wn its domain), for 1 <5 < k.

‘We next prove

THEOREM 2.10.  Let A be not identically zero and let D denote
the set of all discontinuities of v in |2|. Then there exists a finite
or countable family of sets D;,j e some index set J such that

(1) D = UJ'GJDJ"

(ii) each D; 1s closed w.r.t. | 2],

(iiil) each D; is a subset of a hyper-surface of the form [r:re|Q],
r™ = ¢, where m, ---, m; are rational integers and «a is a real
number = 0 (and hence each D; is of at most real dimension k — 1),

(iv) any compact subset of |21 in which p does not vanish has
a nonempty intersection with at most a finite number of the sets D;
Surther

(v) D itself is a nowhere dense closed set w.r.t. | 2| and

(vi) [ay |7 = p(r) for re 2] — D.

We need two lemmas.

LEMMA 2.11. Let A be not identically zero. Let S denote the
set of all re|Q| at which u(r) is attained by more than one term
of the series D, |a,|r" and let

S(m, n) = [rire |21, |a,[r" = [a,[r" = p(r)] .

Then (1) through (vi) of (2.10) hold with S instead of D and
{S(m, n)(m = n)} instead of {D;,jeJ}.

Proof of 2.11. The analogues of (i), (ii), (iii) and (vi) of (2.10)
are obvious.

By Lemma 2.7, to each r<|Q2]| at which g(r) > 0, there corre-
sponds a neighbourhood V of # suct that only a finite number of the
sets S(m, n)(m # n) have a nonempty intersection with V. The Heine-
Borel property of a compact set now implies the analogue of (iv) of
(2.10).

The foregone discussion enable us to conclude that SN Q* is
nowhere dense in |£] and hence so is S. To complete the proof at
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this stage we need only show that S is closed w.r.t. |2]. Letre|Q]|
and be a limit point of S. 7€ .S obviously, if g(r) = 0. Let p(r) > 0.
By the continuity of g there exists a compact neighbourhood P of »
w.r.t. |2| in which g does not vanish. Hence by the analogues of
(ii) and (iv) of (2.10), it follows that PN S is closed w.r.t. | 2|, which
in particular implies that ¢ S.

LEMMA 2.12. Let A be not identically zero. Then the sets D
and S introduced respectively in (2.10) and (2.11) are identical.

Proof of 2.12. Let re|2]|. We first consider the case: u(r) > 0.
Let us assume that re S — D. Now there exists a neighbourhood V'
of rin | 2] in which g does not vanish and v is a constant, say = m.
Hence by (2.6) and (2.11), p(t) = |a, | t™ forall te V. But since re S,
there exists an n = m such that |a,|r” = g(r). This implies that for
some teV,|a,|t" > |a,|t™ = p(t), which is impossible. Thus 7 does
note S — D, Using Lemma (2.7) we easily see that » doesno e D — S.
Thus re€ S, if and only if e D, in case p(r) > 0,

Let us finally consider the case when g(r) = 0. Now already
re 8, and to complete the proof we need only show that re D. Since
p(r) = 0, we also have v(r) = 0 and a; = 0. We now assert that r ¢ D,
for otherwise #(t) = 0 for ¢ in a neighbourhood of » w.r.t. | 2], which
is impossible since p does not vanish in 2+.

Proof of 2.10. (2.11) and (2.12) imply (2.10).

REMARK 2.13. Example (2.8) shows that for £ > 1, (vi) of (2.10)
is not the best of its kind, although it is not true with | 2| instead
of (2| — D.

REMARK 2.14. It is not clear whether we have obtained a rich
collection of the properties of v adequate enough to characterize it
as a mapping when k > 1. Further the techniques of this section
have their own limitations, if one chooses to drop the openness of Q.
For example, in such a general case, we would only be in a position
to say, instead of Theorem (2.6) (ii), that g is continuous w.r.t. any
interval set [t: 7 < ¢ < s], where r,s€|2|. However our results may
be easily generalized to the useful case in which 2 is a complete k-
circular region and is a finite union of sets of which is open in &*
or some one of its axial subspaces (cf. § 3,3 of [3]).

3. Algebraic structure of power series with the same maximum
term. Throughout this section g stands for the maximum term
(function) of some power series of & and % = % (y) stands for
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the partially ordered family of all series of .# with maximum term
#, where the strict partial order ‘A less than B’ (‘B greater than A’)
for two elements A, Be .9 is specified by A < B(B > A), if and only
if |a,| <10,| for all ne_#; with strict inequality for some n. We

first prove the important

THEOREM 3.1. .27 admits maximal elements and admits only
one such element G = G{.2#"} with nonnegative real coefficients, given by

G() = G(z, &) = 3, g.2",

ne s
where

g, = inf [p@)fa’] = inf [u@far], for me.s" .

acla:ael2],a®>0]

Proof of 8.1. The equivalence of the two alternative expressions

for each of the g,’s is implied by (2.6).
Let ze Q2. There exists an o ¢ £+ such that |z]| € a. Now

3.2) lg.2"| = pla)(|z]"[a")y, for me. ).

Hence G is absolutely convergent in 2.
(3.2) also shows that |g,"| =< p(2z]) for ne 4" (“by making
a—|z|+ 0”), so that

3.3) Mz, G) = p(iz]) .

Now let Ae 2. For any me._4 and any acf' we have:
la,|a” < (a) or |a,| < p(a)/a™, which implies that

(3.4) la,| < g,, for ne_y .

Hence
p(z) = p(z], 4) < (2], G),

which together with (3.3) implies that Ge <. Also the proof is

complete since (3.4) holds for all Aec <7 .
We now turn to the minimal elements of .2, which signify the
possible gaps in a power series with an assigned maximum term. We

need

THEOREM 3.5. Let A,Be . 9%. Then y(r,A) = v(r,B) for all
relf|.

Proof of 3.5. By Theorem (2.1) and Corollary (2.9) the directional
derivative of log y(r) in the direction of the positive j th axis exists
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at all re|2]|, where p(r) > 0,r; >0, and is equal to v;(r, A)/r; =
v,(r, B)/r;, which by Corollary (2.9) implies that v;(r, A) = v,;(r, B) for
all re 2| (the case when p(r) = 0 being trivial).

CONVENTION 3.6. Here after we write v = v{y} for the common
central index of the series of .72 (¢#). We now proceed to

THEOREM 3.7. 7% admits minimal elements and admits only
one minimal element with nonnegative real coefficients.

Proof of 3.7. Let E be the set of all points of continuity of v
in |[2]. Let

9. (of (3.1)), if n = y(r) for some re K,

S 10 for all other ne _ s~ .

Since G is absolutely convergent in | 2|, so does the series S given
by

Si) = 3 s.2".
Now for any r € E and any A € .2, by Theorem (2.10) (vi), v(r) =
v(r, A) = v(r,G) = v(r, S) and

(3.8) 1, 8) = 8.1 = pr, G) = pr) = | @y | 77,

which by virtue of (2.6) and (2.10) (v) imply that p(r, S) = p(r) for
all »e| 2|, which means that Se .22

Finally (3.8) together with the fact that v(F) = v(F N 2F) implies
that

S.=Z|a,| for nme 47Ae 2%

which completes the proof.

REMARK 3.9. Our discussions of Theorems (3.1) and (3.7) further
lead to the fact that the partially ordered subfamily of .2  consisting
of all its series with nonnegative real coefficients is a distributive
lattice closed for arbitrary unions and arbitrary intersections.

REMARK 3.10. In the case where k = 1, Valiron [7] carried out
his estimations using a characterization of the maximal element G of
¢ in terms of y, which is not available when k& > 1 (see §6). Also
when k£ =1 we can say that A itself is a maximal element of the
27 () determined by it, if and only if |a,..0,| < | @, |* for ne 17,
We have no analogue of this for & > 1, although Theorem (3.1) readily
implies
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COROLLARY 3.11. If A is the maximal element of the 7 (u)
determined by it, then
P

| Qo] = 1 Quiiis P

for ne 4,1 <7<k, where t()(t = 1,2) stands for the element of
A7 with t at the jth place and zeros at others.

4. Estimates for . in terms of ¢ and v. Throughout this
section Ae & and G is the maximal element, with nonnegative real
coefficients (see Theorem (3.1)), of .97 {A} = 2 (¢), where p is the
maximum term of A.

THEOREM 4.1. Let re|2]|. Let pe|&*| and be such that p > 1,
while pr = (P, «++, D7) stille | 2|, Let
N; = max y;(¢), for 1<5=Fk.

rst=pr

Then

(i) pr) = 20) = GO = p() TT5 [N + 005 — 115

(ii) p(ry = _Z(r), if and only if the series >,,.ya,r" has at
most one nonvanishing term;

(iii) the last relation in (i) ts an equality, of and only ©f p(r) = 0.

REMARK 4.2. Theorem (4.1) simultaneously extends two crucial
results of Valiron for the cases (i) when 2 = &' (see Theorem 11,
(2.10), Ch. II of [7]), and (ii) when Q is bounded in <™ (see (9), (10),
§ 70, Ch. IX of [8]). For example to get the result in case (i), we are
only to choose » such that y(r) > 0and p = 1 + 1/v(r). In fact Theorem
(38.1) provides the best upper estimate for .~/ (r) in terms of .

Proof of 4.1 (i). That p(r) £ _# (r) follows easily from Taylor’s
Theorem and Cauchy’s inequality (see [3]). That _Z(r) < G(r) is
obvious from Theorem (3.1), We thus need only consider the last
relation,

Let 7 be the class of all subsets of the set K of all positive
integers < k. Corresponding to each Je¢ s let us write

AN J)=nine 4,n; = N;, if and only if jeJ];
p, if jed,
p(J) = (at, -+ @), where a, =17 7°
1 otherwise ,
p(J)?" = (alru Tty a'k/rk) .
We shall also suppose that z(r) > 0, as otherwise the theorem is
trivial. By Theorem (3.1),
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. 43) gn = p(@(J)r)/(p(J)r)"
for ne s,Je _Z,if >0 (éven if »¢ 27), and hence
G(r) = Z Z [/«l(p(J yr/(p(J)"]

Je_F meo

Py~
(4.4) Z[#(p(J)r)H T

Since p(r) > 0, by (2.6), y(p(J)r) > 0, and hence by Theorem (2.1),
log p(p(J)r) < log p(r) + 3 N;log p; ,

which together with (4.4) implies the last relation of (4.1) (i).

Proof of 4.2 (ii). The result is essentially discussed when k& = 1
(see §2, Ch.I of [7]) and the technique of the proof may easily be
extended to the case when £ > 1 (even if re|Q2| — Q2%).

Proof of 4.2 (iii). The proof consists in observing that the first
relation in (4.4) is not an equality when p(r) > 0. Suppose this is not
so. Then would follow (because of (4.3)) that »» > 0 for all ne_ys~
and that (4.3) reduces to an equality, which implies (because of (2.6))
in particular that the series

> ga(pr)”
ne s (K)
is divergent, which contradicts (because of (3.1)) the fact that pre|Q]|.

5. Asymptotic relations among #,Y and _#. In this section
we throughout take 2 = &* and write A to denote a nonconstant
entire series of % . We say that a real valued function f defined
outside a compact set in |2]| is of finite order, if and only if there
exist an ac QF and a positive real number K such that f*(r) < Kr*
asymptotically as » — & = 4 & = (4o, +++, + o), and we say that
A is of finite order, if and only if so is log*_#{4}. Following Ronkin-
Fuks-ideas (cf. §26,2, Ch., V of [3]) we also talk of the hypersurface
of systems of conjugate orders in the case of a function f (or A) of
finite order considered above. However it may be noted that our
growth-indicators are rather associated wit Gol’dberg-order than with
the growth-indicators introduced by Ronkin and Fuks (see Remarks

(5.6), (5.7))

THEOREM 5.1. (i). Thefollowing three statements are equivalent:
(a) A is of finite order;
(b) log™ p{A} is of finite order;
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(c) each v{AY1 <j = k) is of finite order.
(ii) If A is of finite order, the hypersurfaces of systems of
conjugate ovders of A, log* p{A} and 0{A} = max,;, v;{4} coincide.

Proof of 5.1 (i). For any »,pe|f2]| such that p(r) > 0and p >
a,---,1), we get by (2.9) that for 1 <j < &%,

da;

b

1 (e
v(r) = Tog p Vi(Pyy ooy Tjosy Bjy Vg, =005 Th)
i Y7

J Tj
which by (2.1) and (2.6)

= [log p(pr) — log p(r)lp,/(p; — 1),

which shows that (b) implies (c).
It is easy to prove using (2.1), (2.6) and (2.9) that for a deQ+
and any r€|2| such that p(r) > 0,

log p(r) = log p(d)

which (with the components of d “fixed but chosen sufficiently large”)
shows that (c) implies (b).
By Theorem (4.1), (a) implies (b), and (b) and (c) together imply (a).

Proofs of 5.1 (ii). The proof involves no difficulties in the
presence of our discussion for proving (5.1) (i).

THEOREM 5.2. Let A be of finite order. Then log* p(r) ~
log* _#Z (), as r — + .

It is convenient to prove first

LEMMA 5.3. Let A be of finite order and be purely transcendental,
1.6., there exists no me _4 " such that a, = 0 for all n = m. Then
logt p(r) ~ log™ _Z(r), as r— +&.

Proof of 5.3. The hypothesis that A is purely transcendental
implies that

[log pe(r)]/log(r) — +c , as r— 4,

for any ae| % *|, while Theorems (4.1) and (5.1) imply the existence
of an ae|&*| such that

log . (r) < log p(r) + log ()
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holds asymptotically as » — + 5. Hence the lemma.

Proof of 5.2. We prove using induction on k&, the number of
variables. (5.3) implies the theorem when & = 1 (see also Ch. IT of [7]).
Let us assume that & > 1 and that the theocrem holds in the case of
k — 1 instead of k& variables. By virtue of (5.3) it is sufficient to
obtain the conclusion of the theorem for & variables when there exists
an m €./ such that a, = 0 for all % = m, and this we do. Now
for re| 2],

RACEID> @]
(5.4)

where 7 = #'9 = (v, «--,r,_, ;. --- 7,) and H,, represents an entire
power series with centre at 0 in & — 1 variables such that H; (7))}
represents a sub-series of >, , Ja, (7", for 0t <m;,,1 <5<k, In
particular we have

(5.5) M (Pt < (), for rei|f

b

where ft;, is the maximum term of H,,, for 0 <t <m;,,1 <j<k. By
our induction hypothesis (and trivially if H,, reduces to a constant)
it follows that

H;(79) < pi7' (7)), for 0 <t < m;, 1 =75 <k, 6 > 0, asymptotical-
ly as 79— + 5 in | z"*'|. Hence by virtue of (5.4) and (5.5) we
get that

() = k(g mj>;e1+5(7-)

asymptotically as » — 45, for any positive real number &, which
together with (4.1) and the fact that u(r) — + o as r — + s completes
the proof.

REMARK 5.6. For & > 1, Theorem (5.2) would be false, if one
chooses to interpret “of finite order” following Ronkin and Fuks (see
§ 26, 2, Ch.V of [3]), although the analogue of Theorem (5.1) would
still be true. To disprove the analogue of (5.2) one may consider A
such that A(z) = expz, for all ze & *(k > 1).

REMARK 5.7. In the presence of the discussions of this section it
is easy to state and prove the analogues of (5.1) and (5.2) keeping
Gol’dberg- order of A in mind, which does not really depend on the
fundamental domain used for defining it (see §26,1, Ch.V of [3]).
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Also one might try to generalise our considerations of this section to
the case where Q is not necessarily the whole of &%, so as to be able
to present in particular a unified picture of the unbounded and the
bounded cases of 2 £ & (see Ch.Il of [7] and the indications of
§ 70, Ch. IX of [8]).

6. Appendix. An extension of Valiron’s theory to the case of
entire power series in two complex variables is attempted by S. K.
Bose and Devendra Sharma [2]. They start with a series Ce & (™)
and state to have constructed using Valiron-type geometrical consider-
ations, a maximal element W of the .27{C} determined by C, in the
notation of our § 3, whose coefficients admit a specific pattern (see
(4.1)-(4.2) of [2], cf. Ch.II of [7]). They take w; = 1 and using the
special forms of the coefficients of W obtain their basic formulae
connecting the g and v of C ((4.3), (4.4) of [2]).

Apart from the fact that the treatment of Bose and sharma (§ 4
and §5 of [2]) needs cautious handling, their basic formulae under
reference, in particular, are incorrect. We give one example ((6.1)) of
transcendental C in the case of which the series W (of the sort they
need) does not exist and their basic formulae fail. We give another
example ((6.2)) of C, which for itself has all coefficients positive and
real but in the case of which again their basic formulae fail. However
it may be noted that some of the asymptotic relations considered by
them turn out to be correct (being included in our Theorems (5.1), (5.2)).

ExampLE 6.1, Let Ce .7 (¥*) and be such that its sum C(z) =
exp (z,2,), for ze &* For this series (4.3) or (4.4) of [2] imply that
p(r) = + o particularly whenever r = (1.1), which is obviously false.
This itself also shows that the type of W, Bose and Sharma require,
does not exist in the present content. Obviously the “Hadamard
Polyhedron” of C [2] degenerates virtually to a space polygon. We
would further assert that there can be no series (of & (&%) with
the same maximum term as C, whose coefficients are all nonvanishing.

Let Ae & (¥% and let p{A} = p{C}. Now for any ne_7v3,

la,| < inf [g(r)/r"]

T1r2="1

= inf [ryrm™/(n!)]

Tire=n]

=0, if n,<mn,.

Hence and by symmetry a, = 0, whenever n, # n,, which establishes
our assertion, With the help of the discussions of § 3, it is also easily
seen that C is both a maximal and a minimal element of the .2 {C}
determined by it.
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ExAMPLE 6.2. Let Ce.# (¥ and be such that its sum C(z) =
exp (2, + 2z.) — 2./2 — z,/2, for ze &*. Now all the coefficients of C are
real and positive, so that its “Hadamard Polyhedron” suffers no
degeneracy. Still one might observe that the formulae (4.8) and (4.4)
of [2] do not hold, in particular when », = », =1, In fact one
encounters some defective notation in [2] such as writing v,(r;) instead
of our v, r) (4 =1, 2), which may however be understood from the
context.
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